文档库

最新最全的文档下载
当前位置:文档库 > 2011年西藏自治区数据总结高级

2011年西藏自治区数据总结高级

1、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)
2、给出折半查找的递归算法,并给出算法时间复杂度性分析。
3、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。
(1) (3分)给出适用于计数排序的数据表定义;
(2) (7分)使用Pascal或C语言编写实现计数排序的算法;
(3) (4分)对于有n个记录的表,关键码比较次数是多少?
(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?

4、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。
5、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能:
(1).建立有向图G的邻接表存储结构;
(2).判断有向图G是否有根,若有,则打印出所有根结点的值。

6、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。
7、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保

留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

8、本题要求建立有序的循环链表。从头到尾扫描数组A,取出A[i](0<=iLinkedList creat(ElemType A[],int n)
//由含n个数据的数组A生成循环链表,要求链表有序并且无值重复结点
{LinkedList h;
h=(LinkedList)malloc(sizeof(LNode));//申请结点
h->next=h; //形成空循环链表
for(i=0;i{pre=h;
p=h->next;
while(p!=h && p->data{pre=p; p=p->next;} //查找A[i]的插入位置
if(p==h || p->data!=A[i]) //重复数据不再输入
{s=(LinkedList)malloc(sizeof(LNode));
s->data=A[i]; pre->next=s; s->next=p;//将结点s链入链表中
}
}//for
return(h);
}算法结束

9、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。
(1).请各举一个结点个数为5的二部图和非二部图的例子。
(2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【

10、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。
int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数
{if(bt==null || k<1) return(0);
BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大
int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数
int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数
while(front<=rear)
{p=Q[++front];
if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点
if(p->lchild) Q[++rear]=p->lchild; //左子女入队
if(p->rchild) Q[++rear]=p->rchild; //右子女入队
if(front==last) {level++; //二叉树同层最右结点已处理,层数增1
last=rear; } //last移到指向下层最右一元素
if(level>k) return (leaf); //层数大于k 后退出运行
}//while }//结束LeafKLevel

11、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后序遍历序列的递归算法。
12、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离

医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分
void Hospital(AdjMatrix w,int n)
//在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。
{for (k=1;k<=n;k++) //求任意两顶点间的最短路径
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
if (w[i][k]+w[k][j]m=MAXINT; //设定m为机器内最大整数。
for (i=1;i<=n;i++) //求最长路径中最短的一条。
{s=0;
for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。
if (w[i][j]>s) s=w[i][j];
if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。
Printf(“医院应建在%d村庄,到医院距离为%d\n”,i,m);
}//for
}//算法结束
对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。

1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。

13、给出折半查找的递归算法,并给出算法时间复杂度性分析。
14、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

15、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100
typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE;
char pred[MAX],inod[MAX];
main(int argc,int **argv)
{ TNODE *root;
if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(in

od,argv[2]);
root=restore(pred,inod,strlen(pred));
postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n)
{ TNODE *ptr; char *rpos; int k;
if(n<=0) return NULL;
ptr->info=(1)_______;
for((2)_______ ; rposk=(3)_______;
ptr->llink=restore(ppos+1, (4)_______,k );
ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);
return ptr;
}
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);
}

16、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。
17、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

18、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)
有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶

点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。
void Print(int v,int start ) //输出从顶点start开始的回路。
{for(i=1;i<=n;i++)
if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。
{printf(“%d”,v);
if(i==start) printf(“\n”); else Print(i,start);break;}//if
}//Print
void dfs(int v)
{visited[v]=1;
for(j=1;j<=n;j++ )
if (g[v][j]!=0) //存在边(v,j)
if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if
else {cycle=1; Print(j,j);}
visited[v]=2;
}//dfs
void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。
{for (i=1;i<=n;i++) visited[i]=0;
for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);
}//find_cycle

19、#define maxsize 栈空间容量

void InOutS(int s[maxsize])
//s是元素为整数的栈,本算法进行入栈和退栈操作。
{int top=0; //top为栈顶指针,定义top=0时为栈空。
for(i=1; i<=n; i++) //n个整数序列作处理。
{scanf(“%d”,&x); //从键盘读入整数序列。
if(x!=-1) // 读入的整数不等于-1时入栈。
if(top==maxsize-1){printf(“栈满\n”);exit(0);}
else s[++top]=x; //x入栈。
else //读入的整数等于-1时退栈。
{if(top==0){printf(“栈空\n”);exit(0);}
else printf(“出栈元素是%d\n”,s[top--]);}
}
}//算法结

20、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].wedge[j+1]=edge[0]; }//for
k=1; eg=e;
while (eg>=n) //破圈,直到边数e=n-1.
{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除
k++; //下条边
}//while
}//算法结束。

connect()是测试图是否连通的函数,可用图的遍历实现,

21、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。
22、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)
有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。
void Print(int v,int start ) //输出从顶点start开始的回路。
{for(i=1;i<=n;i++)
if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。
{printf(“%d”,v);
if(i==start) printf(“\n”); else Print(i,start);break;}//if
}//Print
void dfs(int v)
{visited[v]=1;
for(j=1;j<=n;j++ )
if (g[v][j]!=0) //存在边(v,j)
if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if
else {cycle=1; Print(j,j);}
visited[v]=2;
}//dfs
void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。
{for (i=1;i<=n;i++) visited[i]=0;
for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);
}//find_cycle

23、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchi

ld为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

24、给出折半查找的递归算法,并给出算法时间复杂度性分析。
25、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={,,,,,,,,}
写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7


26、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。
27、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。
#include
typedef int datatype;
typedef struct node
{datatype data;
struct node *next;
}listnode;
typedef listnode *linklist;
void jose(linklist head,int s,int m)
{linklist k1,pre,p;
int count=1;
pre=NULL;
k1=head; /*k1为报数的起点*/
while (count!=s) /*找初始报数起点*/
{pre=k1;
k1=k1->next;
count++;
}
while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/
{ p=k1; /*从k1开始报数*/
count=1;
while (count!=m) /*连续数m个结点*/
{ pre=p;
p=p->next;
count++;
}
pre->next=p->next; /*输出该结点,并删除该结点*/
printf("%4d",p->data);
free(p);
k1=pre->next; /*新的报数起点*/
}
printf("%4d",k1->data); /*输出最后一个结点*/
free(k1);
}
main()
{linklist head,p,r;
int n,s,m,i;
printf("n=");
scanf("%d",&n);
printf("s=");
scanf("%d",&s);
printf("m=",&m);
scanf("%d",&m);
if (n<1) printf("n<0");
else
{/*建表*/
head=(linklist)malloc(sizeof(listnode)); /*建第一个结点*/
head->data=n;
r=head;
for (i=n-1;i>0;i--) /*建立剩余n-1个结点*/
{ p=(linklist)malloc(sizeof(listnode));
p->data=i;
p->next=head;
head=p;
}
r->next=head; /*生成循环链表*/
jose(head,s,m); /*调用函数*/
}
}

28、由二叉树的

前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100
typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE;
char pred[MAX],inod[MAX];
main(int argc,int **argv)
{ TNODE *root;
if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(inod,argv[2]);
root=restore(pred,inod,strlen(pred));
postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n)
{ TNODE *ptr; char *rpos; int k;
if(n<=0) return NULL;
ptr->info=(1)_______;
for((2)_______ ; rposk=(3)_______;
ptr->llink=restore(ppos+1, (4)_______,k );
ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);
return ptr;
}
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);
}