文档库 最新最全的文档下载
当前位置:文档库 › 光栅制作实验

光栅制作实验

光栅制作实验
光栅制作实验

全息光栅的制作及其参数测量

浏览次数:652次悬赏分:20 |解决时间:2010-12-16 23:14 |提问者:Dreamer成仙

请高人告诉我实验原理和方法。最好有图!!还有下列问题求助:

1.要拍摄一张优质的全息光栅要注意哪些主要环节?

2.为什么制作全息光栅的显影密度要比制作全息图像时要大,即显影后的颜色要深?显影密度的具体数值与光栅常熟的大小有什么关系?

3.拍摄全息光栅时,两束平行光的光程差大好还是小好?夹角大好还是小好?

4.评价一张全息光栅主要特性参数有哪些?

最佳答案

全息光栅的制作(实验报告)完美版

标签:光栅干片发散镜双缝白屏教育

设计性试验看似可怕,但实际操作还是比较简单的~

我的实验报告,仅供参考~

实验报告封面

全息光栅的制作

一、实验任务

设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。

二、实验要求

1、设计三种以上制作全息光栅的方法,并进行比较。

2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。

3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。

三、实验的基本物理原理

1、光栅产生的原理

光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。

图1

2、测量光栅常数的方法:

用测量显微镜测量;

用分光计,根据光栅方程d·sin =k 来测量;

用衍射法测量。激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。

四、实验的具体方案及比较

1、洛埃镜改进法:

基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。

优点:这种方法省去了制造双缝的步骤。

缺点:光源必须十分靠近平面镜。

实验原理图:

图2

2、杨氏双缝干涉法:

基本物理原理:S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。

因双缝间距d远小于缝到屏的距离L,P点处的光程差:

图3

δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ

这是因为θ角度很小的时候,可以近似认为相等。

干涉明条纹的位置可由干涉极大条件δ=kλ得:

x=(L/d)kλ,

干涉暗条纹位置可由干涉极小条件δ=(k+1/2)λ得:

x=(D/d)(k+1/2)λ

明条纹之间、暗条纹之间距都是

Δx =λ(D/d)

因此干涉条纹是等距离分布的。

而且注意上面的公式都有波长参数在里面,波长越长,相差越大。

条纹形状:为一组与狭缝平行、等间隔的直线(干涉条纹特点)d= L/△x

优点:使用激光光源相干条件很容易满足。

缺点:所需的实验仪器较复杂,不易得到。

实验原理图:

图4

3、马赫—曾德干涉仪法:

基本物理原理:只要调节光路中的一面分光镜的方位角,就可以改变透射光和反射光的夹角,从而改变干涉条纹的间距。

优点:这种方法对光路的精确度要求不高,实验效果不错,易于学生操作。

缺点:这种方法对光路的精确度要求不高,实验可能不够精确。

实验原理图:

图5

五、仪器的选择与配套

综合考虑各方面条件,本次试验采用马赫—曾德干涉仪法,所需的实验仪器有He-Ne激光发射器1架、发散镜1面、凸透镜1面、半反半透镜2面、全反镜2面和白屏、光阑各一、拍摄光栅用的干片若干、架子。

六、实验步骤

(一)制作全息光栅

1.打开He-Ne激光发射器,利用白屏使激光束平行于水平面。

2.调节发散镜和激光发射器的距离使激光发散。

3.调节凸透镜和发散镜的距离使之等于凸透镜的焦距,得到平行光。

4. 调节2面半反半透镜和2面全反镜的位置和高度,使它们摆成一个平行四边形(如图5)。

5.调节半反半透镜和全反镜上的微调旋钮,使得到的2个光斑等高,且间距为4-6cm。

6. 测出实验中光路的光程差△l。

(在实验中我们测得的光路的光程差△l=1.5cm)

(二)拍摄全息光栅

1.挡住激光束,把干片放在架子上,让激光束照射在干片上1-2秒,挡住激光束,把干片取下带到暗房中。

2.把干片泡在显影液中适当的时间(时间长度由显影液的浓度决定),取出,用清水冲洗,在泡在定影液中约5分钟。取出,冲洗后晾干。

3.用激光束检验冲洗好的干片,若能看见零级、一级的光斑,说明此干片可以用于测定光栅常数。

(三)测定所制光栅的光栅常数

实际图:

此图参照老师所给实验内容报告上的图来画

图6

原始数据表:

x

1

2

3

4

5

6

r(cm)

23.81

24.12

23.93

24.24

23.65

23.66

h(cm)

144.36

144.65

143.84

144.03

144.52

144.11

计算过程:

七、实验注意事项

1、不要正对着激光束观察,以免损坏眼睛。

2、半导体激光器工作电压为直流电压3V,应用专用220V/3V直流电源工作(该电源可避免接通电源瞬间电感效应产生高电压的功能),以延长半导体激光器的工作寿命。

八、实验总结

设计型实验,原先并没有接触过。以前的实验,都是了解了书上介绍的实验原理后,严格按照书上的详细步骤来做的,不需要自己去思考和研究太多的东西。这一次准备设计型实验,让我锻炼了好多方面的能力。首先,书上给出的只有简单而概括的指导,所有的东西都要自己去查资料,去想办法解决。连试验究竟是怎么回事都不知道的情况下,要先去网上大概了解实验内容和原理,然后查阅相关文献,具体研究实验方案。尤其,这次的试验,需要我们自己提供三种以上的不同实验方案,进行细致比较之后选定一种。这就要求我们熟悉和掌握每种方案的原理、具体操作步骤和对应的优点缺点,逐一分析比较之后,在将自己的选定方案展开。这一系列过程要花费大部分时间在图书馆,因为要在浩瀚的文献中找到自己需要的,对于我这个还没上完科技文献检索课的学生来说,真的有点困难。我的报告中,有一部分资料来源于互联网,然而网上的东西又不完全符合我的要求,修修改改,总算弄得差不多了。其实,自己明白了原理,按照自己预先设计好的方案进行实验,在具体操作过程中,问题并不大,可以说,做让人费神的是预习时候的实验报告的书写。现在,实验已经基本做完,感觉收获却是很大。以后,对于设计型实验,也可以更熟练的进行了。

想说,在进行实验的全部过程中,科学和严谨的态度是最重要的,不可以在不明白的情况下进行试验,不可以在数据有问题的情况下继续试验,后期的实验数据处理,也要认真对待

全息光栅的制作实验报告

全息光栅的制作 一、实验任务: 设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。 二、实验要求: 1、设计三种以上制作全息光栅的方法,并进行比较; 2、设计制作全息光栅的完整步骤,拍摄出全息光栅; 3、给出所制作的全息光栅的光栅常数值,进行不确定度计算。误差分析并作实验小结。 三、实验的基本物理原理: 1、光栅产生的原理: 光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。 图1

2、测量光栅常数的方法: 用测量显微镜测量; 用分光计,根据光栅方程d·sin =k 来测量; 用衍射法测量。激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。 四、实验的具体方案及比较 1、洛埃镜改进法: 基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅(如图2)。 优点:这种方法省去了制造双缝的步骤。 缺点:光源必须十分靠近平面镜。 图2 2、杨氏双缝干涉法: λ,其中:λ为波长,L为双缝到屏(全息干版)的距离,x?为= L? xd 双缝间距,d为光栅常数。 优点:使用激光光源相干条件很容易满足。 缺点:所需的实验仪器较复杂,不易得到。

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

用ps制作立体光栅图片的方法

用ps制作立体光栅图片的方法 一、调整图像 1、打开一幅设计好的分层图像 2、“图像”菜单——图像大小,分辨率设为100.227像素/厘米,宽高自己定。 二、光栅层制作 1、新建图层,隐藏其它图层,通过导航器把图像调到最大。 2、选择单列选框工具,在画布上单击;选择铅笔工具(把铅笔工具笔头放到8、9个像素),在选区上单击。 3、按Ctrl+Alt点右方向键7次,放开Ctrl+Alt键再点一次右方向键。 4、选择矩形选框工具、框选7个黑色,1个透明、宽度为8个像素的矩形区域。从编辑菜单里选择定义图案,点好。 5、清空当前图层:全选——删除——取消选择(Ctrl+D) 6、编辑——填充,使用图案,自定图案:选择最后一个自定的图案,点好——隐藏光栅层。 三、得到8个相似的图像 1、选择一个需要做立体的图层(除中景以外的其它图层) 2、复制一个副本(Ctrl+J),选择移动工具,点左方向键移动10次(具体移动次数参照移动次数表) 3、再复制、再移动(移动次数相同),循环操作,共复制移动7个图像(复制7个,加原来的一个,共8个图像) 四、分割排列图像 1、选择原图层,隐藏其它图层,载入光栅层选区(按着Ctrl单击光栅层),选择矩形选框工具。 2、按删除键(Delete)删除,按左方向键一次,选择上一层。 3、继续删除,循环操作,直到分割完其它复制的图层,取消选择(Ctrl+D)。 五、拼合图像:合并可见图层(Ctrl+Shift+E)。 六、至此,一个图层的立体操作完成。其它需要做立体的图层,同理按照上述步骤制作。只是移动次数与方向有所不同。 七、所有图层都制作完成以后,把光栅层删除。

计算机图形学习题分析

第一章绪论 1、计算机图形学、图形处理与模式识别本质区别是什么?请各举一例说明。 解:计算机图形学是研究根据给定的描述,用计算机生成相应的图形、图像所生成的图形、图像可以显示屏幕上、硬拷贝输出或作为数据集存在计算机中的学科。计算机图形学研究的是从数据描述到图形生成的过程。例如计算机动画。 图形处理是利用计算机对原来存在物体的映像进行分析处理,然后再现图像。例如工业中射线探伤。 模式识别是指计算机对图形信息进行识别和分析描述,是从图形(图像)到描述的表达过程。例如邮件分捡设备扫描信件上手写的邮政编码,并将编码用图像复原成数字。 2、举3个例子说明计算机图形学的应用。 解:①事务管理中的交互绘图 应用图形学最多的领域之一是绘制事务管理中的各种图形。通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。 ②地理信息系统 地理信息系统是建立在地理图形基础上的信息管理系统。利用计算机图形生成技术可以绘制地理的、地质的以及其他自然现象的高精度勘探、测量图形。 ③计算机动画 用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解决的问题,大大提高了工作效率。 3、计算机生成图形的方法有哪些? 解:计算机生成图形的方法有两种:矢量法和描点法。 ①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短失线,从而得到一条近似的曲线。尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。 (2)描点法 4.什么叫虚拟现实技术和可视化? 解:虚拟现实技术: 利用计算机生成一种模拟环境,通过多种传感器和设备使用户“投入”到该环境中 ,实现用户和该环境直接进行交互的技术。例如模拟飞机驾驶舱。 可视化技术: 通过对空间数据场构造中间几何因素,或用图形绘制技术在屏幕上产生二维图象。例如分子模型构造。 5.对于分辨绿为1024*1024的光栅系统,若每一像素咏8位和12位二进制来表示存储信息,各需多大光栅存储容量?每一屏幕最多能显示多少颜色?若R,G,B灰度都占8位,其显示颜色的总数是多少? 解: 1) 每一像素用8位二进制来表示存储信息,所需容量为1024*1024*1=220(byte)=1MB

物理实验报告《用分光计和透射光栅

物理实验报告《用分光计和透射光栅测光波波长》 本文是关于物理实验报告《用分光计和透射光栅测光波波长》,仅供参考,希望对您有所帮助,感谢阅读。 【实验目的】 观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。 【实验仪器】 分光计,透射光栅,钠光灯,白炽灯。 【实验原理】 光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。 光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d表示。 由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件 k = 0,±1,±2, (10) 的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ= 0得到零级明纹。当k =±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。

实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。 【实验内容与步骤】 1.分光计的调整 分光计的调整方法见实验1。 2.用光栅衍射测光的波长 (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。 物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 图12光栅支架的xx13分划板 (2)调节光栅刻痕与转轴平行。用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2级衍射光谱,调节调平螺丝a (不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。 (3)测钠黄光的波长 ①转动望远镜,找到零级像并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ0和θ0/,并记入表4中。 ②右转望远镜,找到一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ右和θ右/,并记入表4中。 ③左转望远镜,找到另一侧的一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ左和θ左/,并记入表4中。

全息光栅实验

全息光栅的制作 引言 光栅是一种重要的分光元件,在实际中被广泛应用。许多光学元件, 例如单色仪、摄谱仪、光谱仪等都用光栅作分光元件;与刻划光栅相比, 全息光栅具有杂散光少、分辨率高、适用光谱范围宽、有效孔径大、生产效率高, 成本低廉等突出优点,并且制作简便、快速。 1、实验目的 1、了解全息光栅的原理 2、用马赫-曾德干涉仪搭光路并拍照 3、学习对全息光栅的后处理 2、基本原理 (一)全息光栅 当参考光波和物光波都是平面波且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。采用线性曝光可以得到正弦振幅型全息光栅。从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅,这是本节的内容。 (二)光栅制作原理与光栅频率的控制 用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。相邻干涉条纹之间的距离即为光栅的空间周期d (实验中常称为光栅常数) 。 有多种光路可以制作全息光栅。其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。我们常采用马赫-曾德干涉仪光路,如图2所示。

Ⅰ 图1 全息光栅制作实验光路图 它是由两块分束镜(半反半透镜)和两块全反射镜组成,四个反射面接近互相平行,中心光路构成一个平行四边形。从激光器出射的光束经过扩束镜及准直镜,形成一束宽度合适的平行光束。这束平行光射入分束板之后分为两束。一束由分束板反射后到达反射镜,经过其再次反射并透过另一个分束镜,这是第一束光;另一束透过分束镜,经反射镜及分束镜两次反射后射出,这是第二束光。在最后一块分束镜前方两束光的重叠区域放上屏P 。若Ⅰ,Ⅱ两束光严格平行,则在屏幕上不出现干涉条纹;若两束光在水平方向有一个交角,那么在屏幕的竖直方向出现干涉条纹,而且两束光交角越大,干涉条纹越密。当条纹太密时,必须用显微镜才能观察得到。在屏平面所在处放上全息感光干版,记录下干涉条纹,这就是一块全息光栅。 为了保证干涉条纹质量,光束I 和II 需要严格水平于光学平台,可在图中最后一个分束镜后面两束光的重叠区内放一透镜,将屏移到透镜的后焦面。细调两块反射镜使光束I 和II 在屏上的像点处于同一水平线上,这样I 、II 严格水平于平台。 然后,可转动两块反射镜或最后一块分束镜使两个像点重合。这时光束I 和光束II 处于重合状态,会聚角0=ω,应没有干涉条纹。撤去透镜后,微调两块反射镜或最后一块分束镜的水平调节旋钮,改变I 、II 的会聚角使其不为零,就可在光束I 和II 的重叠区看到较明显的干涉条纹。 准确的控制光栅常数(即光栅的空间频率),是光栅质量的重要指标之一。我们采用透镜成像的方法来控制制作的光栅的空间频率: Ⅱ Ⅰ

全息光栅的制作(实验报告)

全息光栅的制作 一.【实验目的】 1、了解全息光栅的原理; 2、复习用马赫-曾德干涉仪搭光路并拍照; 3、学习对全息光栅的后处理。 二.【主要仪器及设备】 1.光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm针孔的针孔滤波器组合两套。 2.扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。 3. 20mW He-Ne 激光器一台。 4.天津I 型全息干板,显影、定影设备和材料。 5.电子快门和曝光定时器一套。 三.【实验原理】 全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。采用线性曝光可以得到正弦振幅型全息光栅。从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅。有多种光路可以制作全息光栅。其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。我们常采用马赫-曾德干涉仪光路。 (一)马赫-曾德干涉仪法 (1)光栅制作原理与光栅频率的控制 用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。相邻干涉条纹之间的距离即为光栅的空间周期d(实验中常称为光栅常数) 。 图1相干光干涉形成光栅的示意图

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

全息光栅的制作(B5纸张_非常完整版_BJTU物理设计性实验报告)

全息光栅的制作 一实验任务 设计制作全息光栅并测出其光栅常数(要求所制作的光栅不少于100条/毫米) 二实验要求 1.设计三种以上制作全息光栅的方法并进行比较(应包括马赫- 曾德干涉法); 2.设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注 意事项),拍摄出全息光栅; 3.给出所制作的全息光栅的光栅常数值,计算不确定度、进行误 差分析并做实验小结。 三实验基本原理 1.全息光栅 全息光学元件是指基于光的衍射和干涉原理,采用全息方法制作的,可以完成准直、聚焦、分束、成像、光束偏转、光束扫描等功能 的元件。光全息技术主要利用光相干迭加原理,简单讲就是通过对复 数项(时间项)的调整,使两束光波列的峰值迭加,峰谷迭加,达到 相干场具有较高的对比度的技术。常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。其中全息光栅就是利用全息照相技术 制作的光栅,在科研、教学以及产品开发等领域有着十分广泛用途。 一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀 剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层 上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶 蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射 式衍射光栅。如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。 作为光谱分光元件,全息光栅与传统的刻划光栅相比,具有以下 优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、价格便宜

等;全息光栅已广泛应用于各种光栅光谱仪中。作为光束分束器件,全息光栅在集成光学和光学通信中用作光束分束器、光互连器、耦合器和偏转器等;在光信息处理中,可作为滤波器用于图像相减、边沿增强等。 2. 光栅条纹 光栅,也称衍射光栅,是基 于多缝衍射原理的重要光学元件。 光栅是一块刻有大量平行等宽、 等距狭缝(刻线)的平面玻璃或 金属片,其狭缝数量很大,一般 每毫米几十至几千条。单色平行 光通过光栅会形成暗条纹很宽、明条纹很细的图样,而这些锐细而明亮的条纹称作谱线。谱线的位置 随波长而异,因此当复色光通过光栅时,不同波长光所产生的谱线在不同位置出现而形成光谱。也就是说,光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。 3. 光栅方程 光栅方程描述了光栅结构与光的入射角和衍射角之间的关系,它表示当衍射角满足的时候发生干涉加强现象,其中d 即为光栅常数。而当光以入射角入射时,光栅方程写为 。 4. 光栅常数 光栅常数是光栅两刻线之 间的距离。一个理想的光栅可 以认为由一组等间距的无限长 无限窄的狭缝组成,而狭缝之 间的间距称为光栅常数,在图 2中用d 表示。 sin d k θλ=θsin d k θλ=i θ(sin sin )i d k θ θλ+=图1 光通过光栅形成光谱 图2 光栅光路

光栅制作实验

全息光栅的制作及其参数测量 浏览次数:652次悬赏分:20 |解决时间:2010-12-16 23:14 |提问者:Dreamer成仙 请高人告诉我实验原理和方法。最好有图!!还有下列问题求助: 1.要拍摄一张优质的全息光栅要注意哪些主要环节? 2.为什么制作全息光栅的显影密度要比制作全息图像时要大,即显影后的颜色要深?显影密度的具体数值与光栅常熟的大小有什么关系? 3.拍摄全息光栅时,两束平行光的光程差大好还是小好?夹角大好还是小好? 4.评价一张全息光栅主要特性参数有哪些? 最佳答案 全息光栅的制作(实验报告)完美版 标签:光栅干片发散镜双缝白屏教育 设计性试验看似可怕,但实际操作还是比较简单的~ 我的实验报告,仅供参考~ 实验报告封面 全息光栅的制作 一、实验任务 设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。 二、实验要求 1、设计三种以上制作全息光栅的方法,并进行比较。 2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。 3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。 三、实验的基本物理原理 1、光栅产生的原理

光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。 图1 2、测量光栅常数的方法: 用测量显微镜测量; 用分光计,根据光栅方程d·sin =k 来测量; 用衍射法测量。激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。 四、实验的具体方案及比较 1、洛埃镜改进法: 基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。 优点:这种方法省去了制造双缝的步骤。 缺点:光源必须十分靠近平面镜。 实验原理图: 图2 2、杨氏双缝干涉法: 基本物理原理:S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。 因双缝间距d远小于缝到屏的距离L,P点处的光程差: 图3 δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ 这是因为θ角度很小的时候,可以近似认为相等。 干涉明条纹的位置可由干涉极大条件δ=kλ得: x=(L/d)kλ,

光栅的制作方法

光栅的制作方法 一般说来,任何一种具有空间周期性的衍屏的光学元件都可以称为光栅,如果在一块镀铝的光学玻璃毛胚上刻划一系列等宽,等距而平行的狭缝就是透射光栅。如在一块镀铝的光学玻璃毛胚上刻出一系列剖面结构象锯齿形状,等距而平行的刻线这就是一块反射光栅。 现代光栅是一系列刻划在铝膜上的平行性很好的划痕的总和,为了加强铝膜与玻璃板的结构的结合力,在它们之间镀一层铬膜或钛膜。在光学光谱区采用光栅刻划密度为0. 5—2400条/毫米。目前大量采用的600条/毫米,1200条/毫米,2400条/毫米。 为了保持划痕间距d无变化,因此对衍射光栅的刻划条件要求很严。经验证明,对光栅刻划室的温度要求保持0.01—0.0313变化范围,光栅刻划机工作台的水平振动不超过1—3微米,光栅刻划室应该清洁,要避免通风带来的灰尘,光栅刻划室的相对湿度不应超过60—70%。光栅毛胚大多应有学玻璃和熔融石英研磨制成,毛胚应该加工得很好,其表面形状和局部误差要求甚严。任何表面误差将使衍射光束的波前发生变形,从而影响成象质量和强度分布。为了提高真空紫外区反射率,铝膜上还镀上一层氟化镁。 制造光栅的方法有机械刻划,光电刻划,复制方法和全息照相刻划四种。机械刻划是古老方法,但可靠,间隙刻划技术比较成熟。但要刻划一块100X100mm 的光栅(刻划机的刻划速度为15—25条/分)计算须要4个昼夜。因此要求机器、环境在长时间内保持精确恒定不变。 光电刻划就是利用光电控制的方法可以在某种程度上排除光栅刻划过程中机械变动和环境条件改变所产生的各种刻划误差。它一方面提高了光栅刻划质量,另方面也能在一定程度上简化机械结构、降低个别零件的精度和对周围环境的要求。光栅复制光栅刻划时间长和效率低,因此成本很高,不能满足光谱仪器的需求。目前复制法有二种:一次复制法就是真空镀膜法。二次复制法是明胶复制法。一次复制法是一次制成,而二次复制法是先复制母光栅的划痕,然后用该划痕印划在毛胚的明胶上。二次复制的工艺比较烦琐,但需要设备和条件都比较简单,明胶法复制光栅质量是比母光栅差些。 还有刻制光栅的方法叫全息照相刻划法,其原理如下:二束相干光重叠会产生干涉条纹,其间距为。D=λ/2sinα其中入为光束波长,α为两束光干涉前的夹角。如图示激光的射出的相干光束,通过发散物镜O和针孔S,再经抛物镜P反射后落人两块平面反射镜P1和P2。由于平面镜P1和P2的反射使已分离的两束光成交于E面,其交角为2α。这两束光是相干的所以在正面产生干涉条纹,条纹的间距d。若在面上放置一块予先涂上抗光蚀层的毛胚,则在蚀层获得干涉条纹的空间潜象,经显影后则在毛胚上获得干涉条纹的立体象(全息象),这就是透射衍射光栅。镀反射膜后可成为反射式衍射光栅。光栅的质量与膜层厚度同光

光栅常数的实验报告

得分教师签名批改日期 一、实验设计方案 1、实验目的 1.1、了解光栅的分光特性; 1.2、掌握什么是光栅常数以及求光栅常数的基本原理与公式; 1.3、掌握一种测量光栅常数的方法。 2、实验原理 2.1、测量光栅常数 光栅是由许多等宽度a(透光部分)、等间距b(不透光部分)的平行缝组成 的一种分光元件。当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的 光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一 系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下 式决定: (a+b)sinφk=kλ(k=0,±1,±2,…)(2.1.1) 式中a+b=d称为光栅常数,k为光谱级数,φk为第k级谱线的衍射角。见图2.1.2, k=0对应于φ=0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。 如果入射光不是单色光,则由式(2.1.1)可知,λ不同,φk也各不相同, 于是将复色光分解。而在中央k=0,φk=0处,各色光仍然重叠在一起,组成中 央明条纹。在中央明条纹两侧对称地分布k=1,2,…级光谱线,各级谱线都按波 长由小到大,依次排列成一组彩色谱线,如图2.1.2所示。 根据式(2.1.1),如能测出各种波长谱线的衍射角φk,则从已知波长λ的大 小,可以算出光栅常数d; 反之,已知光栅常数d, 则可以算出波长λ。本试 验则是已知波长λ求光 栅常数。 2.2、注意事项 2.2.1、光源必须垂直 入射光栅,否则会引起较 大的误差。 2.2.2、所有装置尽量 处于同一水平面上,这样 才能发生明显的衍射。 图2.1.2 光栅衍射谱

全息光栅

全息光栅的制作 全息光学元件是指采用全息方法(包括计算全息方法)制作的,可以完成准直、聚焦、分束、成像、光束偏转光束扫描等功能的元件。在完成上述功能时,它不是基于光的反射和规律折射,而是基于光的衍射和干涉原理。所以全息光学元件又称为衍射元件。常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。 全息光栅是一种重要的分光元件。作为光谱分光元件,与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格便宜等,已广泛应用于各种光栅光谱仪中,供科研、教学、产品开发之用。作为光束分束器件,在集成光学和光通信中用作光束分束器、光互连器、耦合器和偏转器等。在光信息处理中,可作为滤波器用于图像相减、边沿增强等。本实验主要进行平面全息光栅的设计和制作实验。 一.实验目的: 1.学习掌握制作全息光栅的原理和方法。 2.学习掌握制作全息复合光栅的原理和方法,观察其莫尔条纹。 3.通过实验制作一个低频全息光栅和一个复合光栅,并观察和分析实验结果。 二.主要仪器及设备: 1. 光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm 针孔的针孔滤波器组合两套。 2. 扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。 3. 20mW He-Ne 激光器一台。 4. 天津I 型全息干板,显影、定影设备和材料。 5. 电子快门和曝光定时器一套。 三.实验原理: 全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。下面介绍制作平面全息光栅路布置、设计制作原理。 1.全息光栅的记录光路。 记录全息光栅的光路有多种,图 1 和图 2 是其中常见的两种光路。在图 1 所示光路中,由激光器发出的激光经分束镜BS 后被分为两束,一束经反射镜M1反射、透镜L1和L2扩束准直后,直接射向全息干板H;另一束经反射镜M2反射、透镜L3和L4扩束准直后,也射向全息干板H。图中,S 和A 分别为电子快门和光强衰减器,电子快门与曝光定时器相连,用于控制曝光时间。两平行光束在全息干板上交叠干涉,形成平行等.距直线干涉条纹。全息干板经曝光、显影、定影、烘干等处理后,就得到一个全息光栅。

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

全息光栅制作

实验三 全息光栅的制作 【实验目的】 1、了解用全息方法制作一维光栅和二维正交光栅的基本原理。 2、掌握全息实验光路的基本调节方法和制作技巧。 3、初步了解全息干涉的处理方法。 【实验原理】 由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的干涉条纹,其周期由两束平行线的夹角和光波波长确定,若将全息记录干版置于该干涉场中,则干版上记录到得干涉条纹将呈现等间隔的干涉直线条纹,这就是全息光栅。采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。下面介绍制作平面全息光栅的制作。 设两束平行光的夹角为θ,光波波长为λ,且两束平行光对于全息干版呈对称入射,如下图所示。显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。由干涉原理可知,全息光栅周期d 由下式确定: ( ) 012sin /2d f λθ== (1) 0f 为光栅空间频率,用来表征光栅线密度特性,其单位通常为lp/mm (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个线对,对应光栅的一个周期)。由式1可知,通过改变两束光之间的夹角可以得到不同空间周期或频率的全息光栅。对于低频光栅,两束平行光的夹角很小,利用小角度近似,可以用下式来计算光栅的周期和频率: 01d f λθ =≈ (2) 1. 全息光栅的记录光路 记录全息光栅的光路有多种,图1和图2是其中常见的两种光路。 图1所示光路中

BS :分光比为1:1的分束镜 S 、A :电子快门和光强衰减器(不用) M1、M2:全反镜 L1、L2和L3、L4:两路扩束准直 H :全息干板 图1 全息光栅记录光路之一 从图 1可知,θ很小时,有()tan /2/2/D l θθ≈=,则012l d f D λ= ≈,实验中可用此式来估算低频光栅的空间周期和空间频率。 图2所示光路是马赫—曾德干涉仪光路。利用该光路所形成的全息光栅的空间周期和空间频率仍可用式(1)和式(2)来确定。实验中可用图2(b)所示的方法来测量计算光栅的空间周期和空间频率,其中L 时焦距已知的透镜,把它放在图2(a)所示光路中的全息干板H 处,在透镜后焦面上测量得到两束平行光束会聚点之间的距离2D ,则有()tan /2/2/D f θθ≈=成

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

光纤光栅制作方法

光纤光栅制作方法<2> 3)chirp光纤光栅的制作a)两次曝光法这种方法可采用较简单的制作均匀光纤光栅的曝光光路。第一次曝光在光纤上并不形成光栅,而是仅形成一个渐变的折射率梯度,第二次曝光过程则是在第一次曝光区域上继续写入周期均匀的光栅,两次效应迭加便构成了一个chirp光栅。这种方法的优点是利用了制作均匀光栅的曝光光路,使得制作方法大大简化。b)光纤弯曲法这是在均匀光栅中引人光纤的机械变形,形成chirp光栅的一种方法,由于光纤的弯曲角度渐变,造成光栅的周期渐变。这种方法引入的chirp量不能过大,否则栅齿倾斜,会引起导模耦合成包层模而造成附加损耗。c)锥形光纤法这是利用锥形光纤形成chirp光栅的一种方法。可以在锥形光纤两端施加应力发生形变,然后写人均匀周期的光栅,应力释放后,由于锥体各部分的伸长形变不同,造成光栅周期的轴向发生均匀变化,形成chirp光栅。也可以先在锥形光纤上写人均匀光栅,然后再施加应力,可以得到相同的效果。d)应力梯度法与锥形光纤法原理相同,只是光纤中应力大小是通过将光纤粘在底座上的胶含量来调节。它的优点是可以分别调节中心波长和光栅的带宽,这对于制作高性能的色散补偿器具有重要的意义。e)复合chirp光栅法将一列不同周期的均匀光栅顺序写在光纤上,它最大限度地应用了制作均匀光纤光栅的工艺简单性,具有很大的灵活性。f)chirp光栅的全总干涉法制作这种制作chirp光栅的基本原理是通过在双光束全息光路系统中加入往面镜,使两束光的干涉角度沿着光纤轴向发生连续变化,从而造成光纤的纤芯折射率发生周期性渐变,形成chirp光纤光栅。4)新的光纤光栅制作方法a)直接写入法直接写入法是指在制作光纤光栅时,无须剥去光纤的涂覆层而直接在纤芯上写人光纤光栅的方法。此法关键是采用对紫外光透明的材料作为光纤的涂覆层。目前报道的光纤涂覆层有采用丙烯酸酯或general electric rtv615硅胶,通过加大紫外光强度、减小涂覆层厚度以及对光纤氢载等方法可以有效提高光纤光栅的写入时间。这种方法解决了以往传统方法中必须采用课光纤的弊端,减少了对光纤光栅制作完后要立即进行涂覆的工艺复杂性,具有很好的应用前景。b)在线成栅法这是最新出现的一种成栅方法。南安普敦大学的ldong等人采用脉冲单点激射的方法,首次实现了光纤拉制过程中写人光纤光栅的实验。它是在光纤拉制过程中在探光纤上直接写入光栅。通过对干涉系统中两束干涉光夹角的调节,可在线自动写入反射波长不同的一系列光纤光栅。使用这种方法,制造工艺简单,能连续大批量地制造光纤光栅,提高了光栅性能的稳定性,它的技术关键是要对所使用的准分子激光光束截面进行改进才能满足实用化的要求。c)光纤刻槽拉伸法用精密切割机对光纤进行周期性机械刻槽,用氢气火焰对v型槽区域的光泽进行拉伸退火,熔融玻璃表面应力的影响,以及v型槽一边的光纤的纤芯不平衡等因素,纤芯产生周期性的畸变,导致纤芯折射率的周期性变化。利用此方法已经成功研制成的长周期光纤光栅,具有很好的宽阻带特性(30nm),可应用于宽阻带滤波器的波分复用系统。这种方法的缺点是机械加工的精度要求较高,目前很少被采用。d)微透镜阵列法这种写入长周期光纤光栅方法的关键技术是采用一种微透镜阵列,将一平行的宽柬难分子激光聚焦成平行等间距的光条纹,投影到单模光纤上,其中相邻微透镜之间无间隙,其中心间距决定了写人光栅的空间周期。这种方法写入一个长周期光纤光栅仅需10s,大大提高了写入效率。通过控制写入时间和写入光栅的总长度,可以用同一块微透镜模板写入不同波长、不同透射率的长周期光栅。这种方法的缺点是做透镜模板制作非常困难,使它的应用受到了限制。e)用聚焦二氧化碳激光器写入lpg 采用10.6μm自由空间二氧化碳激光器对光纤直接曝光,通过计算机控制平移台,实现光纤的准直和固定及曝光间距的控制,可以写入不同周期的长周期光栅。这种方法无须采用紫外光,对光纤可以不用载氢处理,这种方法具有很好的应用前景。f)移动平台法利用一个周期不变的相位掩膜,可以写入调瞅、波长任意的光纤bragg光栅,通过改变光束的聚焦,可以写入阶跃chirp光栅。实验结构的主体包括两个移动平台,相位掩膜与光纤固定在一起,可以移动。改变两个透镜之间的距离就可以改变写入光纤的布拉格波长,控制每个基本光栅的曝光时间可控制切趾光栅剖面,这对于抑制反射谱中旁瓣的影响具有重要的意义。g)用聚焦离子束写入光纤光栅利用聚焦离子束(focused ion beam:fib)可以写入任意的光纤光栅结构,fib既可以采用研磨方式,也可以采用沉积方式。光栅研磨出的槽离纤芯只有几μm,研磨15~20个槽即可获得高的反射率,槽数越多反射越大。研磨方法简单但实现不易,常用的方法是用氟化氢腐蚀掉部分包层后开始研磨,但光纤研磨下来的物质充电沉积在研磨区,将会降低研磨效率,并且由于材料的再沉积,糟的深宽比将被限制在一个较小的值。研磨时间取决于研磨材料和束电流。这种方法的关键是要解决工艺难度,才有可能获得广泛的应用。3结束语对光纤通信而

相关文档