文档库 最新最全的文档下载
当前位置:文档库 › 固定污染源废气-颗粒物的测定-β射线法

固定污染源废气-颗粒物的测定-β射线法

固定污染源废气-颗粒物的测定-β射线法
固定污染源废气-颗粒物的测定-β射线法

固定污染源废气颗粒物的测定β射线法

(征求意见稿)

编制说明

编制组

2016年2月

1项目背景 (3)

1.1 任务来源 (3)

1.2 工作过程 (3)

2 标准制修订的必要性分析 (4)

2.1 颗粒物的环境危害 (4)

2.2 相关环保标准和环保工作的需要 (5)

3 国内外相关分析方法研究 (5)

3.1 国外相关标准分析方法的应用情况 (5)

3.2 国内相关分析方法研究 (6)

3.3 国内外标准与本方法关系 (7)

4 标准制修订的基本原则和技术路线 (7)

4.1 标准制修订的基本原则 (7)

4.2 标准的适用范围和主要技术内容 (7)

4.3 标准制修订的技术路线 (8)

5 方法研究报告 (9)

5.2 方法原理 (10)

5.3 干扰和消除 (11)

5.4仪器和设备 (12)

5.4.1β射线法颗粒物测定仪 (12)

5.4.2要求 (13)

5.5监测位置和监测点 (13)

5.5.1测定位置 (13)

5.5.2测定孔、测定点位置和数目 (13)

5.6样品测定 (13)

5.6.1测定位置和测定点 (13)

5.6.2仪器准备 (13)

5.6.3 定点测定 (13)

5.6.4 多点测定 (13)

5.6.5测定结束 (14)

5.7颗粒物浓度计算和表示 (14)

5.7.1颗粒物浓度 (14)

5.7.2标准状态下干废气排放量 (14)

5.7.3颗粒物排放速率 (15)

5.7.4颗粒物排放浓度 (15)

5.8质量保证和质量控制 (15)

6 方法验证 (15)

6.1 方法验证方案的制订 (15)

6.2 方法验证方案内容 (16)

6.3 方法验证过程 (17)

6.4 方法验证报告 (18)

参考文献: (18)

附件:方法验证报告 (19)

1项目背景

1.1 任务来源

2015年8月,河北省环境保护厅向河北省环境监测中心站下达了起草《固定污染源颗粒物的测定β射线法》方法标准的任务。

国家环保产品质量监督检测中心、廊坊市环境监测站、秦皇岛市环境保护监测站、霸州市环境监测站、迁安市环境监测站、河北浦安环境检测有限公司协作;霸州市京博工程机械有限公司提供支持。

1.2 工作过程

第一阶段:成立标准编制小组。

本项目任务下达后,我站立即着手成立标准编制小组,同时选择了国家环保产品质量监督检测中心、廊坊市环境监测站、秦皇岛市环境保护监测站、霸州市环境监测站、迁安市环境监测站、河北浦安环境检测有限公司协作;霸州市京博工程机械有限公司提供支持。成立了标准编制小组。同时,标准编制小组完成了项目任务书和合同的填报。

第二阶段:查询国内外相关标准和文献资料。

标准编制小组成立后,随即展开相关资料和标准的调研工作,对国内外有关“颗粒物的测定β射线法”的标准内容、包括测定原理、测定装置、测定程序、质量控制、结果计算及方法性能进行调研,对国内外固定污染源颗粒物测定设备的工作原理、测试方法、可行性及应用情况进行调研,对国内外相关分析方法进行研究比较,对国内固定污染源排放的相关法律、法规和政策进行分析研究,收集国内外关于颗粒物测定的文献资料,分类归纳。

第三阶段:开题论证,确定标准制订的技术路线。

在广泛查阅、调研、实验研究的基础上,结合国内的使用情况,初步确定了方法适用范围、方法测定范围等,并在此基础上编写了开题论证报告和初步的标准草案。2015 年10 月,河北省环境监测中心站在廊坊霸州组织召开了本标准的开题论证会。论证委员会听取了标准开题论证报告和标准初稿内容介绍,经质询、讨论,形成了论证意见主要有:一、该方法已有相应的技术基础,具有快捷、便利的特点,是重量法测定颗粒浓

度方法的有益补充,适应了河北省固定污染源废气中颗粒物的监测需求,对提升河北省环境监测能力,推动节能减排具有重要意义;二、申报单位具有扎实的技术基础,已进行大量实验验证,提供的资料丰富,提出的总体思路和技术路线可行。论证委员会通过了该标准的开题论证,并提出了具体修改意见和建议。

第四阶段:开展实验研究工作,组织方法验证。

按照开题报告会确定的研究内容和技术路线,标准编制小组开展了方法研究实验,确定和完善了标准草案初稿的各项技术内容和方法验证实验方案。2016 年1 月,标准编制组组织方法验证单位,在河北省霸州市正式开展了方法验证实验;根据各实验室的验证结果,编制完成了方法验证报告。

第五阶段:编写标准征求意见稿和编制说明(含方法验证报告)。

在研究实验和验证实验的基础上,标准编制组不断补充和完善方法草本的各项内容,编制完成了初步的征求意见稿和编制说明(含方法验证报告)。

2 标准制修订的必要性分析

2.1 颗粒物的环境危害

颗粒物或尘,是指燃料和其他物质在燃烧、合成、分解以及各种物质在机械处理中所产生的悬浮于排放气体中的固体和液体颗粒状物质。各项研究表明,长期接触空气中的污染颗粒会增加患肺癌的风险,颗粒或其他空气污染物短期内浓度上升,会增加患心脏病的风险。欧洲流行病学家发现,肺癌与局部地区的空气污染颗粒有明显的关联,即使污染水平短暂升高----类似城市发出雾霾警告的同时,也会使心力衰竭住院或死亡的风险上升2%-3%。鲁晟等人[1]对燃煤电厂烟气中颗粒物粒径分布特征的研究表明,燃煤电厂经除尘后排放的烟气以PM10和PM2.5为主。而粒径小于2.5 μm以下的部分,可直接达到人类肺部进入肺泡,并可能进入血液通往全身,颗粒物富集大量有毒重金属和有害有机物,并且粘附细菌和病毒。颗粒物不仅影响人类身体健康,对植物也会造成危害。早在1974年,中国医学科学院科学研究所就对国内电厂的烟尘排放进行了研究,发现火电厂烟尘对农作物也会产生危害,傅嘉媛等[2]按照某电厂扩建工程预测的降尘量,采用模拟试验的方法,研究烟尘对大白菜的生物学性状、生理功能、产量和品质均有不同伤害程度。针对目前的情况开展此类方法的标准制定是十分必要的。

2.2 相关环保标准和环保工作的需要

近期国家和我省相继颁布实施了严格的固定污染源排气中颗粒物排放标准限值,固定污染源颗粒物排放浓度是我国节能减排重点控制的污染物指标,我省部分地区执行特别地区排放限值标准,颗粒物特别排放限值为20mg/m3。根据河北省燃煤电厂超低排放升级改造专项行动方案要求,我省燃煤机组在2015年底前全部实现超低排放,即颗粒物排放浓度降至10mg/m3以下。

随着环境管理日趋严格及环境污染治理技术不断进步,尤其是全国大气污染源自动监测工作已全面展开,针对脱硫后管道内颗粒物浓度低、温度低、湿度高的“二低一高”状况,国内现阶段颗粒物监测方法采用《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996),严格意义而言,该方法仅适用于颗粒物质量浓度高于50mg/m3情况下的监测,测定低于50mg/m3的颗粒物时误差较大,该方法规定颗粒物捕集介质为滤筒,滤筒为柔性外表,在烟道内颗粒物浓度低、温度低、湿度高的“二低一高”的环境下,加之采样过程比较复杂,容易造成系统误差,在低浓度颗粒物采样和分析中,对测定结果影响较大。

随着大气固定污染源颗粒物允许排放限值越来越低,《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)颗粒物手工采样重量法逐渐暴露出不适应测定低浓度颗粒物的缺陷。因此,研究一种更为科学的固定污染源颗粒物测定方法显得尤为重要。

目前,β射线法已广泛应用于环境空气中PM10、PM2.5的监测,且技术已较为成熟。此方法原理不受粉尘粒子大小、粉尘粒子密度的影响,特点为快速监测,直接读数,操作简便,耗材少,维护量小,可以有效降低人工误差。但是,针对固定污染源颗粒物的测定,国内外尚无现行的标准,本标准弥补了此空白,且是滤膜法、滤筒法的有益补充。

3 国内外相关分析方法研究

3.1 国外相关标准分析方法的应用情况

β射线法测定废气(环境空气)中颗粒物的技术在国外发达国家已开展了研究,所涉及的主要方法标准如下:

(1)Ambient air-Measurement of the mass of particulate matter on a filter medium-Beta-ray absorption method (ISO 10473:2000)

译文:环境空气中颗粒物的测定—β射线吸收法。

(2)Stationary source emissions-Determination of low range mass concentration of dust-Part 2: Automated measuring systems (BS EN 13284-2:2004)

译文:固定污染源废气—低浓度颗粒物的测定—第二部分:自动监测系统。

(3)Stationary source emissions-Quality assurance of automated measuring system (BS EN 14181:2004)

译文:固定污染源废气—自动监测系统质量保证。

(4)Air quality-Certification of automated measuring systems-Part 3: Performance criteria and test procedures for automated measuring systems for monitoring emissions from stationary sources (BS EN 15267-3:2007)

译文:空气质量—自动监测系统的认证—第三部分:固定污染源排放自动监测系统的性能标准和测试程序。

标准(1)描述了β射线法测定环境空气中颗粒物的测定过程和分析方法,其原理与β射线法测定固定污染源颗粒物相同。

标准(2)和标准(3)描述了固定污染源颗粒物测定自动监测系统的质量保证。

文献(4)描述了废气中颗粒物的测定装置和测定过程,并对不同方法进行了比较分析,包括β射线法、光散射法等。

固定污染源排气中颗粒物β射线法是污染源监测方法的一种,应用于便携式现场监测仪。通过查阅相关文献,国外涉及到β射线法为环境空气质量监测,与本方法具有相同的原理,本标准是建立在对国外此类方法标准参考的基础上建立起来的,更加符合我国固定源排气测定的相关条件。

3.2 国内相关分析方法研究

国内固定污染源颗粒物的测定方法标准有《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996),《工业炉窑烟尘测试方法》(GB9079-1988)、《锅炉烟尘测试方法》(GB5468-1991)、《固定污染源烟气排放监测系统技术要求及检测方法》(HJ/T 76-2007)、《烟尘采样器技术条件》(HJ/T48-1999)。

目前,国内大部分标准方法均将《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)作为测定固定源颗粒物浓度的标准方法,尚无β射线烟尘测

定仪的原理与固定污染源排放检测方法。国内已有多家企业开展了β传感器式快速烟尘测试仪的研究,验证实验采用了霸州市京博工程机械有限公司和北京地海云天相关的产品。

3.3 国内外标准与本方法关系

国内外相关标准为本标准的制订提供了基础,GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》提供了在颗粒物采样方面的相关要求,ISO 10473:2000)《Ambient air-Measurement of the mass of particulate matter on a filter medium-Beta-ray absorption method》,BS EN 13284-2:2004)《Stationary source emissions-Determination of low range mass concentration of dust-Part 2: Automated measuring systems》,提供了该方法的理论依据。

4 标准制修订的基本原则和技术路线

4.1 标准制修订的基本原则

本次标准修订,本着科学性、先进性和可操作性为原则,在原《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)基础上,按照国家《大气污染防治行动计划》的有关要求,同时参考国内外相关文献,在我国现有标准、规定和各监测站的技术经验的基础上,结合我省实际情况和当前世界的科学技术水平,修订本标准。

4.2 标准的适用范围和主要技术内容

有关颗粒物的测定β射线法的技术要求是对国内有关固定污染源颗粒物测定及采样方法标准、固定污染源烟尘采样器的行业标准、国外低浓度颗粒物的测定方法标准、征求仪器厂商代表意见等的调研、分析基础上制定,其相应的技术要求的检测方法是对具有应用前景的方法进行试验验证的基础上制订。

为切实加强本标准的实施,规范我省固定污染源低浓度颗粒物测定方法的规范,促进低浓度颗粒物测定水平的提高和数据的有效性,更好地为环境管理、环境决策服务。各级环境监测站及其他环境监测机构工作人员及相关企业应按照本标准执行。

4.3 标准制修订的技术路线

(1)查阅期刊文献、国内和国际标准化组织的标准文本。

(2)完成标准的开题报告提交河北省环保厅科技处,组织专家论证,确定技术路线,拟定实验方案;

(3)参照有关的基础标准或者规范技术要求,编制国家标准文本草案,同时编制标准文本制订的说明。提交标准文本和编制说明的征求意见稿;

(4)征求意见稿上报河北省环保厅科技处,环境保护相关机构、科研院所、大专院校等公开征求意见;

5 方法研究报告

5.1 方法研究的目标

β射线法作为一种成熟的质量测试技术已广泛应用到料位计等质量监测仪器中。本方法研究目标是制定测定固定污染源排气中颗粒物的β射线法。方法适用于固定污染源排气中颗粒物的瞬时监测。编写相关测试说明及验证报告试验仪器检出限、准确度测试选择标准组提供的循环风洞,利用GB/T16157方法进行标定,选用两个生产厂家的仪器进行测试验证,现场测试验证6 家实验室仪器精密度。

测试按照HJ168-2010的有关规定,通过研究和实验验证,本标准明确了监测方法的检出限、精密度、准确度等,满足我国现行的关于固定污染源排放颗粒物标准的测定要求。

方法检出限:

按照HJ168-2010的有关规定,在标准编制组提供的循环风洞,选取洁净环境空气为零气进行样品测试,按本方法操作步骤及流程进行7次平行测定:该方法检出限为0.24~0.35 mg/Nm 3,选用其中最大并且取整,本标准将β射线法测定颗粒物的检出限定为0.4 mg/Nm 3。

本标准的方法精密度:

6个实验室对3种浓度水平的气流:1号风洞(≥100mg/m 3)、2号风洞(30-80mg/m 3)、3号风洞(20-50 mg/m 3)进行测定:

实验室内相对标准偏差分别为:0.3%~2.2%、0.8%~3.7%、1.6%~7.7%; 实验室间相对标准偏差分别为:3.08%、4.50%、3.89%; 重复性限分别为:4.4 mg/Nm 3、3.2 mg/Nm 3、2.5 mg/Nm 3; 再现性限分别为:12.4 mg/Nm 3、7.3 mg/Nm 3、2.5 mg/Nm 3。 本标准的方法准确度:

6个实验室对3种浓度水平的气流:1号风洞(≥100mg/m3)、2号风洞(30-80mg/m3)、3号风洞(20-50 mg/m3)进行测定:

相对误差分别为:0.00%~8.70%,7.69%~21.15%,10%~20%。

相对误差的最终值为:3.86%±3.20%,11.54%±5.01%,15.00%±4.47%。

5.2 方法原理

测定时,将采用电离室结构的β射线传感器放入烟道内,进气口正对气流方向,保证排气等速通过电离室。电离室中一定能量的β射线通过物质时会与物质中的原子或原子核相互作用,引起能量衰减,能量衰减量与物质的质量成比例。通过β射线能量衰减量计算物质的质量,通过物质的质量和电离室的体积计算颗粒物的浓度。

m μ-0m e I I (1)

式中:

I ——经过物质时的强度,eV ;

0I ——起始辐射强度,eV ;

m μ——质量衰减系数; m ——质量,g 。

5.3 干扰和消除

烟道内湿度较大时,废气中的颗粒物和水汽容易在传感器内表面沉积,对本测定方法的零点产生干扰,因而须对传感器定期清理及零点校准。传感器必须附带温度补偿电路,消除温度使传感器内部体积变化的影响。对于湿法脱硫后烟气中颗粒物浓度的测定时间,应控制不大于3分钟,并在测定完成后立即清除传感器内的凝结水。

表3 不同湿度对β射线传感器测试数据的干扰

通过实验发现高湿度对测定结果的干扰,因此测定过程需考虑水分对测定的影响。

5.4仪器和设备

5.4.1β射线法颗粒物测定仪

β射线法颗粒物测定仪包括:颗粒物浓度传感器、采样泵、S型标准皮托管、压力传感器、温度传感器、二次仪表等组成,能保证排气等速通过电离室的β射线传感器可不连接采样泵。

5.4.2要求

i.β射线法颗粒物测定仪应符合《烟尘测定仪技术条件》HJ/T48的要求;

ii.β射线法颗粒物测定仪应具有存储及打印功能。存储不少于50组测定点数据,单点测定时间1至30分钟可调;

iii.β射线源应使用国家法规规定的五类以下豁免源,并应保证无射线泄露。颗粒物浓度传感器中β射线源应安装牢固,保证在使用过程中不丢失;

5.5监测位置和监测点

5.5.1测定位置

测定位置应优先选择在垂直管段。应避开烟道弯头和断面急剧变化的部位。测定位置应设置在距弯头、阀门、变径管下游方向不小于6倍直径和距上述部件上游方向不小于3倍直径处。对矩形烟道,其当量直径D=2AB/(A+B),式中A、B为边长。

5.5.2测定孔、测定点位置和数目

应符合GB/T 16157第4.2.4条的规定。

5.6样品测定

5.6.1测定位置和测定点

按本标准第8项的要求选定。

5.6.2仪器准备

i.仪器校零

打开主机电源,以清洁的环境空气为颗粒物的零点,按仪器使用说明书中规定进行仪器零点校准。

ii.气密性检查

以恒定的压力堵紧S型皮托管的全压口,若仪器显示风速在60秒内无变化,表示气密性合格。

5.6.3 定点测定

将颗粒物测定仪传感器插入烟道中,使采样嘴置于测点上,正对气流,采样嘴平面与气流方向成90o,即采样嘴的进气速度与测点处气流速度相等(其相对误差应在10%以内)。仪器在每个测定点测量时应旋转探枪至浓度显示最大值,以保证等速测定。待仪器读数稳定时,即可记录读数。每个测点上测定一次,每次时间不低于1分钟。

5.6.4 多点测定

采样截面面积较大时,采样点位的确定按照应符合GB/T 16157第4.2.4条的规定,对每一采样点位测定数据的平均值,即为该断面颗粒物的平均浓度。 5.6.5测定结束

测定结束后,将传感器置于清洁的空气中,待读数归零时将仪器关闭。

5.7颗粒物浓度计算和表示

5.7.1 颗粒物浓度

5.7.1.1定点测量时,颗粒物的浓度按公式(2)计算。

6m 0

10V

μI I ln

C ??=

………………………………………………………………………………(2) 式中:

C ——颗粒物浓度, mg/m 3; 0I ——起始辐射强度,eV ;

I ——经过物质时的强度,eV

m μ——质量衰减系数

V ——电离室体积,m 3。

5.7.1.2多点测定时,颗粒物的平均浓度按公式(3)计算。

n

C C n

i ∑='

=

'1

(3)

式中:

C '——污染物平均排放浓度,mg/m 3;

n ——采集的样品数。

5.7.2 标准状态下干废气排放量

标准状态下干废气排放量按式(4)计算:

()sw s

s a s sn X t P B Q Q -?+?+?

=1273273

101325 (4)

式中:

sn Q ——标准状态下干排气量,m 3/h ;

a B ——大气压力,Pa ;

s P ——排气静压,Pa ;

s t ——排气温度,℃;

sw X ——排气中水分含量体积百分数,%。

5.7.3 颗粒物排放速率

颗粒物排放速率以单位小时颗粒物的排放量表示,其单位为kg/h 。颗粒物排放速率按式(4)计算:

610-??'=sn Q C G (5)

式中:

G ——颗粒物排放速率,kg/h ; C '——颗粒物实测排放浓度,mg/m 3; sn Q ——标准状态下干排气量m 3/h 。

5.7.4 颗粒物排放浓度

本方法计算出的浓度为实测浓度,排放浓度需根据相关排放标准的要求进行折算。

5.8质量保证和质量控制

仪器应按期送国家授权的计量部门进行鉴定。 每个月至少进行一次测定前后的零点漂移检查。

每次测量前应应检查S 型皮托管至压力传感器之间的气密性。 测定过程中应确保测孔密封,避免改变原有流场。

6 方法验证

6.1 方法验证方案的制订

2015 年 10 月,标准编制组按照开题论证会专家提出的意见和建议,依据 HJ168-2010的要求,对方法验证实验方案进行了编制。2016年1月,编制组组织了相关单位在河北省霸州市进行了方法验证实验,并形成方法验证预实验报告。

6.2 方法验证方案内容

(1)实验内容

①确定方法的检出限

②确定方法的精密度

③确定方法的准确度

④现场测试

(2)样品和材料

①环境空气

在标准编制组提供的循环风洞,选取洁净环境空气为零气进行样品测试。

②实际样品

选择电厂、钢厂为典型排放源,测定排放颗粒物。

(3)监测点的具体情况

①检出限测试

测试地点为霸州京博公司0号风洞,以空气做背景,做检出限实验。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

②标准样品测试

测试点为霸州京博公司1号风洞,模拟粉尘浓度为140-150m3。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

霸州京博公司2号风洞,模拟粉尘浓度为20-30m3。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

霸州京博公司3号风洞,模拟粉尘浓度为50-80m3。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

③实际样品测试

i. 电厂:任丘电厂为两台60万千瓦机组,装备SNCR脱硝,静电除尘器,双塔单循环湿法脱硫等环保措施,测点位置为除尘后,脱硫后。

除尘后:测点位置距变径下游方向大3米,距上述部件上游方向3米,测点当量直径3米。

脱硫后:测点距变径下游方向50米,距上述部件上游方向50米,测点当量直径5米。

ii. 钢厂:前进钢铁230平米烧结机,环保设施为静电除尘器,湿法脱硫,测点位置为除尘后,脱硫后。

除尘后:测点距下游变径1米,距变径上游方向1米,测点当量直径5米。

脱硫后:测点距下游变径5米,距变径上游方向5米,测点当量直径5米。

iii. 前进钢铁球团总排口:环保设施为活性胶脱硫设施,测点位置为总排口,测点距下游变径15米,距变径上游方向15米,测点当量直径5米。

(4)验证实验室

选取6家实验室参与方法验证:国家环保产品质量监督检测中心、廊坊市环境监测站、秦皇岛市环境监测站、霸州市环境监测站、迁安县环境监测站、河北浦安检测技术有限公司

6.3 方法验证过程

(1)方法检出限

按照HJ168-2010的有关规定,选取零气进行测试,计算方法检出限:在标准编制组提供的循环风洞,选取洁净环境空气为零气进行样品测试,按本方法操作步骤及流程进行7次平行测定,每次测试3min,以3倍标准偏差计算检出限。最终的方法检出限以各验证实验室所得数据的最高值。

(2)方法精密度

按照HJ168-2010的有关规定,对测试样品进行实验室内和实验室间的方法精密度测定。

测试样品测定:每个测试单位按照要求,按标准编制组提供的循环风洞进行测定。各验证实验室对测试样品同步进行分析测试,按全程序每个测点平行测定7次,每次测定时间为3min,分别计算不同样品的平均值、标准偏差、相对标准偏差等各项参数。

标准编制组对各验证实验室的数据进行汇总统计分析,计算实验室间相对标准偏差、重复性限r和再现性限R。

(3)方法准确度

在标准编制组提供的循环风洞进行准确度的验证实验。每个验证实验室按全程序用

本方法和GB/T16157方法对1号风洞(≥100mg/m3)、2号风洞(30-80mg/m3)、3号风洞(20-50 mg/m3)三种浓度水平的气流进行测定,β射线法测定时间为3min,采样7次,取平均值,GB/T16157测定时间为20min,采样3次,取平均值,计算本方法与传统方法之间的相对误差。标准编制组对各验证实验室的数据进行汇总统计分析,得出最终的方法准确度。

(4)现场测试:

选取钢厂、电厂典型排污口进行实际样品测试,每个点位各实验室测量4次,取平均值。

6.4 方法验证报告

具体验证报告详见附件。

参考文献:

[1].鲁晟、姚德飞. 燃煤电厂烟气中颗粒物粒径分布特征研究[J]. 环境污染与防治, 2010, 32 (8) .

[2].傅嘉媛; 郑泽群. 大气污染物烟尘对农作物环境的影响研究[D]。福州:福州大学,2000.

[3].Ambient air-Measurement of the mass of particulate matter on a filter medium-Beta-ray absorption method

(ISO 10473:2000)

[4].Stationary source emissions-Determination of low range mass concentration of dust-Part 2: Automated

measuring systems (BS EN 13284-2:2004)

[5].Stationary source emissions-Quality assurance of automated measuring system (BS EN 14181:2004)

[6].Air quality-Certification of automated measuring systems-Part 3: Performance criteria and test procedures

for automated measuring systems for monitoring emissions from stationary sources (BS EN 15267-3:2007)

附件:方法验证报告

方法验证报告

方法名称:固定污染源废气颗粒物的测定β射线法

组织制定单位:河北省环境保护厅

标准起草单位:河北省环境监测中心站

验证单位:国家环保产品质量监督检测中心、廊坊市环境监测站、秦皇岛市环境监测站、霸州市环境监测站、迁安县环境监测站、河北浦安检测技术有限公司通讯地址:河北省石家庄市裕华区雅清街30号(050037)

报告日期:2016年 1 月28 日

1.方法验证方案

1.1 实验基本情况

(1)实验内容

①确定方法的检出限

②确定方法的精密度

③确定方法的准确度

④现场测试

(2)样品和材料

①环境空气

在标准编制组提供的循环风洞,选取洁净环境空气为零气进行样品测试。

②实际样品

选择电厂、钢厂为典型排放源,测定排放颗粒物。

(3)监测点的具体情况

①检出限测试

测试地点为霸州京博公司0号风洞,以空气做背景,做检出限实验。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

②标准样品测试

测试点为霸州京博公司1号风洞,模拟粉尘浓度为140-150m3。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

霸州京博公司2号风洞,模拟粉尘浓度为20-30m3。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。霸州京博公司3号风洞,模拟粉尘浓度为50-80m3。测点位置符合距弯头、阀门、变径下游方向大于6倍当量直径,距上述部件上游方向不大于3倍当量直径距离。

③实际样品测试

i.电厂:任丘电厂为两台60万千瓦机组,装备SNCR脱硝,静电除尘器,双

塔单循环湿法脱硫等环保措施,测点位置为除尘后,脱硫后。

HJ 75-2017固定污染源烟气排放连续监测技术规范与HJT 75-2007标准差异

最新版固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范HJ 75-2017与HJ/T 75-2007标准差异汇总: 1、标准号差异?HJ 75-2017规定较HJ/T 75-2007规定,正式作为行业标准,而不就是推荐性行业标准,效力更强。直接对运维工作具有约束力。 ?2、概念术语(系统响应时间与仪表响应时间) ?HJ 75-2017规定了概念术语:系统响应时间与仪表响应时间;增加了验收技术要求:示值误差与系统响应时间。 9、3、3、1条气态污染物与氧气CEMS验收,这两项就是前提条件。HJ/T 75-2007规定中无此项。3??、新增氮氧化物监测单元要求 HJ 75-2017规定:第4条氮氧化物监测单元要求,二氮可直接测量,亦可转化为一氮后一并测量,不允许只测量一氮。在现场与运维,就需要在产品选型时做好产品设计与转换要求。HJ/T 75-2007规定中无要求。? 4、新增监测站房要求?HJ 75-2017规定:第6条监测站房要求-监测站房建设规范化。对于现场人员来说,就需要注意后期签订运维合同、验收项目,涉及该项,注意核实就是否符合技术规范。如不符合,书面提醒业主单位该事项。HJ/T 75-2007规定中无此项。 5、采样监控平台面积与安全防护变化?HJ 75-2017规定:第7条7、1、1、7采样监控平台面积与安全防护a项。新增加采样监控平台面积与安全防护。技术验收应核实此项。HJ/T 75-2007规定中无此项。 6、安装要求变化 HJ 75-2017规定:第7条安装要求7、1、1、1 b项安装位置细化;采样平台

斜梯(高于2米)与升降梯设置高度(高于20米)细化。技术验收应核实此项。HJ/T 75-2007规定离地高度高于5米,设置Z字梯旋梯升降梯。 ?7、新增了参比方法采样孔预留要求 HJ 75-2017规定:第7条安装要求7、1、1、1 d项参比方法采样孔预留,技术验收应核实此项。HJ/T75-2007规定中无此项。 8、烟气分布均匀程度判定规则 HJ 75-2017规定:7、1、2、3烟气分布均匀程度判定。前四后二由之前得颗粒物增加为颗粒物与流速;新增了新建排放源采样平台与排气装置同步设计、建设,及烟气分布均匀程度判定。现场仪表在CEMS采样与分析探头安装,监测断面位置就是否合理做好判定。HJ/T75-2007规定中无此项。 9、旁路增加烟温与流量 HJ 75-2017规定:7、1、2、6旁路增加烟温与流量,HJ/T75-2007规定中仅需增加流量。 10、新增安装施工要求 HJ75-2017规定:新增了7、2 安装施工要求,7、2、1-7、2、10实际施工要求细化。CEMS安装施工要求细化,对工程施工及验收提高要求与考核指标细化。HJ/T 75-2007规定中无此项。 ?11、CEMS技术指标调试检测变化 HJ 75-2017规定:第8条CEMS技术指标调试检测附录A。主要变化有四

固定污染源废气颗粒物

DB13 河北省地方标准 DB13/ -2016 固定污染源废气颗粒物的测定β射线法 Stationary Source Emissions-Determination of Mass Concentration of Particulate Matter –Beta-ray Absorption Method (征求意见稿) 2016- - 发布2016- -实施河北省质量技术监督局 发布 河北省环境保护厅

目次 1. 适用范围 (3) 2. 规范性引用文件 (3) 3. 术语和定义 (3) 3.1 颗粒物 (3) 3.2 标准状态下的干排气 (3) 3.3 等速测定 (3) 4. 方法原理 (3) 5. 干扰和消除 (4) 6. 仪器和设备 (4) 6.1. β射线法颗粒物测定仪 (4) 6.2. 要求 (4) 7. 参数的测定 (4) 7.1 排气温度的测定 (4) 7.2 排气中水分含量的测定 (4) 7.3 排气中O2的测定 (4) 7.4 排气中压力的测定 (4) 7.5 排气流速、流量的测定 (4) 8. 监测位置和监测点 (4) 8.1. 测定位置 (4) 8.2. 测定孔、测定点位置和数目 (5) 9. 样品测定 (5) 9.1. 测定位置和测定点 (5) 9.2. 仪器准备 (5) 9.3. 定点测定 (5) 9.4. 多点测定 (5) 9.5. 测定结束 (5) 10. 颗粒物浓度计算和表示 (5) 10.1.颗粒物浓度 (5) 10.2.标准状态下干废气排放量 (6) 10.3.颗粒物排放速率 (6) 10.4.颗粒物排放浓度 (7) 11. 质量保证和质量控制 (7) 12. 注意事项 (7)

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

固定源污染源废气监测技术规范试题

空气和废气监测技术规范试题考试时间:姓名:分数: 一、填空题(每空2分,共30分) 1、总悬浮颗粒物(TSP)是指能悬浮在空气中,空气动力学当量直径()的颗粒物。可吸入颗粒物(PM10)是指悬浮在空气中,空气动力学当量直径()的颗粒物。 2、采集环境空气中的二氧化硫样品时,小时均值采样时,U型吸收管内装10ml 吸收液,以()L/min的流量采样;24h连续采样时,多孔玻板吸收管内装50ml吸收液,以()L/min流量采样。 3、我国规定气体的标准状态是指温度为(),压力为()时的状态。 4、环境空气中二氧化硫、氮氧化物平均浓度要求每日至少有()h的采样时间。 5、环境空气中颗粒物的日平均浓度要求每日至少有()h的采样时间。 6、测定锅炉烟尘时,测点位应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测点位臵应在距弯头、接头、阀门和其他变径管段的下游方向大于()倍直径处,特殊情况下,最小()倍直径处。 7、固定污染源排气中颗粒物()的原理是:将烟尘采样管由采样孔插入烟道中,采样嘴正对气流,使采样嘴的吸气速度与测点处气流速度相等,并抽取一定量的含尘气体,根据采样管上捕集到的颗粒物量和同时所取的气体量,计算排气中颗粒物浓度。 8、按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于()次,每个测点连续采样时间不得少于()min,每台锅炉测定时所采集样品累计的总采气量应不少于()m3,取3次采样的()作为管道的烟尘浓度值。

二、选择题(每题3分,共30分) 1、应使用经计量检定单位检定合格的大气采样器,使用前必须经过流量校准,流量误差应()。 A.大于5% B.不大于5% C.10% D.小于10% 2、当选用气泡吸收管或冲击式吸收管采集环境空气样品时,应选择吸收率为()%以上的吸收管。 A.85 B.90 C.95 D.99 3、环境空气中二氧化硫、氮氧化物的日平均浓度要求每日至少有()h采样时间。 A.10 B.12 C.14 D.18 4、在环境空气监测点采样周围()空间,环境空气流动不受任何影响。如果采样管的一边靠近建筑物,至少要在采样口周围要有()弧形范围的自由空间。 A.90°,180° B. 180°,90° C. 270°,180° D. 180°,270° 5、在环境空气质量监测点()m范围内不能有明显的污染源,不能靠近炉、窑和锅炉烟囱。 A.10 B.20 C.30 D.40 E.50 6、除分析有机物的滤膜外,一般情况下,滤膜采集样品后,如果不能立即称重,应在( )保存。 A.常温条件下 B.冷冻条件下 C.20℃ D.4℃条件下冷藏 7、在进行二氧化硫24h连续采样时,吸收瓶在加热槽内最佳温度为( ) ℃。 A 23-29 B 16-24 C 20-25 D 20-30 8、环境空气质量功能区划中的二类功能区是指( ) A.自然保护区、风景名胜区

固定污染源废气-颗粒物的测定-β射线法

固定污染源废气颗粒物的测定β射线法 (征求意见稿) 编制说明 编制组 2016年2月

1项目背景 (3) 1.1 任务来源 (3) 1.2 工作过程 (3) 2 标准制修订的必要性分析 (4) 2.1 颗粒物的环境危害 (4) 2.2 相关环保标准和环保工作的需要 (5) 3 国内外相关分析方法研究 (5) 3.1 国外相关标准分析方法的应用情况 (5) 3.2 国内相关分析方法研究 (6) 3.3 国内外标准与本方法关系 (7) 4 标准制修订的基本原则和技术路线 (7) 4.1 标准制修订的基本原则 (7) 4.2 标准的适用范围和主要技术内容 (7) 4.3 标准制修订的技术路线 (8) 5 方法研究报告 (8) 5.2 方法原理 (9) 5.3 干扰和消除 (10) 5.4仪器和设备 (11) 5.4.1β射线法颗粒物测定仪 (11) 5.4.2要求 (12) 5.5监测位置和监测点 (12) 5.5.1测定位置 (12) 5.5.2测定孔、测定点位置和数目 (12) 5.6样品测定 (12) 5.6.1测定位置和测定点 (12) 5.6.2仪器准备 (12) 5.6.3 定点测定 (12) 5.6.4 多点测定 (12) 5.6.5测定结束 (13) 5.7颗粒物浓度计算和表示 (13) 5.7.1 颗粒物浓度 (13) 5.7.2 标准状态下干废气排放量 (13) 5.7.3 颗粒物排放速率 (14) 5.7.4 颗粒物排放浓度 (14) 5.8质量保证和质量控制 (14) 6 方法验证 (14) 6.1 方法验证方案的制订 (14) 6.2 方法验证方案内容 (15) 6.3 方法验证过程 (16) 6.4 方法验证报告 (17) 参考文献: (17) 附件:方法验证报告 (18)

固定污染源废气颗粒物的测定β射线法.doc

《固定污染源废气颗粒物的测定β射线法》 (征求意见稿) 编制说明 标准编制组 二〇一九年十二月

目录 1 项目背景 (3) 1.1任务来源 (3) 1.2工作过程 (3) 2 标准制定的必要性分析 (4) 2.1颗粒物的环境危害 (4) 2.2颗粒物的治理技术 (4) 2.3颗粒物的监测方法 (5) 2.4现行颗粒物监测标准的实施情况和存在问题 (5) 3 国内外相关分析方法研究 (6) 3.1国外相关分析方法研究 (6) 3.2国内相关分析方法研究 (7) 3.3相关仪器方法原理研究 (8) 4 标准制定的基本原则和技术路线 (9) 4.1标准制定的基本原则 (9) 4.2标准制定的技术路线 (9) 5 方法研究报告 (10) 5.1方法研究目标 (10) 5.2适应范围 (10) 5.3规范性引用文件 (10) 5.4术语和定义 (11) 5.5方法原理 (11) 5.6试剂和材料 (12) 5.7仪器和设备 (13) 5.8样品 (16) 5.9结果计算与表示 (17) 5.10精密度和准确度 (18) 5.11质量保证和质量控制 (20) 5.12注意事项 (21) 6 方法验证 (21) 6.1验证方案的制定工作 (21) 6.2方法验证方案内容 (21) 6.3方法验证过程 (22) 6.4方法验证报告 (24) 7 仪器性能测试 (24) 8 Β射线源取得管理机构的豁免权 (25) 附件:方法验证报告 (28)

《固定污染源废气颗粒物的测定β射线法》 编制说明 1 项目背景 1.1 任务来源 (1)《固定污染源废气颗粒物的测定β射线法》标准制订项目列入2017年第一批辽宁省地方标准制修订项目计划,项目编号为2017019。 (2)《固定污染源废气颗粒物的测定β射线法》标准制订项目承担单位为辽宁省生态环境监测中心。 1.2 工作过程 (1)成立编制小组、编写有关文件 2019年3月,辽宁省生态环境监测中心作为本标准的承担单位与有关专家进行了联系,成立了由环境监测和仪器设计人员组成的标准制订小组。在调研文献资料、国内外颗粒物的测定β射线法及应用,充分考虑国内现有类似标准的基础上,形成标准初稿、制定实验室和现场验证方案。 主要起草人及其所做的工作: xx:第1起草人,负责调查研究、标准内容设计、标准草案起草和修改等全部工作; xx:主要起草人,参与标准技术路线的设计、草案的起草和修改工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; xx:主要起草人,参与方法应用过程中样品分析处理工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; (2)召开专家论证会、修改有关文件 2019年10月,组织专家对标准初稿、实验室和现场验证方案设计进行开题论证,并根据专家的论证意见、建议对标准初稿以及验证方案进行适当的修改和补充完善。 (3)完成实验室和现场验证测试 2019年10月-2019年12月,组织验证单位进行实验室测试和现场验证,综合评价测试结果,调整分析方法的关键特性指标。

四川省固定污染源大气挥发性有机物排放标准编制说明

四川省固定污染源大气挥发性有机物 排放标准编制说明 (征求意见稿) 《四川省固定污染源大气挥发性有机物排放标准》编制组 二O一六年九月

目录 1 项目背景 (3) 1.1 任务来源 (3) 1.2 工作过程 (3) 2 标准编制的必要性分析 (5) 2.1 国家及地方大气污染物排放标准体系 (5) 2.1.1国家大气污染物排放标准体系 (5) 2.1.2地方大气污染物排放标准体系 (7) 2.2国家及环保主管部门的相关要求 (9) 2.3社会经济发展带来的主要环境问题 (10) 3 标准编制的依据、原则和方法思路 (13) 3.1 编制依据 (13) 3.2 修订原则 (13) 3.3 编制方法和思路 (14) 4 重点行业VOCs排放特征和污染控制技术分析 (15) 4.1 VOCs产污环节、排放特征和防治技术 (15) 4.1.1木制家具制造行业 (15) 4.1.2印刷业 (17) 4.1.3石油炼制与石油化学行业 (18) 4.1.4农药制造业 (20) 4.1.5涂料、油墨及类似产品制造业 (21) 4.1.6医药制造业 (22) 4.1.7橡胶制品业 (23) 4.1.8汽车制造业 (24) 4.1.9表面涂装行业 (25) 4.1.10电子产品制造业 (26) 4.2 特征污染物分析 (28) 4.3净化关键技术 (29) 5 污染物控制项目筛选 (31) 5.1 筛选原则 (31) 5.2 筛选程序 (31) 5.3污染物控制项目初始名单 (32) 5.4 筛选评分系统的建立 (33) 5.5 筛选结果 (33) 6标准限值确定 (35) 6.1排放标准限值确定原则 (35)

固定源废气检测技术规范 考试试题及答案

固定源废气检测技术规范HJ/T 397-2007 姓名:分数: 一、填空题 1.颗粒物是指燃料和其它物质在燃烧、合成、分解以及各种物料在机械处理中所产生的悬浮于排放气体中的物质。 2. 3. 根据监测方案确定的监测内容,准备现场监测和实验室分析所需仪器设备。属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,检定合格,取得检定证书后方可用于监测工作。测试前还应进行,使其处于良好的工作状态。 4. 采样位置应优先选择在垂直管段,应避开烟道弯头和断面急剧变化的部位。采样断面的气流速 5. 必要时应设置采样平台,采样平台应有足够的工作面积使工作人员安全、方便地操作。平台面 10cm的脚部挡板,采样平台的承重应不小于200kg/m2,采样孔距平台面约为 6. 对正压下输送高温或有毒气体的烟道,应采用带有采样孔。 7. 在烟尘采样中,形状呈弯成90°的双层同心圆管皮托管,也称型皮托管。 8. 、、和静等四种。 9. 烟气测试中,采样时间视待测污染物浓度而定,每个样品采样时间一般不少于。 10. 测定烟气流量和采集烟尘样品时,若测试现场空间位置有限、很难满足测试要求,应选择比较适宜的管段采样,但采样断面与弯头等的距离至少是烟道直径的倍,并应适当增加测点的数量。 11. 空白滤筒称量前应检查外表有、或,有则应更换滤筒,如果滤筒有挂毛或碎屑,应清理干净。 12. 采样位置应尽可能选择气流平稳的管段,采样断面最大流速与最小流速之比不宜大于倍,以防仪器的响应跟不上流速的变化,影响等速采样的精度。 13. 排气压力测定时,事先须将仪器调整水平,检查微压计液柱内有无气泡,液面调至零点;对皮托管、微压计和系统进行检查。 14. 在采集硫酸雾、铬酸雾等样品时,由于雾滴极易沾附在采样嘴和弯管内壁,且很难脱离,采样前应将采样嘴和弯管内壁清洗干净,采样后用少量冲洗采样嘴和弯管内壁,合并在样品中,尽量减少样品损失,保证采样的准确性。 15. 用定电位电解法烟气分析仪对烟气二氧化硫、氮氧化物等测试,应在仪器显示浓度值变化趋于稳定后读数,读数完毕将采样探头取出,置于环境空气中,清洗传感器至仪器读数在以

GB16297固定污染源废气环境检测限值

1997年1月1日前设立的污染源 序号污染 物 最高允许排放浓度 (mg/m3) 最高允许排放速率(kg/h) 无组织排放监控浓度 排气筒(m) 一级二级三级监控点浓度 1 二 氧 化 硫 1200 (硫、二氧化硫、硫酸和 其它含硫化合物生产) 15 20 30 40 50 60 70 80 90 100 1.6 2.6 8.8 15 23 33 47 63 82 100 3.0 5.1 17 30 45 64 91 120 160 200 4.1 7.7 26 45 69 98 140 190 240 310 无组织排放源 上风向设参照 点,下风向设监 控点 0.50 (监控点与 参照点浓度 差值) 700 (硫、二氧化硫、硫酸和 其它含硫化合物使用) 2 氮 氧 化 物 1700 (硝酸、氮肥和火炸药生 产) 15 20 30 40 50 60 70 80 90 100 0.47 0.77 2.6 4.6 7.0 9.9 14 19 24 31 0.91 1.5 5.1 8.9 14 19 27 37 47 61 1.4 2.3 7.7 14 21 29 41 56 72 92 无组织排放源 上风向设参照 点,下风向设监 控点 0.15 (监控点与 参照点浓度 差值) 420 (硝酸使用和其它) 3 颗 粒 物 22 (碳黑尘、染料尘) 15 20 30 40 禁 排 0.60 1.0 4.0 6.8 0.87 1.5 5.9 10 * 周界外浓度最 高点 肉眼不可见 80** (玻璃棉尘、石英粉尘、 矿渣棉尘) 15 20 30 40 禁 排 2.2 3.7 14 25 3.1 5.3 21 37 无组织排放源 上风向设参照 点,下风向设监 控点 2.0 (监控点与 参照点浓度 差值) 150 (其它) 15 20 30 40 50 60 2.1 3.5 14 24 36 51 4.1 6.9 27 46 70 100 5.9 10 40 69 110 150 无组织排放源 上风向设参照 点,下风向设监 控点 5.0 (监控点与 参照点浓度 差值) 4 氟150 1 5 禁0.30 0.4 6 周界外浓度最0.25

固定源废气监测技术规范关于采样口的具体要求

固定源废气监测技术规范关于采样口的具体要 求 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

固定源废气监测技术规范关于采样口的具体要求 5.1 采样位置 5.1.1 采样位置应避开对测试人员操作有危险的场所。 5.1.2 采样位置应优先选择在垂直管段,应避开烟道弯头和断面 急剧变化的部位。采样位置应设置在距弯头、阀门、变径管下游方 向不小于 6 倍直径,和距上述部件上游方向不小于 3 倍直径处。 采样断面的气流速度最好在 5m/s 以上。 5.1.3 测试现场空间位置有限,很难满足上述要求时,可选择比 较适宜的管段采样,但采样断面与弯头等的距离至少是烟道直径的 1.5 倍。 5.1.4 对于气态污染物,由于混合比较均匀,其采样位置可不受 上述规定限制,但应避开涡流区。如果同时测定排气流量,采样位 置仍按 5.1.2 选取。 5.1.5 必要时应设置采样平台,采样平台应有足够的工作面积使 工作人员安全、方便地操作。平台面积应不小于 1.5m2,并设有 1.1m 高的护栏和不低于 10cm 的脚部挡板,采样平台的承重应不 小于200kg/m2,采样孔距平台面约为 1.2m~1.3m。 5.2 采样孔 5.2.1 采样孔 单 位 为 毫 米a)带有盖板的采样孔 b)带有管堵的采样孔 c)带有 管帽的采样孔图 1 几种封闭形式的采样孔 5.2.1.1 在选定的测定位置上开设采样孔,采样孔的内径应不小 于 80mm,采样孔管长应不大于 50mm。不使用时应用盖板、管堵或 管帽封闭(图 1)。当采样孔仅用于采集气态污染物时,其内径应 不小于 40mm。 5.2.1.2 对正压下输送高温或有毒气体的烟道,应采用带有闸板 阀的密封采样孔(图 2) 图2带有闸板阀的密封采样孔

β射线法大气颗粒物监测仪原理及常见故障分析

β射线法大气颗粒物监测仪原理及常见故障分析 发表时间:2018-12-06T15:58:27.860Z 来源:《科技新时代》2018年10期作者:邓云[导读] β射线法大气颗粒物监测仪是可测量大气中可吸入肺颗粒物(PM10和PM2.5)浓度的专用仪器,用户可以交互设置仪器参数进行连续在线测量。 黄冈市气象局湖北黄冈 438000 摘要:基于β射线原理的大气颗粒物浓度监测仪是目前国内外普遍采用的大气颗粒物监测仪器。β射线法大气颗粒物监测仪是可测量大气中可吸入肺颗粒物(PM10和PM2.5)浓度的专用仪器,用户可以交互设置仪器参数进行连续在线测量。本文根据国内外现行标准,对β射线法大气颗粒物监测仪原理及常见故障进行合理分析。 中国论文网 关键词:大气气溶胶大气颗粒物 PM2.5 β射线 1概述 大气气溶胶是指悬浮在大气中固态和液态微粒共同组成的多相体系。实际工作中,也将大气中粒径小于100μm的悬浮固态或液态微粒称为气溶胶。其中,空气动力学粒径小于等于10μm的气溶胶(PM10)可通过呼吸进入人体上、下呼吸道,称可吸入颗粒物,其中空气动力学直径大于2.5μm的部分可以通过呼吸系统的自身清除运动排出人体;空气动力学粒径小于等于2.5μm的气溶胶(PM2.5)可以完全被吸入并沉积到肺部,称可入肺颗粒物。因此,附着在PM2.5颗粒上的各类有毒环境物质才是对人体健康危害巨大的元凶。因此,黄冈国家气象观测站安装的大气成分观测站只对大气中PM2.5浓度(单位体积大气中所含PM2.5的质量)进行监测。 2 测量原理 β射线法大气颗粒物监测仪将C14作为辐射源,同时以恒定流量抽气,大气中的悬浮颗粒被吸附在β源和探测器之间的滤纸表面,抽气前后探测器计数值的改变反映了滤纸上吸附灰尘的质量,由此可以得到单位体积空气中悬浮颗粒的浓度。 通过吸收物质(如纸带上的尘),β射线粒子的衰减量接近指数(近似),当吸收物质厚度远小于β粒子的射程时,吸收近似满足关系: 公式中: I0--空白滤纸的β粒子计数值; I--β射线穿过沉积颗粒物的滤纸的β粒子计数值; μm-质量吸收系数,单位cm2/mg; X--吸收物质的质量密度(mg/cm2) 3 构件组成 β射线法大气颗粒物监测仪主要由监测仪主机、切割器、采样系统,动态加热系统4个部件组成。设备组成如图1所示。 图1 大气颗粒物监测仪总体结构图 2.1监测仪主机

102大气固定污染源氟化物的测定

江苏省百斯特检测技术有限公司作业指导书大气固定污染源氟化物的测定 JCZY—102 编制人 校核人 批准人 批准日期

大气固定污染源 氟化物的测定作业指导书 1 引用标准 国家环境保护总局标准 HJ/T67-2001 《固定污染源氟化物的测定 离子选择电极法》 2 适用范围 本方法适用于烟气中氟化物的测定。 本方法检出限:当采样体积为150L 时,为6×10-2mg/m3,测定的范围:1~1000mg/m3。 3 原理 使用滤筒、氢氧化钠溶液采集尘氟及气态氟,加硝酸溶液处理后制备成样品溶液,用氟离子电极测定。氟离子电极在含氟离子的溶液中,当溶液的总离子强度为定值而且足够大时,其电极电位与溶液中氟离子活度的对数成直线关系,通过绘制标准曲线,从测得的电位值得到氟离子的含量。 4 试剂和材料 4.1超细玻璃纤维滤筒或合成纤维滤筒。 4.2吸收液 氢氧化钠溶液C (NaOH )=0.3mol/L ;将12g 氢氧化钠溶于水,并稀释至1000mL 。 4.3 0.1%溴甲酚绿指示剂 称取100mg 溴甲酚绿于研钵中,加少量(1+4)乙醇,研细,用(1+4)乙醇配成100mL 溶液。 4.4盐酸溶液 C (HCl )=1.0mol/L:取84.0mL 盐酸用水稀释至1000m 。 4.5盐酸溶液 C (HCl )=0.25mol/L:取21.0mL 盐酸用水稀释至1000mL 。 4.6氢氧化钠溶液C (NaOH )=1.0mol/L :将40g 氢氧化钠溶于水并稀释至1000mL 。 4.7总离子强度缓冲溶液(TISAB ) 称取59.0g 柠檬酸钠(Na3C6H5O7·2H2O ),20.0g 硝酸钾,置于1000mL 烧杯中,加300mL 水溶解,加溴甲酚绿指示剂1.0mL ,用浓盐酸溶液及氢氧化钠溶液调节至溶液刚转变为蓝绿色为止,pH 为 5.5(也可在酸度计上,用酸、碱溶液调节至pH5.5),移入1000mL 容量瓶,用水稀释至标线,摇匀。 4.8氟化钠标准贮备溶液 称取0.2210g 氟化钠(优级纯,经110℃烘干2h ),溶解于水,移入100mL 容量瓶中,用水稀释至标线,摇匀,保存聚乙烯塑料瓶中。此溶液每毫升含1000ug 氟。 4.9氟化钠标准溶液 临用时将氟化钠标准贮备溶液用水稀释成 2.5ug/mL 、 5.0ug/mL 、10.0ug/mL 、25.0ug/mL 、50.0ug/mL 、100.0ug/mL 的氟的标准溶液。 5 实验步骤 5.1采样 当烟气中共存尘氟和气态氟时,采样方法进行等速采样。在加热式滤筒采样管的出口,串联三个装有75mL 吸收液的多孔玻板吸收瓶,分别捕集尘氟和气态氟。 当烟气中不含尘氟或只测定气态氟时,可采用烟气采样方法,在采样管出口串联两个装有50mL 吸收液的多孔玻板吸收瓶,以0.5~2L/min 的流量采样5~20min 。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 5.2分析 校准曲线的绘制 作业指导书 第 2 页 共 3页 第 0次修改 江苏省百斯特检测技术有限公司 大气固定污染源氟化物的测定

固定污染源废气监测的影响因素及应对措施

固定污染源废气监测的影响因素及应对措施 监测固定污染源废气必须确保其数据的准确性和精密性,然而因监测过程受到多种因素影响,给监测带来极大难度。为此,监测人员应对废气全程监测进行把握,以确保检测数据及监测质量的可靠和真实,为监测技术提供可靠的参考资料。 标签:固定污染源;废气监测;影响因素 一、影响固定污染源废气监测的因素 (一)对工业生产状况及其废气排放的监测 工业生产是重大的污染源,工业生产工况的变化给其废气排放量带来极大影响,而排放量的变化给监测质量带来一定影响。工业生产的工况不同时,其废气排放量存在较大差异,废气中污染物的含量也会存在较大差异。所以,监测污染源废气需要对监测时间进行准确控制,并明确工业生产工况周期,把握好各个时间段内的工况内容。监测废气排放的前期,必须明确污染源是否处于正常工作情况下的负荷量。而后对不同时段的废气排放量进行测量,并掌握其排放量變化状况,以进一步明确工况同废气排放量间的关系,为数据参照系统的构建及完善提供依据,对废气排放特征进行分析和把握,为监测的准确性提供保障。 (二)滤筒质量对监测效果的影响 样品采集时,通常以滤筒为介质来计算样品浓度和确定污染因子。因此,滤筒是监测废气的必备工具,其质量的优劣直接关系到监测效果的准确性和可靠性。因而选择滤筒时应严格关注其材质,挑选滤筒管壁好的滤筒,并确保其型号同检测器的匹配。使用滤筒过程中,对滤筒重量进行严格测量,以避免或降低其他因素对滤筒质量的影响,进而使废气监测的质量得以提高。 (三)样品数据的计算对监测结果的影响 如果样品数据计算不够准确同样会影响对固定污染源废气的监测结果。所以,计算样品数据时应严格按照技术规范及相关操作标准来计算样品浓度,计算参数必须准确,以此来确保计算结果的准确性。同时,计算排放筒废气排放量时,应以及其速率和浓度的合理分区来计算,并依据有关参数进行整个分析和计算。 二、提高固定污染源废气监测准确性的对策 (一)采样工作的精细化 采样工作同监测质量的关系密切,直接关系到监测结果的准确性。因此,应做好采样工作,达到精细化的程度。比如进行现场勘查,以此明确固定污染源废

固定源废气监测技术规范关于采样口的具体要求

固定源废气监测技术规范 关于采样口的具体要求 Final revision by standardization team on December 10, 2020.

固定源废气监测技术规范关于采样口的具体要求 采样位置 5.1.1 采样位置应避开对测试人员操作有危险的场所。 5.1.2 采样位置应优先选择在垂直管段,应避开烟道弯头和断面急剧变化的部位。采 样位置应设置在距弯头、阀门、变径管下游方向不小于 6 倍直径,和距上述部件上游方向不小于 3 倍直径处。采样断面的气流速度最好在 5m/s 以上。 5.1.3 测试现场空间位置有限,很难满足上述要求时,可选择比较适宜的管段采样, 但采样断面与弯头等的距离至少是烟道直径的倍。 5.1.4 对于气态污染物,由于混合比较均匀,其采样位置可不受上述规定限制,但应 避开涡流区。如果同时测定排气流量,采样位置仍按 5.1.2 选取。 5.1.5 必要时应设置采样平台,采样平台应有足够的工作面积使工作人员安全、方便 地操作。平台面积应不小于 1.5m2,并设有 1.1m 高的护栏和不低于 10cm 的脚部挡 板,采样平台的承重应不小于200kg/m2,采样孔距平台面约为 1.2m~1.3m。 采样孔 5.2.1 采样孔 单位 为毫 米a)带有盖板的采样孔 b)带有管堵的采样孔 c)带有管帽的采样孔图 1 几 种封闭形式的采样孔 5.2.1.1 在选定的测定位置上开设采样孔,采样孔的内径应不小于 80mm,采样孔管长 应不大于 50mm。不使用时应用盖板、管堵或管帽封闭(图 1)。当采样孔仅用于采集气态污染物时,其内径应不小于 40mm。 5.2.1.2 对正压下输送高温或有毒气体的烟道,应采用带有闸板阀的密封采样孔(图 2) 图2带有闸板阀的密封采样孔

关于重量法和β射线吸收原理测量可吸入颗粒物

关于重量法和β射线吸收原理测量可吸入颗粒物(PM10)的研究 摘要:通过对重量法和β射线吸收法测量可吸入颗粒物PM10的原理、使用优缺点和适用范围的分析,以及β射线吸收原理PM10自动监测仪与重量法大流量采样器的对比实验和β射线吸收原理自动监测仪在测量沙尘暴中的数据分析,说明β射线吸收原理PM10自动监测仪在测量空气中污染物PM10的先进性。 关键词:PM10;β射线吸收原理;重量法 1.引言 PM10又称胸部颗粒物,指可吸入颗粒物中能够穿过咽喉进入人体肺部的气管、支气管区和肺泡的那部分颗粒物,它并不是表示空气动力学直径小于10μm的可吸入颗粒物,而是表示具有D50=10μm,空气动力学直径小于30μm以下的可吸入颗粒物。其中空气动力学直径指在通常的温度、压力和相对湿度的情况下,在静止的空气中,与实际颗粒物具有相同重力加速度的密度为1g/cm3的球体直径,实际上是一种假想的球体颗粒直径;而D50是指在一定的颗粒物体系中,即空气动力学直径范围一定时,颗粒物的累积质量占到总颗粒物质量一半(50%)时所对应的空气动力学直径,它代表了可吸入颗粒物体系的几何平均空气动力学直径。 大气中PM10来源广泛,且颗粒物形态各异、成分复杂,对环境和人体健康造成巨大危害,主要表现:(1)使空气能见度降低,影响人们的正常生活。(2)吸入人体后沉积在呼吸道和肺部,引起呼吸道和肺部病变。(3)颗粒物中的部分化学物质可降低人体免疫力,并具有潜在的致癌性。(4)落在物体表面,弄脏或腐蚀物体,造成资源损失。(5)影响其它动植物的正常生长,破坏生态平衡。PM10的污染已引起全世界的普遍关注,所以加强PM10污染监测至关重要。 2.监测方法简介 2.1重量法 重量法测量PM10浓度普遍采用大流量采样器,原理为采样泵抽取一定体积的空气进入切割器,将空气动力学直径小于30μm的颗粒物切割分离,PM10颗粒随着气流经切割器的出口被阻留在已称重的滤膜上。根据采样前后滤膜的质量差及采样体积,计算出PM10的浓度。计算公式为: 式中:C——PM10的质量浓度,mg/m3; W2——采样后滤膜质量,mg;

固定污染源废气低浓度颗粒物的测定重量法

固定污染源废气低浓度颗粒物的测定重量法 (征求意见稿) 编制说明 编制组 2015年9月

一、项目背景 (3) 1.任务来源 (3) 2.工作过程 (3) 二、修订本标准的必要性分析 (3) 1.固定污染源颗粒物污染的危害 (4) 2.相关环保标准和环保工作的需要 (4) 3.现行环境监测分析方法标准的实施情况和存在问题 (4) 4.低浓度颗粒物测定技术的最新进展 (5) 三、国内外相关分析方法研究 (5) 1.主要国家、地区及国际组织相关分析方法研究 (5) 2.国内相关分析方法研究 (7) 四、标准制修订的基本原则和技术路线 (7) 1.标准制修订的基本原则 (7) 2.标准制修订的技术路线 (8) 五、方法研究报告 (10) 1.适用范围 (10) 2.规范性引用文件 (11) 3.术语和定义 (11) 4.方法原理 (11) 5.仪器和设备 (12) 6.采样位置和采样点 (13) 7.采样 (13) 8.结果与表述 (14) 9.质量控制措施 (14) 六、方法验证 (16) 1.实验内容 (16) 2.质量控制措施 (16) 3.验证实验室基本情况 (18) 4.验证实验结论 (18) 参考文献: (19)

一、项目背景 1.任务来源 2015年6月,河北省环境保护厅向河北省环境监测中心站下达了起草《固定污染源低浓度颗粒物的测定重量法》方法标准的任务。 标准的制定由河北省环境监测中心站牵头,石家庄环境监测中心、秦皇岛市环境保护监测站、兴隆县环境监测站、河北省大名市环境监测站、唐山永正环境监测有限公司协作;青岛明华电子仪器有限公司、青岛崂山应用技术研究所、青岛容广电子科技有限公司提供支持。 2.工作过程 按照河北省环境保护厅的要求,召集各参加单位,成立了标准编制小组,制定了详细的标准编制计划与任务分工,具体工作计划如下: (1)对国内外有关“低浓度颗粒物的测定重量法”的标准内容、包括测定原理、采样装置、采样程序、质量控制、结果计算及方法性能进行调研,对国内外固定污染源低浓度颗粒物采样设备的工作原理、测试方法、可行性及应用情况进行调研,对国内外相关分析方法进行研究比较,对国内固定污染源排放的相关法律、法规和政策进行分析研究,收集国内外关于低浓度颗粒物测定的文献资料,分类归纳。 (2)依据调研的内容,参考相关标准,确定标准的适用范围,并制定相应的技术路线; (3)对确定的技术指标和验证方案进行测试、比对,验证其可行性,形成测试报告和验证报告; (4)完成编制说明和标准文本。 目前,我们查阅了国内外“低浓度颗粒物的测定重量法”的相关标准、固定污染源颗粒物采样设备标准及检定规程、各类固定污染源颗粒物测定标准及烟尘烟气排放标准中颗粒物规定限值,结合我省各环境监测站和排废企业对低浓度颗粒物检测方法的应用研究及需求情况的广泛调研,进行了分类、归纳和总结,在此基础上完成了标准草案。 二、修订本标准的必要性分析

固定污染源废气挥发性有机物监测技术规范

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB11 北京市地方标准 DB 11/ ****—2016 固定污染源废气挥发性有机物 监测技术规范 The Technical Specification for Monitoring of volatile organic compounds emitted from stationary source 点击此处添加与国际标准一致性程度的标识 (征求意见稿) (本稿完成日期:2016.07.01) 2016-XX-XX发布2016-XX-XX实施

目次 前言................................................................................ II 引言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 测定项目的确定 (2) 5 监测方法的选择 (2) 6 采样技术要求 (3) 7 样品的运输和保存 (5) 8 结果与计算 (6) 9 质量保证与质量控制 (6) 附录A(规范性附录)固定污染源废气苯系物的测定气袋采样-气相色谱质谱法 (8) 附录B(资料性附录)固定污染源废气非甲烷总烃或总烃标准监测方法表 (14) 附录C(资料性附录)固定污染源废气特征项目标准监测方法表 (15) 附录D(资料性附录)固定污染源废气中挥发性有机物的检测流程 (16)

固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)

氟化氢检测(监测)方法指导书(方法标准号:HJ688-2013) 编制: 审核: 批准: 批准日期:

1方法原理 本方法采用加热的采样管连续从固定污染源采集废气样品,经加热的过滤器滤除颗粒物,废气样品进入冷却的碱性吸收液,气态氟化物被吸收生成氟离子。经离子色谱仪分离检测,保留时间定性,响应值定量。 2适用范围 本标准规定了测定固定污染源废气中氟化氢的离子色谱法。 本标准适用于固定污染源废气中气态氟化物的测定,以氟化氢浓度表示,不能测定碳氟 化物,如氟利昂。 当采样体积 120L,定容体积 200ml 时,检出限为 0.03mg/m 3 ,测定下限为 0.12mg/m 3 ; 定容体积 500ml 时,检出限为 0.08mg/m 3 ,测定下限为 0.32mg/m 3 。 3仪器及试剂 3.1 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂;水,GB/T 6682,二级。 3.1.1氢氧化钾(KOH)。 3.1.2无水碳酸钠(Na2CO3)。 3.1.3氟化钠(NaF),优级纯:在110℃下干燥 2h,于干燥器中保存。 3.1.4吸收液

3.1. 4.1氢氧化钾溶液:c(KOH) = 0.1mol/L。称取 5.6g 氢氧化钾(3.1.1),溶解于水,稀释至 1000ml。 3.1. 4.2氢氧化钾-碳酸钠溶液:c(KOH) = 0.006mol/L,c(Na2CO3) = 0.008mol/L。称取 0.33g 氢氧化钾(3.1.1) 和 0.85g 无水碳酸钠(3.1.2),溶解于水,稀释至 1000ml。 3.1.5 淋洗液 3.1.5.1氢氧化钾溶液:c(KOH) = 0.030mol/L。称取 1.7g 氢氧化钾(3.1.1),溶解于水,稀释至 1000ml。 3.1.5.2 氢氧化钾-碳酸钠溶液:c(KOH) = 0.0018mol/L,c(Na2CO3) = 0.0024mol/L。称取 0.1g 氢氧化钾 (3.1.1)和 0.26g 无水碳酸钠(3.1.2),溶解于水,稀释至 1000ml。 3.1.6 氟化钠标准贮备溶液:ρ(F-) = 500μg/ml。 称取 0.1105g 氟化钠(3.1.2)溶解于水中,移入 100ml 容量瓶中,用水稀释至标线,摇匀,贮于聚乙烯瓶中,在4℃下可保存一个月,临用时取出放至室温再用。也可使用有证标准溶液进行配制。 3.1.7氟化钠标准使用液:ρ(F-) = 5μg/ml。 吸取 1.00ml 氟化钠标准贮备溶液(3.1.6),移入 100ml 容量瓶中,用淋洗液(3.1.5)稀释至标线,摇匀,临用现配。 3.1.8 微孔滤膜:孔径0.45μm,材质为乙酸纤维或聚四氟乙烯(PTFE)。 3.2 仪器和设备 3.2.1 玻璃量器 除非另有说明,分析时均使用国家标准的 A 级玻璃量器。 3.2.2烟气采样器 烟气采样器应符合 HJ/T 47 的技术要求,由采样管、过滤装置、吸收单元、干燥器、冷却装置、流量计量和控制装置及抽气泵等组成,见图 1。抽气泵应保证足够的抽气量,当采 样系统负载阻力为 20kPa 时,抽气泵抽气流量应不低于 2.0L/min。

固定污染源采样

第二节污染源采样 (一)固定污染源采样 一、填空题 1.对除尘器进出口管道内气体压力进行测定时,可采用校准后的标准皮托管或其他经过校正的非标准型皮托管(如S形皮托管),配压力计或倾斜式压力计进行测定。 2.按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于次,每个测点连续采样时间不得少于 min,每台锅炉测定时所采集样品累计的总采气量应不少于1m3,取3次采样的算术均值作为管道的烟尘浓度值。 3.采集烟尘的常用滤筒有玻璃纤维滤筒和滤筒两种。 4.烟尘测试中的预测流速法,适用于工况的污染源。 5.固定污染源排气中颗粒物等速采样的原理是:将烟尘采样管由采样孔插入烟道中,采样嘴气流,使采样嘴的吸气速度与测点处气流速度,并抽取一定量的含尘气体,根据采样管上捕集到的颗粒物量和同时抽取的气体量,计算排气中颗粒物浓度。 6.在烟尘采样中,形状呈弯成90°的双层同心圆管皮托管,也称型皮托管。 7.在矩形烟道内采集烟尘,若管道断面积<0.1m2,且流速分布、对称并符合断面布设的技术要求时,可取断面中心作为测点。 8.蒸汽锅炉负荷是指锅炉的蒸发量,即锅炉每小时能产生多少吨的,单位为比。9.测定锅炉烟尘时,测点位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测点位置应在距弯头、接头、阀门和其他变径管段的下游方向大于倍直径处。 10.用S形皮托管和U形压力计测量烟气的压力时,可将S形皮托管一路出口端用乳胶管与U形压力计一端相连,并将S形皮托管插入烟道近中心处,使其测量端开口平面平行于气流方向,所测得的压力为。 11.通常在风机后的压入式管道中进行烟尘采样,管道中的静压和动压都为 (填“正”或“负”),全压为 (填“正”或“负”)。

相关文档
相关文档 最新文档