文档库 最新最全的文档下载
当前位置:文档库 › honeywell-sensing-micro-switch开关

honeywell-sensing-micro-switch开关

honeywell-sensing-micro-switch开关

HDLS Series

TOP PLUNGERS ? MICRO SWITCH? HDLS SERIES ORDER GUIDE/RECOMMENDED LISTINGS

1 Use at voltage indicated for light. Wired to NO circuit. Upper temperature limit for lighted units is 93 °C [200 °F]

2 Plug-in listings include base receptacle

3 Completely fluorocarbon sealed switches are preferred for use in temperatures above 93 °C [200 °F]

4 Gold-plated contacts

NOTE: Same polarity each pole.

To order a fluorocarbon sealed switch, insert the letters Y and C into the catalog listing as follows. The LSA1A limit switch is changed to a LS Y A C1A limit switch.

To order a low temperature, fluorosilicone sealed switch, insert the letters Y and B into the catalog listing as follows. The LSA1A limit switch is changed to a LS Y A B1A limit switch. https://www.wendangku.net/doc/562120488.html,

微波感应人体传感器的典型应用电路

微波感应人体传感器的典型应用电路 这里介绍的微波感应控制器和市场上常见的简易型微波感应控制器相比较,因为采用专用的微处理集成电路HT7610A,不但检测灵敏度度高,探测范围宽,而且工作非常可靠,误报率极低,能在-25~+45度的温度范围内稳定工作,最适和在中、高档防盗报警系统中作人体移动检测传感头使用。 1.工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号),微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(8伏以上),没有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED闪亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有2秒信号输出,并由指示灯LED同步点亮。 高可靠微波感应人体传感器TX982模块 控制器的外形上图所示,侧面蓝色的是灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近,红色的是LED指示灯用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,蓝色线输出,铜网屏蔽层黑线接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。输出形式为电压方式,有输出时为高电平(8V以上),静态时为低电平,使用请参考下图:

人体微波感应传感器工作原理

人体微波感应传感器工作原理 1。工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2 同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。 输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图

微波传感器的原理及应用

微波传感器的原理及应用 【摘要】微波传感器是利用微波的传输性能好、易反射、被吸收功率易测量等特点,用专门的微波振荡器来产生微波,特定的天线收发微波,在实际生产生活中用来测量被测物的距离、厚度、传输媒介性质等许多应用。 【关键词】微波传感器反射式遮断式 一、微波的基础知识 1、微波的性质与特点 微波是波长为1~1000mm的电磁波,它既具有电磁波的性质,又不同于普通无线电波和光波。微波相对于波长较长的电磁波具有下列特点:1.定向辐射装置容易制造;2.遇到工作障碍物易于反射;3.绕射能力较差;4.传输性能良好,传输过程中受烟、火馅、灰尘、强光等的影响很小;5.介质对微波的吸收与介质的介电常数成比例,水对微波的吸收能力最强。正是这些特点构成了微波检测的基础。2、微波振荡器与微波天线 微波振荡器是产生微波的装置。由于微波很短,频率很高(300MHz~300GHz),振荡回路具有非常微小酌电感与电容,故不能用普通的电子管与晶体管构成微波振荡器。构成微波振荡器的器件有调速管、磁控管或某些固体元件。小型微波振荡器也可采用体效应管。 由微波振荡器产生的振荡信号需要用波导管(波长在1000cm以上可用同轴线)传输,并通过天线发射出去。为了使发射的微波具有尖锐的方向性,天线具有特殊的结构。常用的天线如图1所示,有喇叭

形天线、抛物面天线、介质天线与隙缝天线等。 喇叭形天线结构简单,制造方便,可看作波导管的延续。喇叭形天线在波导管与敞开的空间之间起匹配作用以获得最大的能量输出。抛物面天线犹如凹面镜产生平行光,这样位微波发射的方向性得到改善。 图1 常用微波天线 (a) 扇形喇叭天线(b) 圆锥形喇叭天线 (c) 旋转抛物面天线(d) 抛物柱面天线 二、微波传感器 由发射天线发出的微波,遇到被测物时将被吸收或反射,使功率发生变化。若利用接收天线,接收通过被测物或由被测物反射回来的

微波雷达感应模块原理调试

雷达感应开关原理调试 微波碍应宙达开关馬应桓原理图 1. 主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外 PCB 两层铜箔间的电容、三极管内阻、寄生电容等构成 RC 震荡电路,该震荡电路震荡产生高频信号, 经过三极管放大,再经过围绕 PCB 三边的天线发射出去。发射的 2.4-3.2GHZ 的微波信号如果遇到移动 物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移 频就会以3- 20MHZ 左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制 灯光。另外,中间也可 以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。 2. 发射频率:RC 振荡电路的频率f=1/2 n RC 公式中的R 是原理图中三极管的输入阻抗, C 是PCB 上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为 C=e S/d ,式中&为介质(在这里就是指的 PCB 板材的介电常数),S 为PCB 极板面积,d 为极板间距 也就是PCB 厚度。 3. 接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信 号P4。 4. 发射避开公共频段又不能过高:因为 3G 和4G 手机信号和 WIFI 信号的频率范围在 1.8-2.4GHZ , 模块的工作频率尽可能避开这个频段,避免相互干扰。一般的发射频率 2.5GHz 左右最佳,频率过高, 原理简介: 5 - i ::: lOOPF. GND 去耦銭路板 夭线 回羽天线背面不 敷聂铜融 SING OUT 御片左典iriQR —1 R5 4.7-10K C8 W0 啊25V

微波感应开关与红外感应开关的区别

微波感应开关与红外感应开关的区别 2013-8-13 14:08:36 微波感应开关:又称微波雷达,是利用电磁波的多普勒原理来做的,我们知道,任何波都有反射的特性,当一定频率的波碰到阻挡物的时候,就会有一部分的波被反射回来,如果阻挡物是静止的,反射波的波长就是恒定的,如果阻挡物是向波源运动,反射波的波长就比波源的波长来得短,如果阻挡物是向远离波源的方向运动,反射波的波长就比波源的波长来的长,波长的变化,就意味着频率的变化。微波感应正是通过反射波的变化知道有运动物体逼近或远离的。因此我们知道,微波感应主要对物体(人体)的移动进行反应,因而反应速度快,适用于探测以一定速度靠近或远离微波感应器的物体,比如以一定速度行走的人员通过某个场所,就可以用微波方便地探测出来。 红外感应开关:红外探测器探头是靠探测人体或其他物体发射的红外线而进行工作的,探头收集外界的红外辐射通过聚集到红外感应源上。红外感应源通常采

用热释电元件,这种元件在接收了红外辐射温度发生变化时就会向外释放电荷,检测处理后产生报警。在电子防盗探测器领域,红外探测器的应用非常广泛。红外探测器的优点是本身不发任何类型的辐射,器件功耗很小,隐蔽性好,价格低廉。对物体的存在进行反应,不管物体是否移动,只要处于感应器的扫描范围内,它都会反应。其缺点是容易受各种热源、光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵;另外红外探测器只对相对背景来说明显发射红外线的物体或人体有效,对于不发射红外线的物体需要有附加的红外光源。 微波感应开关:又称微波雷达,对物体的移动进行反应,因而反应速度快; 红外感应开关:对物体的存在进行反应,不管人员是否移动,只要处于感应器的扫描范围内,它都会反应。

微波感应电路

微波感应人体传感器 2008-11-12 08:53 1。工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没 有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。 输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图 这是微波人体传感器驱动继电器的电路图:

微波电源原理

MX4000D-111KL微波电源工作原理概述MX4000D-111KL微波电源是德国MUEGGE公司制造,它与MUEGGE MH2000S-218BB微波功率发生器(又称微波头)组成微波功率发生和控制系统,应用于PECVD设备中的专用产品。它的系统设计方案与性能特征最终是对微波头正常工作实现有效的控制和调整,故在描述微波电源工作原理时,本文紧紧围绕如何实现对微波头的工作进行实时控制和安全保护,进行原理性介绍,力图让操作使用者从系统技术原理上初步了解电路的物理工作过程。 1、微波功率系统组成及工作过程 如图1-1所示: 当操作者通过安装了CAN-BUS用户应用程序计算机显示界面,设定好微波功率系统的工作参数指令,例如:峰值功率3KW 功率开启时向8ms 关断时间18ms,被MX4000D-111KL微波电源系统CPU控制模块接收。经CPU 译码解析,转换为微波电源对微波头的控制命令,这时微波电源的主要工作任务如下: 给微波头磁控管电路提供电力能量。通过图1-1中X2线缆接口向微波头

X1接口输入交流~220V电压源。 ●控制微波头磁控管灯丝电路继电器的吸合加电流的加热启动。也是通过X2线缆接口。 ●给微波头磁控管阴极提供受控的负直流高压,使得磁控管产生的微波开关时间状态和功率数值始终符合操作者设定的指令要求值。 ●经X3接受微波头微波功率经取样检波后的功率电平反馈信号,被CPU控制主板读取并运算后处理。由CAN总线译码传输至计算机显示界面,显示当前微波系统的功率数值,反射驻波系数等参数值。每个开关时间周期(约25ms)更新数据一次。 ●实时监控微波头磁控管工作温度,功率输出状态及传输损耗,一旦出现异常,立即启动中断保护程序,切断供电电源。 ●微波电源高压系统本身自动保护始终处于正常工作状态,一旦出现异常,立即启动中断保护程序,切断系统供电电源。 2、微波电源系统组成和工作原理 如图2-0所示,图中标示符号“A”“K”“X”与MX4000D-111KL微波电源面板及内部电路模块的标示一致,读者可与产品实物对照阅读。

雷达感应开关探测电路原理

雷达感应开关原理图 1. 上图是雷达感应开关模块的感应电路原理图,主要功能:由集电极外的RC 震荡电路板发射出5.8GHz 左右的高频微波,由分布在PCB 三边的天线发射,发射极外的环形天线接收反射回来的信号,接收由人体、汽车等体积大的物体移动而对发射出的微波反射回来频移信号,内部微波三极管的半导体PN 结混频后差拍检出微弱的频移信号(也即用多普勒效应检测到人体的移动信号),将该信号输出到运放电路; 2. 布线时注意:集电极外振荡电路的C2\C3\C4\C5与PCB 四周边缘天线相连,背面PCB 覆铜在回形天线后让开,避免天线同背面覆铜板形成电容自激; 3. PCB 边缘的发射天线越长,发射信号越强。回形天线越长,接收灵敏度越高,感应距离越远,并且PCB 边缘天线与回形天线上要布过孔,以加强发射、接收信号的强度; 4. 这是一个共基极三极管放大电路,微波信号是集电极外的振荡电路出来的。基极B 外那个天线(基极与R3之间的矩形铜箔天线)用作与对应PCB 后面的地退耦,退耦没做好,感应距离很差。基极这个天线的大小形状(尺寸不小于4*8mm )和感应方向性(水平还是垂直)有关系,右图是椭圆形的感应距离范围的天线形状。 5. 如果有感应信号,则P4信号SING 输出,到下面的运放板,运放板上的运放将感应信号放大,驱动继电器 开灯; 6. BFR520-32W 是北京鼎霖电子科技有限公司自产的f T =9GHz 的高频三极管,最大集电极电流I CM =70mA,最佳工作点V CE0=5V ,I C =20mA ,封装形式SOT23,如果 使用BFR520并设计调试得当,感应板尺寸在33*24mm 时,感应距离在8-15米。感应板尺寸再大一些天线长一些,感应距离最远可以达到25-30米。如果实际需要感应距离近一些,可以调整R5 或者在后面的运放电路中加上拨码开关或电位器,调整感应信号

微波感应开关原理图

微波感应模块●感应器发射频率:5.8GHz ●感应原理:多普勒雷达 ●感应范围:大于5米(圆形大于3米)微波具有穿透性,并非距离越远越好,距 离越远误动作越多,根据大量实验证明,正常家用3到5米效果最好。 ●工作电压:额定电压DC7-15V ●触发输出:触发输出5V(Max10mA),不触发输出0V ●发射功率:<2mW ●待机电流:<5mA ●PCB规格:38MM*19MM(圆形直径20MM) ●模块规格:长38MM*宽19MM*厚3MM(圆形直径20MM*厚7.5MM) ●工作延时:默认约是30秒左右

VCC和GND接电源,OUT接电源的开关器件 适用灯具:T8LED灯管、吸顶灯、筒灯、泛光灯、庭院灯、球泡灯 适用范围:感应灯饰,楼道,走廊,车库,阳台,院子场合,作为节能开关或者是报警装置用。 概述:本产品为多普勒雷达技术的自动感应控制产品,灵敏度高,感应距离远,可靠性强,感应角度大,供电电压范围广等特点。广泛应用于各种人体感应照明的场合,防盗报警场合。 功能特点:本微波感应采用先进技术采用平面天线发射及接受微波。微波感应采用开关为主动式传感器,感应器发射高频电磁波(5.8GHz)并接收他们的回波。此感应器探测回波内的变化甚至是探测范围内微小的移动,然后微处理器触发,执行指令。信号通过门、玻璃板及薄的墙壁都有可能被探测到, 注意:人或物体横向感应器移动时的探测效果最好!本产品抗干扰能力强,几乎不受风,热等外籍环境因素的干扰,不会随使用时间的延长而缩短感应距离。很好地避免了红外人体感应的缺点,真正实现了可靠的移动感应器。 注意事项: 1、严禁带电作业,以免动作失误,接错,烧坏电路或触电;

微波控制开关的电路原理

微波控制开关的电路原理 出处:东哥单片机学习网2009-06-11 责编:阿佘 . 1.电路原理 附图中的Q1、L1、C1组成微波振荡电路,L1既是发射线圈又是接收线圈。当有人在微波场内活动时,R4两端产生微小电压变化,再通过C2耦合到 U1A、U2B组R5,R10与R6的比值决定,本电路设计为80dB。U2B输出信号送至U 3C组成的电压比较器。适当调整R11可使U3C在无信号时输出低电平,有信号时输出高电平脉冲行计数。当有人体在微波场内活动时,会在2秒内使U3C连续输出多于4个的脉冲,此时U5的Q4脚输出高电平,使U4所组成的双稳态电路翻转,Q3导通,继电器吸作电源指示与接收指示,当收到信号后会熄灭,2秒后再亮。 如果在2秒内送入的脉冲少于4个。而干扰脉冲又很少会在2秒内达到4个,则经R15、C3延时2秒后U5自动复位,重新进入守候状态。自动复位电路的引入大 图片1(点击小图看大图)

2.元件选择 Q1可以用9018、C3355等高频管,L1用Φ1mm漆包线绕成直径1Ocm的线圈,运放选用LM324,U5选用CD4017,U4用 CD4013,Q2、Q3用9013、9014等小功率N 即可。电源可用三端稳压7812制作。 3.安装调试 电路可在万能板上布好器件后自己动手焊制,焊好后先不接C2.用万用表测U3C输出电压.同时调节R11使U3C刚好由高电平转为低电平即可,此时触发灵敏度高U3C的⑩脚电压。接通C2.用手在L1前晃动。看到LED1熄灭后听到继电器吸合声即可。 至此调试完毕。将电路板装入合适外壳中即可投入使用。电路中的微波检测部分用红外接收头代替。将输出信号送至U5的(14)脚即可制成通用红外遥控开关。此时 遥控器按键即可实现电器的开闭。在正常情况下,遥控器正常使用时很少在2秒内按动4次。误动作几率很低。还可以用其他探头代替微波部分。实现本信号检测部分 微波控制开关 (一) 本例介绍的微波控制开关是根据多普勒效应进行工作的:由本机振荡电路产生一个固定的高频信号 (一般为400-800MHz),经天线辐射到周围空间,当天线附近一定距离内有物体运动时,高频信号就会被运动物体发射回来再被天线接收,便原振荡电路的振荡频率和信号幅度产生变化,此变化信号经积分、放大、比较等处理后形成控制信号,使控制执行电路动作,达到自动控制的目的。该控制开关可用于对防盗报警器或照明灯的控制。 电路工作原理 该微波控制开关电路由本机振荡器、放大器、双限电压比较器和控制执行电路组成,如图3-70所示。 本机振荡电路由晶体管Vl、电感器L、电容器Cl、C2、电阻器Rl-R3、电位器RPl和天线组成。 放大器由晶体管V2和电容器C3-C5、电阻器R4、R5组成。 双限电压比较器电路由运算放大器集成电路IC、电阻器R6-@R8、二极管VDl、VD2和电位器R臣组成。

人体微波感应传感器工作原理精选文档

人体微波感应传感器工作原理精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

人体微波感应传感器工作原理 1。工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。 输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图

微波感应模块设计原理图

微波感应模块感应器发射频率:5.8GHz 感应原理:多普勒雷达感应范围:8-15m 工作电压:额定电压DC7-15V 触发输出:触发输出5V(Max10mA),不触发输出0V 发射功率:<2mW 待机电流:<5mA PCB规格:38*19MM 模块规格:38*19*3MM 工作延时:默认约是35秒 VCC和GND接电源,OUT接电源的开关器件 适用灯具:T8LED灯管、吸顶灯、筒灯、泛光灯、庭院灯 适用范围:感应灯饰,楼道,走廊,车库,阳台,院子场合,作为节能开关或者是报警装置用。

概述:本产品为多普勒雷达技术的自动感应控制产品,灵敏度高,感应距离远,可靠性强,感应角度大,供电电压范围广等特点。广泛应用于各种人体感应照明的场合,防盗报警场合。 功能特点:本微波感应采用先进技术采用平面天线发射及接受微波 本微波感应采用开关为主动式传感器,感应器发射高频电磁波(5.8GHz)并接收他们的回波。 此感应器探测回波内的变化甚至是真探测范围内微小的移动,然后微处理器触发,执行指令. 信号通过门、玻璃板及薄的墙壁都有可能被探测到,注意:人或物体向着感应器移动时的探测效果最好!本产品抗干扰能力强,几乎不受风,热等外籍环境因素的干扰,不会随使用时间的延长而缩短感应距离。很好地避免了红外人体感应的缺点,真正实现了可靠的移动感应器。 注意事项: 1、严禁带电作业,以免动作失误,接错,烧坏电路或触电; 2、避免安装金属附件,金属可以吸收微波,会影响效果。 3:最好安装远离磁场的地方以免有误动作 4:最好安装远离有导体移动(像风扇什么的)的地方以免有误动作

5:供电电压是7-15V超过可能造成永久性损坏电压过低可能造成感应误动作或不动作 6:供电输出接线不要接错以免造成坏掉 7:供电必须使用干净的电源尤其是低频纹波容易受干扰如使用开关电源出现不正常时用示波器测量一般在供电处加个47uf电容就能解决 8:感应面是蛇形线处此面感应距离最远,不要反转使用。 微波感应模块感应面: 感应模块非感应面: 微波模块接线图:

微波传感器微波感应开关微波感应灯选择指引

微波传感器微波感应开关微波感应灯选择指南 产品名称:SS100微波移动传感器 产品型号:SS100 产品分类: 微波模块 -> SS100微波移动传 感器 上传日期:2008-1-2 详细介绍:详细资料下载 SS100微波移动传感器 技术参数 SS100 (移动微波探测模块)应用多普勒现象感测移动的X-波段微波传感器,广泛应用于防盗,自动感应门,自动感应灯,交通测速,智能化控制,医疗生命探测等领域。技术参数: 发射: 1发射频率 : 10.525 GHz 2频率设置精度 : 3MHz 3输出功率(最小): 13dBm EIRP 4工作电压 : 5V±0.25V 5工作电流(CW): 60mA max., 37mA typical 6谐波发射: <-10dBm 7脉冲工作模式: 8平均电流 (5%DC) : 2mA typ. 9脉冲宽度(Min.): 5uSec 10负载循环(Min.): 1% 接收:

1灵敏度(10dB S/N ratio)3Hz至80Hz 带宽: -86dBm 3Hz至80Hz带宽杂波 10uV 2天线增益: 8dBi 3垂直面3dB波束宽度: 36度 4水平面 3dB 波束宽度: 72度 5重量: 8 克 6规格: 37×45×10mm 微波传感器应用 一、自动门启动 二、车、房入侵报警 三、碰撞预告 四、交通、道路监控 微波探测传感器简介 微波探测传感器应用Doppler Radar原理,发射一个低功率微波并接受物体反射过来的能量。一旦物体的运动被其探测到。发射频率就被反射回的微波频率所替代,替代的微波

与发射的微波混合在一起,结果一个低频率的电压从传感器输出。原理图如下: 微波探测传感器的特性: 1、非接触式。 2、周围环境:不受热、嗓音、湿度、气流、尘埃等影响,适合恶劣环境。 3、抗干扰。 4、安全。 5、宽范围。探测范围15-20米。更宽的范围亦可能。 微波运动传感器 特性: 如下参数是在5VDC, CW 工作状态, 12KΩ负载, +25℃ 下测定。

微波感应开关电路设计

数字电子技术课程设计题目:微波感应开关电路设计 学院:机电学院 班级:10自动化(2)班 学号:1222222 姓名:1111111 指导老师:曹456 景德镇陶瓷学院

数字电子技术课程设计任务书 班级: 10自动化(2)班姓名: 12 指导教师:12 2013年01月01日 教研室主任签字:年月日

目录 1引言 (3) 2 元件芯片选择及整体电路工作原理分析 (3) 2.1 方案论证 (3) 2.1.1 电源 (3) 2.1.2 检测器 (3) 2.1.3 单稳态触发器 (4) 2.1.4 自锁器 (4) 3元电路设计:元器件选择及电路图 (5) 3.1电源电路 (5) 3.2检测电路 (5) 3.3光控电路 (6) 3.4单稳态触发器电路 (6) 3.5自锁电路 (7) 3.6电路整体电路图与工作原理介绍 (7) 小结 (9) 参考文献 (9) 附录 (10)

引言 随着电子技术的飞速发展,电子新技术、新产品不断的涌现。电子技术的广泛应用,促进了农业生产,也丰富了人们的物质生活。现代社会生活数字化越开越显著,促使了数字电子技术的飞跃发展。对数字电子技术的学习与认知的需求也开始明显,为了巩固对课本数字电子技术知识到生活实践应用。本文选取数字电子技术一个生活中常用且比较简单的数字电子技术应用原理与电路元件进行简略的讲解。 2 元件芯片选择及整体电路工作原理分析 2.1 方案论证 根据微波感应自动灯的原理,该设计电路由电源电路、检测电路、单稳态触发器电路、自锁电路和双向晶闸管VT ,其流程图如图1所示。 图 1 该电路由电源、检测、单稳态触发器、自锁电路和双向晶闸管VT 的组成其具体选择如下文。

人体微波感应传感器工作原理

人体微波感应传感器工作 原理 Prepared on 24 November 2020

人体微波感应传感器工作原理 1。工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。 输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图 这是微波人体传感器驱动继电器的电路图:

微波(雷达)感应模块原理调试

XX感应开关原理调试 一、原理简介: 1. 主要功能与原理: 如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。发射的 2.4- 3.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz 左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。 2. 发射频率: RC振荡电路的频率f=1/2 n RC公式中的R是原理图中三极管的输入阻抗,C 是PCB上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为C=S/d,式中£为介质(在这里就是指的PCB 板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。 3. 接收: 通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。 4. 发射避开公共频段又不能过高: 因为3G和4G手机信号和WIFI信号的频率范围在 1.8-

2.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。一般的发 射频率 2.5GHz左右最佳,频率过高,则高频三极管增益降低,感应距离近。发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。 5. 发射频率与发射信号强度: 如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及其发射信号幅度。发射信号强度越大,感应距离越远。但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。另外,同一个频率,三极管的特征频率fT 越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB将频点做到 2.4GHz。 6. 接收灵敏度: 同样频率,高频三极管对高频信号的fT 越大,高频增益越高,接收的移频信号输出幅度越大,感应灵敏度就越高,感应距离就越远。适当调整后级运放的放大倍数也可以调整感应距离,但是,如果单纯的提高后级运放的倍数,虽然感应较远距离,但会将小幅度的其它干扰信号也放大输出,造成误报。 影响感应距离的几个因素: A .发射天线板的尺寸,该尺寸越大,天线越长,则感应距离越远。 B .高频 三极管的特征频率越高,其高频增益越大,感应距离也就越远。 C. 后级运放的放大倍数适当的高,其对输出的移频信号放大的幅度大。 D. 发射频率最好在标准规范的 2.4GHN高频三极管的增益会随着频率的增大而降低,频点太高,发射信号功率降低、接收灵敏度也降低。 如果调试得当,使用9GHz的高频三极管的,天线板尺寸在20*30mm左右 时,感应距离会在3-5 米。天线尺寸在30*40mm 左右,感应距离会到8-10 米。 天线尺寸到40*50mm 最远感应距离会达到20 米左右。如果你想在此基础上降低感

微波(雷达)感应模块原理以及应用调试

雷达感应开关原理调试 一、原理简介: 1. 主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。发射的 2.4- 3.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。 2. 发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的输入阻抗,C是PCB 上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。 3. 接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。 4. 发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率范围在1.8-2.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。一般的发射频率2.5GHz左右最佳,频率过

高,则高频三极管增益降低,感应距离近。发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。 5. 发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及 其发射信号幅度。发射信号强度越大,感应距离越远。但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。另外,同一个频率,三极管的特征频率fT越大,其 高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到2.4GHz。 6. 接收灵敏度:同样频率,高频三极管对高频信号的fT越大,高频增益越高,接收的移频信号输 出幅度越大,感应灵敏度就越高,感应距离就越远。适当调整后级运放的放大倍数也可以调整感 应距离,但是,如果单纯的提高后级运放的倍数,虽然感应较远距离,但会将小幅度的其它干扰 信号也放大输出,造成误报。 影响感应距离的几个因素:A .发射天线板的尺寸,该尺寸越大,天线越长,则感应距离越远。B . 高频三极管的特征频率越高,其高频增益越大,感应距离也就越远。C.后级运放的放大倍数适当 的高,其对输出的移频信号放大的幅度大。D.发射频率最好在标准规范的2.4GHz。高频三极管的 增益会随着频率的增大而降低降低,频点太高,发射信号功率降低、接收灵敏度也降低。 如果调试得当,使用9GHz的高频三极管的,天线板尺寸在20*30mm左右时,感应距离会在3-5米。天线尺寸在30*40mm左右,感应距离会到8-10米。天线尺寸到40*50mm最远感应距离会 达到20米左右。如果你想在此基础上降低感应距离,可以调整降低后面放大板上的运算放大器的增益,或者改变输入的驱动电平,来满足不同感应距离的要求。 7. 发射天线:围绕天线板3边,用于将本振频率信号发射出去,天线板尺寸越大,该天线越长, 则发射信号越强,发射距离越远,感应距离也就越远,但是,这个发射天线又不能形成四边闭环。天线对电源之间的4个电容主要是对与发射频率相同、从电源串扰进来的其它模块的信号与WIFI 信号屏蔽滤波,如果出现串扰,请调整电容容量或者数量,使得滤波频点同本板发射频率相同。 8. 感应信号放大灯光控制:原理图中,通过P4输出感应信号SING OUT到后面的放大电路,将该 信号通过运放放大,再去控制光源。为了避免被干扰误报,建议在后级放大电路中采用带有运放 功能的CPU,植入信号判断程序,从而将其它非感应信号滤除并加入不同状态的灯光控制,提高 抗干扰能力。 9. 回型天线:发射极外的回型天线接收反射信号,为了使反射信号有效穿过回型天线,回型天线 后面不敷设覆铜板。另外,回型天线只需要一个正弦波形就可以。还可以通过适当加宽回型天线 线宽、加大波形幅度,并且在线上密布过孔来提高感应信号强度和灵敏度(注意:PCB三边和回 型天线上的过孔一定要满镀锡或者镀化学金,以加强发射接收信号的强度)。 10. 基极外去耦合铜箔天线:基极B外那个长方形天线(基极与R3之间的矩形铜箔天线)用作与 其背面的PCB覆铜板形成的电容退耦合。该去耦尺寸太小,则退耦没做好,感应距离很差并不稳定,如果尺寸过大,又会持续输出感应信号,一般24*33mm的天线板的去耦合天线尺寸在 3*8mm,如果天线尺寸大于或者小于24*33mm,则该去耦天线同比例增加或者缩小面积。这个去

人体微波感应传感器工作原理

人体微波感应传感器工作原理 1。工作原理 微波感应控制器使用直径 9 厘米的微型环形天线作微波探测, 其天线在轴线 方向产生一个椭圆形半径为0?5米(可调)空间微波戒备区,当人体活动时其 反射的回波和微波感应控制器发出的原微波场 (或频率) 相干涉而发生变化, 这 一变化量经HT7610A 进行检测、放大、整形、多重比较以及延时处理后 由白色 导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为 2.4GHz 的微波振荡器,环形天线既做发射天线也可接收由人体移动而 反射的回 波。内部微波三极管的半导体PN 结混频后差拍检出微弱的频移信号(即检测到 人体的移动信号),微波专用微处理器HT7610A 首先去除幅度太小的干扰信号只 将一定强度的探测频移信号转化成宽度不同的等幅脉冲, 电路只识别脉冲足够宽 的单体信号, 如 人体、车辆其鉴别电路才被触发, 或者两秒内有 2?3个窄脉冲, 如防范边沿区人走动 2?3步,鉴宽电路也被触发,启动延时控制电路工作。如 果是较弱的干扰信 号,如小体积的动物,远距离的树木晃动、高频通讯信号、 远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A 鉴别出真 正大物体移动信号 时,控制电路被触发,输出 2秒左右的高电平,并有 LED2 同步显示,输出方式为电压方式,有输出时为高电平( 4伏以上),没有输出时 为低电平。 微波专用的微处理器HT7610A 的时钟频率为16KH 当初次加电时,系统将 闭锁 60 秒,期间完成微处理器的初始化并建立电场,这时 灭,系统自动进入检测状态,当检测到有效信号时,将有 示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔, 1?7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, 用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于 连接电源和负载,其中 红色线用来接正电源,白色线接输出,铜网屏蔽层接电源 负极,必要时可以用 类似电缆加长至 50米以内使用。 高可靠微波感应控制器电源电压为12?16V 的整流变换器供电,静态耗电量 在 5MA 左右。 输出形式为电压方式,有输出时为高电平( 4V 以上),静态时为低电平, 使用请 参考下图 LED1点亮60秒后熄 5 秒信号输出,并由指 可以使监控距离在 LED1、 LED2

微波雷达感应模块原理调试

微波雷达感应模块原理 调试 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

雷达感应开关原理调试 一、原理简介: 1.主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。发射的的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。 2.发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的输入阻抗,C是PCB上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。 3.接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。 4.发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率范围在,模块的工作频率尽可能避开这个频段,避免相互干扰。一般的发射频率左右最佳,频率过高,则高频三极管增益降低,感应距离近。发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。 5.发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及其发射信号幅度。发射信号强度越大,感应距离越远。但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。另外,同一个频率,三极管的特征频率fT越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到。 6.接收灵敏度:同样频率,高频三极管对高频信号的fT越大,高频增益越高,接收的移频信号输出幅度越大,感应灵敏度就越高,感应距离就越远。适当调整后级运放的放大倍数也可以调整感应距离,但是,如果单纯的提高后级运放的倍数,虽然感应较远距离,但会将小幅度的其它干扰信号也放大输出,造成误报。

相关文档
相关文档 最新文档