文档库 最新最全的文档下载
当前位置:文档库 › 基于传递函数的整车定置振动分析

基于传递函数的整车定置振动分析

基于传递函数的整车定置振动分析
基于传递函数的整车定置振动分析

基于传递函数的整车定置振动分析

Analysis of Vehicle stationary vibration

based on transfer function

摘要:定置工况下汽车的振动是由发动机的各个激励经由传递路径抵达目标位置后叠加而成的。基于该观点,本文提出了定置工况下整车振动的计算方法。其中,应用有限元方法获取结构的传递函数,以发动机的激励为输入,通过载荷与传递函数的乘积得到响应量,将各响应叠加得到车内目标位置的总响应量。本方法可有效地用于车辆的NVH性能开发中。

关键词: 传递函数、振动灵敏度、整车振动

Abstract: V ehicle vibration at stationary condition is excited by each of engine load, superimposed upon the target position through transfer paths. The numerical method for vehicle vibration response is introduced based on this theory. In the procedure, transfer functions are obtained by using finite element method, and the engine load is used as input. Each response is obtained by multiplying engine load with transfer function. They are then superimposed to obtain the total response. This method can be effectively used in the vehicle development of NVH performance.

Key words: Transfer Function; Vibration Sensitivity; Vehicle Vibration

1 概述

近年来,随着人们对乘坐舒适性要求的不断提高,驾驶室内的振动噪声问题越来越多地引起人们的重视。方向盘、座椅及脚踏板等部件的振动与顾客的感受直接相关,是乘客能感受到的整车NVH性能的重要指标。

汽车内部振动和噪声现象,往往是由发动机、路面冲击等多个激励经由不同的传递路径抵达目标位置后叠加而成的。本文主要研究定置工况下的车内振动,该工况下车内振动完全由发动机的激励而产生,响应点的振动与激励载荷及载荷传递路径的传递灵敏度成正比。当转速为怠速时,通过对车身关键点的振动的计算分析,可预测车辆的怠速振动性能及有针对性地进行相关改进优化。

2 发动机的激励载荷

车辆行驶在平坦的路面上或怠速运转时,只有发动机本身是主要激振源.发动机激励可分为惯性激励和燃烧激励。惯性激励包括X、Y、Z三个方向的惯性力及Tx、Ty、Tz三个惯性力矩及动力传动系统的不平衡力。燃烧激励为气缸的燃烧力矩。本文中只考虑了发动机的惯性力和燃烧力矩。惯性力和惯性力矩的周期都是360o曲轴转角,燃烧压力则不同,其周期与发动机冲程形式有关,四冲程发动机的周期为720o曲轴转角。对四冲程发动机,一般常将周期定为1转,也就是360o曲轴转角,因此产生了半阶振动频率0.5*ω。发动机的惯性力可以

通过计算获得,燃烧力矩在测试获取燃烧压力后计算处理得到。发动机的激励激发车身的振动,即在目标位置产生振动响应。 3 传递函数的基本理论及实现方法

粘性阻尼多自由度系统的平衡方程式为:

[]{}[]{}[]{}{}f x K x C x

M =++&&& 其中,[]M 、[]C 、[]K 、{})(t f 和{})(t x 分别为质量矩阵、阻尼矩阵、刚度矩阵、力向量和响应向量。

将这个时间域的矩阵方程进行拉氏变换,并且假设初始位移和初始速度为零,则得:

)}({)}(]){[][][(2s F s X K C s M s =++ 式中s 为拉氏变换因子

即:[]{}{})()()(s F s X s Z = 式中[])(s Z 为动刚度矩阵。 由传递函数矩阵[])(s H 的定义:{}[]{})()()(s F s H s X = 得:1

)]([)]([?=s Z s H

如对振动平衡方程进行傅氏变换,则可得频率响应函数)(ωH .对实际的振动系统来说,傅氏域内的频响函数)(ωH 和拉氏域内的传递函数)(s H 有着相同的信息,因此我们可用频响函数来代替传递函数.实际应用中,可以用有限元分析软件(如nastran)计算出发动机处单位载荷激励下的目标位置的频率响应函数,作为最后响应计算的灵敏度函数。 4 振动响应的理论计算

低频振动的响应值与激励力的大小成比例关系。获得了发动机的激励载荷及传递路径的灵敏度函数后,可计算目标位置的响应量如下:

某转速某一阶次某方向的响应:

c i c i c n n i n n i n k e S e T e S e F R δχβα**6

1

+=∑= 6,2,1Λ=n

式中,k R 为某转速第k 阶激励产生的某方向的响应;n F 为发动机的激励载荷,n S 为与激励方向一致的响应灵敏度函数;c T 为燃烧力矩,c S 为其灵敏度函数。

在给定转速下,可依次求出每个阶次下上述每个方向激励在目标位置产生的响应值,然后可计算出每个阶次下响应的合成幅值,最后计算所有阶次的响应量总和。

响应的求和公式为:

)∑==N

k k all R SQRT R 5

.02

( ΛΛN k 5.1,1,5.0=

式中,k 为阶次,k R 为第k 阶激励的响应幅值,N 为计算截取的阶次。 5 编程实现及实际应用

响应计算可用VB、VC 等相关编程语言编写,也可以用VBA 语言编写EXCEL 宏命令来实现。程序流程见图1。

图1 程序流程图

本文以奇瑞某款装6缸发动机车型的开发为例,整车有限元模型节点数120万,频率响应计算范围0~200Hz,目标位置为方向盘。计算的响应曲线见图2。

图2 某车型方向盘处的振动响应曲线

从响应曲线可以看出,方向盘处的振动主要由发动机的三阶激励产生,且在700转左右,响应曲线超过了目标值,不能满足要求。

从计算的中间数据还可以提取任意转速下的各个阶次响应比例情况及该阶次响应的各激励载荷的贡献量,能准确地找到主要激励力,从而有目的地加以改进。本例中,700转附近响应过大主要是发动机的三阶激励造成的,且最大为Z 向响应,Z 向响应主要由发动机的燃烧激励贡献,见图3。可通过优化悬置软垫的相关刚度及转向系统的模态频率来改善该问题。

该方法还可用于车身其它重要位置如仪表板、座椅、脚踏板等关键区域的定置振动分析,这样能在车辆开发的早期就预测出车辆的定置振动性能,发现问题并有的放矢地加以改进来

提高NVH性能。

图3 700转下响应构成图

6 结论及展望

本文基于传递灵敏度的理论,阐述了定置工况下发动机的激励引起目标位置振动响应的计算方法。以奇瑞某型轿车为实例,介绍了该方法的工程应用。本方法可以有效的用于车辆的NVH开发分析中,起到提高车辆性能缩短开发周期的目的。基于传递函数的振动响应计算理论,也可类推到车辆噪声的预测与分析中,振动和噪声相结合,更全面地解决整车开发的NVH问题。

参考文献:

[1]Juha Plunt. Finding and Fixing Vehicle NVH Problems with Transfer Path Analysis [ J ]. Sound and Vibration, Nov 2005.

[2] 刘东明,项党,罗清等.传递路径分析技术在车内噪声与振动研究与分析中的应用.噪声与振动控制,2007年8月,第4期。

[3] 黄成刚.汽车车身频率响应分析.湖北汽车工业学院学报,1999年12月,第4期.

车身噪声传递函数分析

车身噪声传递函数分析昝建明周舟李波灏肖攀 长安汽车股份有限公司汽车工程研究院

车身噪声传递函数分析 Noise Analysis of Car Body Using Transfer Function 昝建明周舟李波灏肖攀 (长安汽车股份有限公司汽车工程研究院,重庆401120 ) 摘 要: 车身的NVH特性是车身开发的重要内容。在车身的设计中,用有限元软件MSC Nastran 进行了噪声传递函数分析,并根据计算结果对车体结构进行优化,提高NVH 性能。关键词: 车身, NVH, MSC Nastran, 噪声传递函数, 优化 Abstract:NVH performance is the important task for body design. During the body design stage, using MSC Nastran to do NTF analysis, the results can help optimize the body structure to improve the NVH performance. Key words: Body, NVH, MSC Nastran, NTF, Optimization 1 引言 NVH性能是新车的重要性能指标之一。车身在整车的NVH性能中有着重要影响,不论是来自路面的激励,还是来自发动机的激励,都是通过车身传递给乘员。开发出合理的车身结构对提高整车的NVH性能有重要作用。车身噪声传递函数(NTF)分析就是车身开发中的重要方法之一。 将对车身与底盘之间的主要连接区域进行声学传递函数分析,以便找出噪音传递路径与对NVH特性影响比较大的关键零部件。分析时一个声学空腔模型将被包括在内并用来预测内噪声水平,车辆的详细有限元模型与声学空腔模型将被耦合并求解,通过车身与动力系统及底盘系统连接点上施加载荷来计算车内乘员耳侧的噪声响应。 2 分析模型 车身分析的有限元模型包括车身结构的有限元模型和车身声学空腔有限元模型两部分。其中,车身结构的有限元模型包括结构件的有限元模型和非结构件的有限元模型,非结构件的有限元模型就用集中质量来模拟。声学空腔的有限元模型用有限元流体的单元来模拟,包括乘员仓空腔,座椅和行李箱空腔三部分的有限元模型。图1表示了车身分析模型的结构关系。 声学单元的理想尺寸大约是每个波长不少于六个单元,实际上通常采用的声学单元的长

ADAMSCAR在汽车平顺性分析的研究

ADAMS/CAR在汽车平顺性分析的研究 作者:钟汉文卜继玲宋传江 摘要:基于多体动力学理论,在ADAMS/CAR 中建立某一车型的虚拟样机模型。在随机路面的输入下,对该车型并进行平顺性分析,探讨了ADAMS/CAR 中建立整车模型并进行平顺性分析的流程。研究结论为ADAMS/CAR 进一步的整车参数的优化设计打下基础。关键词:ADAMS/CAR;平顺性分析;随机路谱;整车模型 1 前言 汽车的平顺性主要指保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,不至于使人感到不舒适、疲劳甚至损害健康的性能。因此,平顺性主要根据乘员主观感觉的舒适性来评价,对于载货汽车还包括保持货物完好的性能,它是现代高速汽车的主要性能之一。路面不平是汽车振动的基本输入,汽车的平顺性主要指路面不平引起的汽车振动,频率范围约为0.5~25Hz。路面不平度和车速形成对汽车振动系统的输入,此输入经过由轮胎、悬架、座垫等弹性、阻尼元件和悬架、非悬架质量构成或进一步经座椅传至人体的加速度,此加速度通过人体对振动的反应,即舒适性来评价汽车的平顺性。 2 路面输入与整车建模 2.1 路面构造 ADAMS/CAR Ride 提供一个基于Sayers 数字模型的路面生产工具—路面轮廓发生器,该模型为一种经验模型,综合许多不同类型道路测量参数并给出了左右轮辙路面轮廓参数。路面轮廓发生器模型认为路面轮廓的空间功率谱密度与空间频率n,存在如下函数关系: 等式右边由三部分组成,分别为三个独立的白噪声所获得,式中:Ge 为白噪声空间功率谱密度幅值,Gs 与时间有关的白噪声速度密度幅值,Ga 为与时间平方相关的白噪声加速度功率谱密度幅值。在路面谱生成器中,通过设置路面空间功率谱密度幅值、速度功率谱密度幅值和加速度功率谱密度幅值等参数来设置路面谱文件。本文采用的水泥随机路面,采用水泥路面参数在路面谱生成器中生成所需的随机路面。 2.2 整车建模 该车型采用麦弗逊悬架为前悬架,双叉臂悬架为后悬架。则依次在ADAMS/CAR 的模版模式下,建立前悬、后悬、底盘、轮胎、转向系统以及车身试验台的模版,然后将模板生成各个子系统,将建好的各子系统按照相应的约束连接在一起,即可构成完整的汽车整车

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

P068-汽车驾驶室平顺性分析

汽车驾驶室平顺性优化设计 秦民 (一汽技术中心) 摘要:建立汽车驾驶室刚弹耦合模型,输入随机路面激励,研究汽车驾驶室底板的振动响应;通过虚拟样机计算结果与试验进行对比,验证了模型的正确性;以驾驶室悬置的弹簧刚度、减振器阻尼为影响因素,通过虚拟DOE正交试验分析方法进行优化设计,显著改善了驾驶室平顺性. 关键词:驾驶室平顺性;优化设计;刚弹耦合 中图分类号:TP391.4文献标志码:A Research on Improving the Ride Comfort of Cab for Truck QIN Min F A W R&D Center Abstract: The simulation was carried out which was used to describe the cab floor vibration response under road random profile inputs. Modes of the cab was acquired by Nastran software. The rigid-elastic coupling cab model and multi rigid body cab model were constructed and verified. The spring and damper of the cab suspension system were optimized to improve cab ride comfort by DOE analysis. Keywords: Ride Comfort; DOE analysis; Rigid-elastic Coupling 0 引言 驾驶室乘坐舒适性是汽车的一个重要性能指标,如何建立一个全面描述汽车动态特性的模型,是进行舒适性仿真研究的关键. 本文首先利用大型通用软件ADAMS/View建立了某重型卡车驾驶室多刚体仿真模型,并在此基础上利用Nastran软件计算的模态结果建立刚弹耦合的多体模型. 两种模型都进行了与试验数据的对比,证明了模型的正确性,并在此基础上以驾驶室前后悬置的刚度和阻尼为因素进行了虚拟DOE正交试验分析,找到了悬置刚度、阻尼的最优水平,使乘坐舒适性得到大幅度提高. 1 ADAMS驾驶室多体仿真模型 1.1 驾驶室模型的建立 图1是驾驶室多刚体ADAMS模型,图2是驾驶

基于传递函数的整车定置振动分析

基于传递函数的整车定置振动分析 Analysis of Vehicle stationary vibration based on transfer function 摘要:定置工况下汽车的振动是由发动机的各个激励经由传递路径抵达目标位置后叠加而成的。基于该观点,本文提出了定置工况下整车振动的计算方法。其中,应用有限元方法获取结构的传递函数,以发动机的激励为输入,通过载荷与传递函数的乘积得到响应量,将各响应叠加得到车内目标位置的总响应量。本方法可有效地用于车辆的NVH性能开发中。 关键词: 传递函数、振动灵敏度、整车振动 Abstract: V ehicle vibration at stationary condition is excited by each of engine load, superimposed upon the target position through transfer paths. The numerical method for vehicle vibration response is introduced based on this theory. In the procedure, transfer functions are obtained by using finite element method, and the engine load is used as input. Each response is obtained by multiplying engine load with transfer function. They are then superimposed to obtain the total response. This method can be effectively used in the vehicle development of NVH performance. Key words: Transfer Function; Vibration Sensitivity; Vehicle Vibration 1 概述 近年来,随着人们对乘坐舒适性要求的不断提高,驾驶室内的振动噪声问题越来越多地引起人们的重视。方向盘、座椅及脚踏板等部件的振动与顾客的感受直接相关,是乘客能感受到的整车NVH性能的重要指标。 汽车内部振动和噪声现象,往往是由发动机、路面冲击等多个激励经由不同的传递路径抵达目标位置后叠加而成的。本文主要研究定置工况下的车内振动,该工况下车内振动完全由发动机的激励而产生,响应点的振动与激励载荷及载荷传递路径的传递灵敏度成正比。当转速为怠速时,通过对车身关键点的振动的计算分析,可预测车辆的怠速振动性能及有针对性地进行相关改进优化。 2 发动机的激励载荷 车辆行驶在平坦的路面上或怠速运转时,只有发动机本身是主要激振源.发动机激励可分为惯性激励和燃烧激励。惯性激励包括X、Y、Z三个方向的惯性力及Tx、Ty、Tz三个惯性力矩及动力传动系统的不平衡力。燃烧激励为气缸的燃烧力矩。本文中只考虑了发动机的惯性力和燃烧力矩。惯性力和惯性力矩的周期都是360o曲轴转角,燃烧压力则不同,其周期与发动机冲程形式有关,四冲程发动机的周期为720o曲轴转角。对四冲程发动机,一般常将周期定为1转,也就是360o曲轴转角,因此产生了半阶振动频率0.5*ω。发动机的惯性力可以

王 卓_OptiStruct形貌优化在噪声传递函数分析中的应用

Altair 2009 HyperWorks 技术大会论文集
OptiStruct 形貌优化在噪声传递函数分析中的应用
王卓 周建文 李颖琎
长安汽车工程研究院 CAE 工程所
-1-

Altair 2009 HyperWorks 技术大会论文集
OptiStruct 形貌优化在噪声传递函数分析中的应用 Application of OptiStruct Topography Optimization on NTF Analysis
王卓 周建文 李颖琎 (长安汽车工程研究院 CAE 工程所)

要: 在对内饰车身 TB(Trimmed Body)模型进行噪声传递函数 NTF(Noise Transfer
Function)分析后,发现在某一频率段出现峰值,超出目标值,进一步研究后发现,车身前 地板在该频率段下振动较大,可能是产生峰值的主要原因。本文基于 Altair HyperWorks 软 件的 OptiStruct 模块,应用形貌优化分析对前地板进行优化,使结果得到优化和改进。
关键词: OptiStruct,TB,NTF,形貌优化,模态 Abstract:After the NTF analysis of TB, the peak response of sound pressure higher
than the target has found at a certain frequency scope. According to the result of researching this problem further, the vibration shapes of front floor is the main reason. Basing on Altair HyperWorks’s OptiStruct module, the topography optimization front floor is applied and the NTF performance is improved.
Key words:OptiStruct,Trimmed Body,NTF,Topography Optimization,Mode
1 概述
如今中国汽车市场正在日趋的走向成熟, 国内汽车企业发展势头非常强劲, 人们对汽车 的态度也早已发生了质的转变, 从以往的代步工具到现在的把汽车当成自己 “身份” 的象征。 而在评价汽车的众多指标中,噪声与振动的要求越来越备受关注,也就是我们平时所说的 NVH,即是噪声(Noise)、振动(Vibration)和舒适性(Harshness)三个英文单词字母 的简写。一辆汽车的 NVH 性能也是顾客购买汽车时主要考虑的因素,因此它已经成为影响 一部汽车品牌最重要的指标。 随着控制技术的发展和成本的降低、新材料的应用、测试技术不断的完善、计算机软件 的开发,汽车噪声与振动技术的发展非常迅速,虽然它是一门古老的学科,但新的技术不断 渗透进来, 使得它又成为一门非常新而且技术含量很高的学科。 主动降噪和减振已经在汽车 的很多系统上得到应用。CAE 软件的发展已经使得汽车噪声与振动的很多性能可以用计算 机模型来预测。 噪声传递函数(NTF)是分析汽车 NVH 性能的方法之一,即是在底盘和发动机系统与 车身各附接点施加单位力激励, 测得各附接点与空腔内声压的噪声级, 所以车身的设计对结
-2-

32_路面噪声传递路径分析与优化

路面噪声传递路径分析与优化 Transfer Path Analysis and Optimization of Road Noise 李朕王亮高亚丽王伟东 (泛亚汽车技术中心有限公司上海201209) 摘要:本文介绍了传递路径分析在路面噪声优化中的应用。借助HyperGraph的NVH分析模块,在纯仿真的环境下应用传递路径分析,在开发更早阶段找到问题根本原因。从本文的优化结果来看,基于纯仿真的传递路径分析周期短,优化效果好。 关键词:汽车NVH 路噪传递路径HyperGraph Abstract: Transfer path analysis was applied in road noise analysis. It is possible to find noise root cause in early stages of vehicle development process by using HyperGraph transfer path analysis in virtual environment. CAE based TPA is more efficient than test based TPA. Key Words: vehicle, NVH, road noise, TPA, HyperGraph 1 介绍 路面噪声是车辆NVH性能开发过程中控制的一个重要指标。它作为车内主要声源影响乘员舒适性。按照传递路径不同,路噪可分为结构传递声与空气传递声。本文介绍传递路径法(下文简称TPA)在结构传递声分析与优化中的应用。 结构传递路噪典型递路径如下。路面激励通过轮胎传递到轮心,轮心传入悬架,再通过悬架传递到车身。其中悬架与车身界面有多条传递路径。使用TPA方法能识别出噪声传递的主要路径和次要路径。随着建模、求解以及后处理的进步,基于仿真的TPA方法能够在早期快速准确的分析问题。 2 分析方法 影响路噪的主要因素有轮胎、悬架形式、衬套刚度以及车身侧底盘连接点的噪声传递函数。越软的衬套和轮胎隔振效果越好,对路噪越有利。但衬套过软会影响车辆的操控稳定性。为了不影响操控稳定性,本文重点关注车身噪声传递函数的优化。受限于燃油经济性的限制,传递函数优化不能以牺牲重量为代价。使用TPA方法识别出关键路径,能在不牺牲重量的情况下满足整车振动噪声的要求。

典型环境传递函数及模拟电路的构成方式资料

姓名:指导老师:成绩: 学院:专业:班级: 实验内容: 年月日其他组员及各自发挥作用: 独立完成实验内容,并进行了验证。 一、实验时间: 2014年9月22日 二、实验地点: 课外Multisim进行仿真,课堂上用labACT试验箱进行验证 三、实验目的: 1、了解labACT试验箱的模拟电路的基本组成、工作原理及使用方法 2、掌握典型环境传递函数及模拟电路的构成方式 3、熟悉各种典型环境的阶跃响应曲线 4、理解各个典型环境在系统中所起的作用 四、实验设备与软件 1、Multisim12电路设计与仿真软件 2、labACT实验台与虚拟示波器 五、实验原理 在实际生产中系统往往很复杂,但不管多么复杂的系统,在分析时都可以看成是由不同的基本环节构成。例如:由电子线路组成的放大器是最常见的比例环节;在机械系统中的齿轮减速器是一个比例环节。积分和惯性环节也是非常常见的,如:液位控制系统中阀控液压缸可看成积分环节,而直流电机的励磁回路就是一个惯性环节。比例环节可以改变输入信号的放大倍数;积分环节具有记忆功能,常用来改善系统的稳定性能;微分环节则常用来改善系统的动态特性。

六、实验内容、方法、过程与分析 1、实验内容:分别在Multisim12和labACT模拟试验箱观测记录比例(K)、积分((T i s)-1)、比例积分(1+(T i s)-1)、惯性环节((1+T i s)-1)的阶跃响应曲线。 2、实验方法: (1)Multisim仿真(2)labACT试验箱验证 3、实验过程与分析 A、单位阶跃 (1)比例环节一般采用反响输入的方式,Multisim原理图及仿真结果如下; 图1 比例环节原理图

车内噪声传递路径分析方法探讨

第 27 卷第 3 期2007 年 9 月振动、测试与诊断 Jou rna l of V ib ra t ion,M ea su rem en t & D iagno sis V o l 27 N o. 3 . Sep. 2007 车内噪声传递路径分析方法探讨郭荣万钢赵艳男周江彬 ( 同济大学新能源汽车工程中心上海, 201804) 摘要为了指导汽车NV H 工程师更好地进行故障诊断和声学设计, 介绍了传递路径分析 ( T PA ) 方法的基本原理, 详细分析传递函数和激励力的测量方法, 并以某型汽车发动机振动噪声向车内传递为例, 介绍 T PA 方法的应用。试验结果表明, 应用 T PA 方法可有效、方便地进行噪声源识别和贡献分析。关键词车内噪声传递路径分析传递函数激励力贡献分析中图分类号U 461. 3 引言近年来, 人们对汽车行驶时的NV H 性能, 即噪声 (N o ise ) 、振动 (V ib ra t ion ) 、舒适性 (H a rshness) 越来越关心和重视, 车内的低噪声设计已成为产品开发中的重要研究课题[ 1 ]。传递路径分析 ( T ran sfer Pa th A na lysis, 简称 T PA ) 是一种以试验为基础的方法, 可让NV H 工程师寻找声源通过结构或空气传递到指定接受位置的振动——声学功率流。 PA 经常是与部分贡献的概 T [1 ] 念相联系的。这是由于传递路径分析中假设: 来自不同路径的所有部分贡献构成了总响应。对传递路径分析方法和应用许多研究者进行了大量的研。 1993 年, 文献 [ 1 ] 使用互易性机械2声学传递函数测量方法, 进行结构传递噪声诊断。1996 年, P. J. [2 ] G. van der L inden 等和 1997 年 W im H end ricx [ 1- 11 ] 的影响。文献 [ 8 ] 基于 T PA 技术提出了子系统目标设置方法, 即将系统级 NV H 目标分解到子系统级目标, 并以道路噪声问题描述该方法的应用。文献[ 9 ] 提出了基于传递路径矩阵转置的车身板件噪声贡献分析方法。 2005 年, 文献[ 10 ] 应用试验方法研究中频结构传递噪声, 通过阻抗方法和最小平方方法估计路径上的作用力, 并研究不同路径结构噪声的等级排序方法。文献 [ 11 ] 应用传递路径方法分析不同车身板件对车内噪声的贡献, 将驾驶舱分割成 7 个板件, 每个板件又分成20 个子板件。该文应用互易法测量空气声传递函数, 引入了新型传感器 ( 声学速度传感器) 阵列测量板件振速。当前, 系统的 T PA 方法在国外应用较为广泛而且还在不断发展, 我国汽车 NV H 领域应用还刚起步。本文将介绍 T PA 的基本原理, 详细分析传递函数和激励力的测量方法, 并以某型国产轿车为例介绍该方法的应用, 以期指导和帮助汽车NV H 工程师进行故障诊断和声学设计。Ξ 究等[ 3 ] 介绍空气传播声量化方法基本原理, 分析不同车身板件对车内噪声的贡献。 1999 年, 文献 [ 4 ] 引入间接力估计技术, 并把它应用于汽车传递路径分析。文献 [ 5 ] 提出了双通道传递路径分析 (B T PA ) 方法, 可用于汽车声品质、声学设计和故障诊断。 2003 年, 文献 [ 6 ] 介绍了 H ead 公司开发的用于 1基本原理 [1 ] T PA 方法的基本原理基于假设 : 来自不同路径的所有部分贡献构成了总响应 Pk = 测量声学传递函数以及结构2声学传递函灵敏双通道声源 ( 或称人工头扬声器) , 并把它可用于双通道传递路径分析。文献[ 7 ] 应用 T PA 方法研究发动机声品质, 研究不同部件改进对曲柄隆隆声主观感觉Ξ ∑P i, j ijk ( 1) 其中: P k 为乘员位置 k 处的总声压; P ijk 为传递途径 i 在 j 方向对乘员位置 k 总声压的部分贡献。 P ijk = H ijk S ij ( 2) 国家“八六三” 基金资助项目 ( 编号:

典型环节及其阶跃响应.

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -=

.1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2 C 图.2 惯性环节的模拟电路 3. 积分环节的模拟电路如图.3所示,其传递函数为: 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

汽车平顺性研究

汽车平顺性研究 李全 (桂林电子科技大学机电工程学院广西,桂林541004) 摘要:汽车平顺性是汽车的重要性能,它不仅影响乘员的舒适性、工作效能和身体健康,还直接影响着汽车的动力性、经济性和操作稳定性等,因此,汽车生产厂家对其格外关注,对汽车平顺性的研究也就显得十分重要。 0.绪论 汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,避免因汽车在行驶过程中所产生的振动和冲击,使人感到不舒服、疲劳,甚至损害健康,或者使货物损坏的性能。由于行驶平顺性主要是根据乘员的舒适程度来评价,所以又称为乘坐舒适性。汽车是一个复杂的多质量振动系统,其车身通过悬架的弹性元件与车桥连接,而车桥又通过弹性轮胎与道路接触,其他如发动机、驾驶室等,也是以橡皮垫固定于车架上。由于道路不平而引起的冲击和加速、减速时的惯性力,以及发动机与传动轴振动等产生的激振力作用于车辆系统,将使系统发生复杂的振动,对乘员的生理反应和所运货物的完整性,均会产生不利的影响。 1.汽车平顺性研究现状 在坏路上,汽车的允许行驶速度受动力性的影响不大,主要取决于行驶平顺性;而因坏路被迫降低行车速度,因而使汽车的平均技术速度减低,运输生产率下降。其次,振动产生的动载荷,加速了零件的磨损,乃至引起损坏,降低了汽车的使用寿命。此外,振动还引起能量的消耗,使燃料经济性变差。因此,减少汽车本身的振动,不仅关系到乘坐的舒适和所运货物的完整,而且关系到汽车的运输生产率、燃料经济性、使用寿命和工作可靠性等方面。我国的汽车平顺性标准是借鉴国际上关于振动评价的标准建立的,但与国际标准有一定差异。 2.人体对振动的反应和平顺性的评价 2.1 汽车行驶平顺性的评价指标 汽车行驶平顺性的评价方法,通常是根据人体对振动的生理反应,以及对保持货物完整性的影响制定的,并用振动的物理量,如频率、振幅、加速度等作为行驶平顺性的评价指标。 目前常用汽车车身振动的固有频率和振动加速度均方根值来评价汽车的行驶平顺性。试验表明,为了保持汽车具有良好的行驶平顺性,车身振动的固有频率应为人体所习惯的步行时,身体上、下运动的频率,它约为60~80次/min(1~1.6Hz),振动加速度的极限值为0.2g~0.3g。为了保证运输货物的完整性,车身振动加速度也不宜过大。如果车身加速度达

第6章 汽车平顺性范文

第6章汽车的平顺性 学习目标 通过本章的学习,要求掌握汽车行驶平顺性的评价指标和人体对振动反应的感觉界限;掌握汽车振动系统的简化方法,并能正确分析车身振动的单质量系统模型;了解汽车通过性的影响因素。 汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,避免因汽车在行驶过程中所产生的振动和冲击,使人感到不舒服、疲劳,甚至损害健康,或者使货物损坏的性能。由于行驶平顺性主要是根据乘员的舒适程度来评价,所以又称为乘坐舒适性。 汽车是一个复杂的多质量振动系统,其车身通过悬架的弹性元件与车桥连接,而车桥又通过弹性轮胎与道路接触,其他如发动机、驾驶室等,也是以橡皮垫固定于车架上。由于道路不平而引起的冲击和加速、减速时的惯性力,以及发动机与传动轴振动等产生的激振力作用于车辆系统,将使系统发生复杂的振动,对乘员的生理反应和所运货物的完整性,均会产生不利的影响。在坏路上,汽车的允许行驶速度受动力性的影响不大,主要取决于行驶平顺性;而因坏路被迫降低行车速度,因而使汽车的平均技术速度减低,运输生产率下降。其次,振动产生的动载荷,加速了零件的磨损,乃至引起损坏,降低了汽车的使用寿命。此外,振动还引起能量的消耗,使燃料经济性变差。因此,减少汽车本身的振动,不仅关系到乘坐的舒适和所运货物的完整,而且关系到汽车的运输生产率、燃料经济性、使用寿命和工作可靠性等方面。 6.1节人体对振动的反应和平顺性的评价 6.1.1 汽车行驶平顺性的评价指标 汽车行驶平顺性的评价方法,通常是根据人体对振动的生理反应,以及对保持货物完整性的影响制定的,并用振动的物理量,如频率、振幅、加速度等作为行驶平顺性的评价指标。 目前常用汽车车身振动的固有频率和振动加速度均方根值,评价汽车的行驶平顺性。试验表明,为了保持汽车具有良好的行驶平顺性,车身振动的固有频率应为人体所习惯的步行时,身体上、下运动的频率,它约为60~80次/min(1~1.6Hz),振动加速度的极限值为0.2g~0.3g。为了保证运输货物的完整性,车身振动加速度也不宜过大。如果车身加速度达到1g,没有经固定的货物,就有可能离开车厢底板。所以,车身振动加速度的极限值应低于0.6g~0.7g。 6.1.2 人体对振动的反应 70年代,国际标准化组织(ISO)在综合大量有关人体全身振动的研究工作和文献的基础上,订出了国际标准IS02631—1978E《人体承受全身振动的评价指南》,这样在人承受全身振动的评价方面才有了国际通用性标准。该标准用加速度的均方根值给出了在1~80Hz 振动频率范围内人体对振动反应的三个不同的感觉界限。它们分别是暴露极限、疲劳降低工作效率界限和舒适降低界限。 6.1.2.1 暴露极限

汽车动力性与平顺性研究

课程设计说明书 课程名称汽车理论 设计题目汽车动力性与平顺性研究 专业 设计人 学号 指导教师 学院 时间:

一、专业课程设计任务书 要求:本次计算设计以小组为单位进行,每组计算两种车型(大型车、小型车)。先通过手工计算并绘图(选取5-8个特征点),然后计算机编程实现并绘图,并打印计算说明书和程序。答辩时应交上查阅资料,计算草稿,设计说明书。具体设计要求如下: 1.汽车动力性经济性分析计算 通过查阅收集有关资料,计算分析给定型号汽车的动力性能及燃油经济性,并绘出该车型的发动机外特性曲线,驱动力——行驶阻力平衡图,动力特性图,百公里油耗曲线等。根据计算结果和实际情况,分析该车型发动机参数和底盘性能参数匹配是否合理,并提出修改意见。 2.汽车平均技术速度的分析计算 通过计算给定型号汽车在假设给定路面上行驶的平均技术速度来分析该车型在实际运行中的应用。 3.参数 有的车型参数不完整,请查阅相关资料或用经验公式计算选取,并经手动计算分析后修正获得。 4.说明书 全班统一设计格式(封面、目录、版式。具体参照毕业设计说明书格式—见校园网); 说明书内容包括:任务书、目录、各车型参数分析、计算、图表、结论、设计体会等。

二.车辆数据 车型三:东风EQ1090E载货汽车 一、发动机EQ6100-1(附表一) Nmax=99kw(相应转速3000r/min) Mmax=353N.m(相应转速1400r/min) 二、整车参数: 1.尺寸参数:全长L=6910mm,全宽B=2470mm,全高H=2455mm,轴距L1=3950mm,前轮距B1=1810mm,后轮距B2=1800mm. 2.重量参数(附表二) 3.性能参数: 变速箱传动比i1=7.31,i2=4.31,i3=2.45,i4=1.54,i5=1,i倒=7.66。主减速器比io=6.33。车轮:9.00-20。 三、使用数据: 滚动阻力系数f=0.03; 道路阻力系数:强度计算用Φ=1 性能计算用Φ=0.8 空气阻力系数:Cd=0.8; 迎风面积:A=0.78X宽X高; 传动系效率:η=0.9 表一:发动机参数

影响汽车平顺性的主要因素

汽车振动系统本身和路面输入的复杂性决定了影响汽车平顺性的因素很多。下面从结构与使用两个因素做出分析。 (一)结构因索 汽车是一个由多质量组成的复杂振动系统,为便于分析,需要进行简化。一般情况下,汽车可视为由彼此相联系的悬架质量和非悬架质最所组成。悬架质量M主要由悬架弹簧上的车身、车架及其上的总成所组成。非悬架质最m主要由悬架弹簧下的车轮和车轴组成,由此形成由车身和车轮组成的双质最振动系统,如图I一13所示。而且实际上从振动角度看,由于存在前、后车轮两个路面输入。这就决定汽车有垂直和俯仰两个自由度振动,从而导致汽车纵轴线上任一点的垂直振动不同。下面定性分析结构因索对汽车平顺性的影响。 (1)悬架弹性的影响。悬架弹性对车身振动频率起着决定性的作用。悬架上的载荷与其变型之间的关系称为弹型元件的弹性特性。如果悬架的刚度是常数,则其变形与所受载荷成正比,这种悬架称为线性悬架,一般钢板弹簧、螺旋弹簧悬架均属此类。采用线性悬架的汽车往往不能满足汽车平顺性的要求,使用中.汽车的有效载荷变化较大(特别是公共汽车和载货汽车),会出现空载时振动频率较高或满载振动频率较低的现象。为了改善这种情况,现代汽车多采用非线性悬架(也称变剐度悬架),即其刚度可随栽荷的变化而变化。如采用空气弹簧、空气液力弹簧和橡胶弹簧等具有非线性特性的弹性元件,或增设副簧、复合弹簧。 (2)悬架阻尼的影响。为了衰减车身的自由振动并抑制车身和车轮的共振,以减小车身的垂直振动加速度和车轮的振幅(防止车轮跳离地面),悬架系统中应具有适当的阻尼。悬架的阻尼主要来自于减振器、钢板弹簧叶片和轮胎变形时橡胶分子间的摩擦等。钢板弹簧悬架系统中的干摩擦较大,而且钢板弹簧叶片数目越多,摩擦越大,故有的汽车采用钢板弹簧悬架时可以不装减振器,但弹簧摩擦阻尼的数值很不稳定.钢板生锈阻力力过大,不易控制。而采用其他内摩擦很小的弹性元件(如螺旋弹簧、扭杆弹簧等)的悬架,必须采用减振器,以吸收振动能量而使振动迅速衰减。为使减振器阻尼效果好,又不传递大的冲击力,常把压缩行程的阻力和伸张行程的阻力取的不同。压缩行程取较小的相对阻尼系数,在伸张行程取较大的相对阻尼系数。有的减振器压缩时无阻尼而只在伸张行程时有阻尼,具有这种阻尼特性的减振器称为单向作用减振器。而在压缩、伸张两行程中均有阻尼作用的减振器称为双向作用减振器。 采用减振器不仅可以提高汽车的平顺性,而且还可以增加悬架的角刚度,改善车轮与道路的接触情况。防止车轮跳离地面,因而能改善汽车的稳定性、提高汽车的行驶安全性。改善减振器的性能对提高汽车在不平道路上的行驶速度有很好的作用。悬架系统的干摩擦可使悬架的弹性部分或全部被锁住,使汽车只在轮胎上发生振动,因而增加振动频率且使路面冲击容易传给车身。为减少钢板弹簧叶片叫的摩擦,叶片间应加润滑脂或摩擦村垫,结构上采用少片弹簧。 (3)主动悬架与半主动悬架。一般悬架由弹簧和减振器组成,其特性参数(悬架刚度K 和阻尼系数c)是在一定条件下进行优化确定的。这种悬架的特性参数一旦选定便无法更改,称为被动悬架。其缺点是不能适应使用工况(如载荷变化引起的悬架质量变化,车速和路况所决定的路面输入等)的变化进行控制调整.无法满足汽车较高性能的要求。 利用电控技术与随动液压技术的主动悬架和半主动悬架能较好地改善汽车的平顺性。如图1—14所示为车身与车轮两个自由度主动悬架或半主动悬架模型。主动悬架一般用液压缸作为主动力发生器,代替悬架的弹簧和减振器,由外部高压液体提供能源,用传感器测量系统运动的状态信号,反馈到电控单元,然后由电控单元发出指令控制力发生器,产生主动控制力作用于振动系统,构成闭环控制。半主动悬架的核心部分是采用可调阻尼减振器,其控制逻辑有的和主动悬架类似,是闭环的,也有根据车速等参数进行开环控制的,它消耗的全部能量只用来驱动控制阀,顾能耗低。

2第二节传递函数解析

第二节控制系统的传递函数

传递函数是经典控制理论中最重要的数学模型之一。利用传递函数,在系统的分析和综合中可解决如下问题: 不必求解微分方程就可以研究初始条件为零的系统在输入信号作用下的动态过程。 可以研究系统参数变化或结构变化对系统动态过程的影响,因而使分析系统的问题大为简化。 可以把对系统性能的要求转化为对系统传递函数的要求,使综合问题易于实现。

一、传递函数的基本概念 令初始值为零,将上式求拉氏变换,得 ) ()...()()...(01110111s X b s b s b s b s Y a s a s a s a m m m m n n n n ++++=++++----当传递函数和输入已知时,Y (s )=G (s ) X (s )。通过拉氏反变换可求传递函数的定义:线性定常系统在零初始条件下输出量的拉氏变换与输入量的拉氏变换之比。 0 11 10 11 1......)()()(a s a s a s a b s b s b s b s X s Y s G n n n n m m m m ++++++++==----称为元件和系统的传递函数 )~0,~0(,m j n i b a j i ==式中:x (t ) — 输入,y (t ) — 输出 为常系数 ) ()(...)()()()(...)()(01) 1(1)(01) 1(1) (t x b t x b t x b t x b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++----设系统或元件的微分方程为:

[关于传递函数的几点说明] ?传递函数的概念适用于线性定常系统,它与线性常系数微分 方程一一对应。且与系统的动态特性一一对应。 ?传递函数不能反映系统或元件的学科属性和物理性质。物理 性质和学科类别截然不同的系统可能具有完全相同的传递函数。而研究某传递函数所得结论可适用于具有这种传递函数的各种系统。 ?传递函数仅与系统的结构和参数有关,与系统的输入无关。 只反映了输入和输出之间的关系,不反映中间变量的关系。 ?传递函数的概念主要适用于单输入单输出系统。若系统有多 个输入信号,在求传递函数时,除了一个有关的输入外,其它的输入量一概视为零。 ?传递函数忽略了初始条件的影响。 ?传递函数是s的有理分式,对实际系统而言分母的阶次n大于 分子的阶次m,此时称为n阶系统。

最新影响汽车平顺性的主要因素资料

影响汽车平顺性的主要因素 汽车振动系统本身和路面输入的复杂性决定了影响汽车平顺性的因素很多。下面从结构与使用两个因素做出分析。 (一)结构因索 汽车是一个由多质量组成的复杂振动系统,为便于分析,需要进 行简化。一般情况下,汽车可视为由彼此相联系的悬架质量和非悬架 质最所组成。悬架质量M主要由悬架弹簧上的车身、车架及其上的总 成所组成。非悬架质最m主要由悬架弹簧下的车轮和车轴组成,由此 形成由车身和车轮组成的双质最振动系统,如图I一13所示。而且实 际上从振动角度看,由于存在前、后车轮两个路面输入。这就决定汽 车有垂直和俯仰两个自由度振动,从而导致汽车纵轴线上任一点的垂 直振动不同。下面定性分析结构因索对汽车平顺性的影响。 (1)悬架弹性的影响。悬架弹性对车身振动频率起着决定性的作用。悬架上的载荷与其变型之间的关系称为弹型元件的弹性特性。如果悬架的刚度是常数,则其变形与所受载荷成正比,这种悬架称为线性悬架,一般钢板弹簧、螺旋弹簧悬架均属此类。采用线性悬架的汽车往往不能满足汽车平顺性的要求,使用中.汽车的有效载荷变化较大(特别是公共汽车和载货汽车),会出现空载时振动频率较高或满载振动频率较低的现象。为了改善这种情况,现代汽车多采用非线性悬架(也称变剐度悬架),即其刚度可随栽荷的变化而变化。如采用空气弹簧、空气液力弹簧和橡胶弹簧等具有非线性特性的弹性元件,或增设副簧、复合弹簧。 (2)悬架阻尼的影响。为了衰减车身的自由振动并抑制车身和车轮的共振,以减小车身的垂直振动加速度和车轮的振幅(防止车轮跳离地面),悬架系统中应具有适当的阻尼。悬架的阻尼主要来自于减振器、钢板弹簧叶片和轮胎变形时橡胶分子间的摩擦等。钢板弹簧悬架系统中的干摩擦较大,而且钢板弹簧叶片数目越多,摩擦越大,故有的汽车采用钢板弹簧悬架时可以不装减振器,但弹簧摩擦阻尼的数值很不稳定.钢板生锈阻力力过大,不易控制。而采用其他内摩擦很小的弹性元件(如螺旋弹簧、扭杆弹簧等)的悬架,必须采用减振器,以吸收振动能量而使振动迅速衰减。为使减振器阻尼效果好,又不传递大的冲击力,常把压缩行程的阻力和伸张行程的阻力取的不同。压缩行程取较小的相对阻尼系数,在伸张行程取较大的相对阻尼系数。有的减振器压缩时无阻尼而只在伸张行程时有阻尼,具有这种阻尼特性的减振器称为单向作用减振器。而在压缩、伸张两行程中均有阻尼作用的减振器称为双向作用减振器。 采用减振器不仅可以提高汽车的平顺性,而且还可以增加悬架的角刚度,改善车轮与道路的接触情况。防止车轮跳离地面,因而能改善汽车的稳定性、提高汽车的行驶安全性。改善减振器的性能对提高汽车在不平道路上的行驶速度有很好的作用。悬架系统的干摩擦可使悬架的弹性部分或全部被锁住,使汽车只在轮胎上发生振动,因而增加振动频率且使路面冲击容易传给车身。为减少钢板弹簧叶片叫的摩擦,叶片间应加润滑脂或摩擦村垫,结构上采用少片弹簧。 (3)主动悬架与半主动悬架。一般悬架由弹簧和减振器组成,其特性参数(悬架刚度K 和阻尼系数c)是在一定条件下进行优化确定的。这种悬架的特性参数一旦选定便无法更改,称为被动悬架。其缺点是不能适应使用工况(如载荷变化引起的悬架质量变化,车速和路况所决定的路面输入等)的变化进行控制调整.无法满足汽车较高性能的要求。

相关文档