文档库 最新最全的文档下载
当前位置:文档库 › 峭度系数诊断法诊断滚动轴承故障

峭度系数诊断法诊断滚动轴承故障

峭度系数诊断法诊断滚动轴承故障
峭度系数诊断法诊断滚动轴承故障

峭度系数诊断法诊断滚动轴承故障

机械1202 3120301052 马也

摘要:滚动轴承是机械设备中最常见的零部件,其性能与工况的好坏直接影响到与之相联

的转轴以及安装在转轴上的齿轮乃至整个机器设备的性能。据统计,在使用轴承的旋转机械中,大约有30%的故障都是由于轴承引起的。因此,研究滚动轴承的失效机理,提出相应的预防和维护措施,对于降低设备的维修费用,延长设备维修周期,提高经济效益,保证设备的长期安全稳定运行,均有现实的意义。。滚动轴承的振动诊断方法有:振动信号简易诊断法,美国恩泰克公司开发的g/SE诊断法等。还有其他诊断方法,如:光纤维监测技术、油污染分析法(光谱测定法、磁性磁屑探测法和铁谱分析法等)、声发射法、电阻法等,重点研究傅里叶变换。

关键词:滚动轴承;故障;振动;诊断

Kurtosis coefficient of diagnosis method in the diagnosis

of rolling bearing fault

Abstract.Rolling bearing is the mechanical equipment is the most common parts, its p erformance and modes of the direct influence on the shaft and the associated with the ge ar axis installed in the whole machine equipment performance. According to statistics, in t he use of rotating machine, bearing about 30% of the fault is due to bearing cause. There fore, the study of rolling bearings failure mechanism and corresponding preventive and m aintenance measures, for reducing the equipment of the cost of maintenance of the equip ment, prolong maintenance cycle, to improve the economic benefit and guarantee the saf e and stable operation of the equipment's long-term, all have realistic significance. Vibrati on of rolling bearings diagnosis methods are: vibration signal simple diagnostics, America n grace tektronix company developed the g/SE diagnostics, etc. There are other diagnost ic methods, such as optical fiber monitoring technology, oil pollution process (spectrometr ic method, magnetic crumbs detection method and iron spectral analysis, etc.), acoustic emission method, resistance method, key research Fourier transformation.

Key words:Bearing;vibration;fault;diagnosis

0 引言:

机械故障诊断过程本质上是一个故障模式识别的过程[1],针对某一个具体的机械故障诊断问题,选择不同的模式识别方法,其分类精度和准确性可能会有较大的差异[2,3]。对于不同类型的故障以及故障在不同机械上的存在,我们应该选择合适的方法对其进行诊断,以保证高的分类精度和准确性。滚动轴承是机械设备中最常见的零部件,其性能与工况的好坏直接影响到与之相联的转轴以及安装在转轴上的齿轮乃至整个机器设备的性能。据统计,在使用轴承的旋转机械中,大约有30%的故障都是由于轴承引起的。滚动轴承的失

效形式大概可以分为几类,第一类是滚动轴承的疲劳失效,滚动轴承在商接触应力的作用下,通过多次应力循环后,在套圈或滚动体工作表面的局部区域产生小片或小块金属剥落,形成麻点或凹坑,从而引起振动,噪声增大,磨损加剧,导致不能正常工作的现象称为接触疲劳失效,是滚动轴承失效的主要形式。由于材质、工作条件、润滑环境等不同,接触疲劳失效分为麻点剥落、浅层剥落、硬化层剥落。滚动轴承的疲劳失效损伤结果是:使滚动体或滚幼表面产生剥落坑,并向大片剥落发展导致轴承失效。第二类是滚动轴承的胶合失效,高速重载、润滑严重不足、滚子与套圈滚道或挡边产生严重滑动、轴承游隙过小摩擦力增大、滚子与保持架兜孔间隙过小或卡紧等现象都会造成金属间的直接接触产生固相焊合。当汉和强度大于接触零件任一基本强度,使剪切力高于焊合强度,在接触一方或二方的金属深处产生的局部破坏称为胶合。第三类是滚动轴承的磨损失效,轴承在工作过程中由于滚动体与内外滚道间的滚动和滑动运动,保持架与引导面间的滑动运动,引起轴承工作表面金属不断损失的现象叫做轴承的磨损。由于轴承工作表面不断磨损使轴承零件产生尺寸和形状的变化导致轴承配合间隙增大,工作表面形貌变坏而丧失旋转精度,由此引起工作温度升高、振动、噪声、摩擦力矩增大等,致使轴承不能正常工作的现象称为磨损失效。磨损失效与材料性质、粗糙度、润滑状态、接触应力、相对滑动率、表面摩擦系数、速度、温度及环境介质等有着密切联系。滚动轴承的磨攒失效损伤结果是:损伤轴承,降低轴承运转周期。第四类是滚动轴承的烧伤失效,滚动轴承的烧伤失效。第五类是滚动轴承的腐蚀失效,锈蚀是滚动轴承最严重的问题之一,高精度轴承可能会由于表面锈蚀导致精度丧失而不能继续工作。水分或酸、碱性物质直接侵人会引起轴承锈蚀。当轴承停止工作后,轴承温度下降达到露点,空气中水分凝结成水滴附在轴承表面上也会引起锈蚀。此外,当轴承内部有电流通过时,电流有可能通过滚道和滚动体上的接触点处,很薄的油膜引起电火花而产生电蚀,在表面上形成搓板状的凹凸不平。滚动轴承的腐蚀失效损伤结果是:表面由于电流、化学和机械作用产生损伤,丧失精度面不能继续工作。第六类是滚动轴承的破损失效,过高的载荷会可能引起轴承零件产生裂纹或断裂。磨削、热处理和装配不当都会引起残余应力,工作时热应力过大也会引起轴承零件断裂。另外,装配方法、装配工艺不当,也可能造成轴承套圈挡边和滚子倒角处掉块。滚动轴承的破损失效结果是:导致产生裂纹,断裂,使轴承失效。第七类是滚动轴承的压痕失效,由于滚动轴承承受的静载荷过大,冲击载荷过大,异物进入引起轴承的压痕失效,装配不当,滚道承受载荷不均匀也是引起滚动轴承压痕失效的主要原因。滚动轴承的压痕失效损伤结果是:导致表面凹凸不平,降低使用寿命,。

图1是滚动轴承的示意图。滚动轴承在发生表面剥落、裂纹、压痕等滚动面局部损伤时,

会产生冲击振动。这种振动从性质上可分成两类:第一类是由于轴承元件的缺陷,滚动体依次滚过工作面缺陷受到反复冲击而产生的低频脉动,称为轴承的“通过振动”,其发生周期可从转速和零件的尺寸求得。例如,在轴承零件的圆周上发生了一处剥落时,由于冲击振动所产生的相应频率称为“通过频率”,我们通常也叫“故障频率”,因剥落的位置不同而不同,表1给出了求取这种通过频率的相应公式。其中Fz为轴转动频率,D为轴承节圆直径,d为滚动体直径,α为接触角,Z为滚动体数目。

本文将采用峭度系数诊断法诊断滚动轴承机械故障,旨在通过此方法准确、可靠地达到对滚动轴承故障的诊断和预防的目标,并且能够在准确诊断滚动轴承故障的基础上进行相应的处理,以消除故障从而保证其在一定的工作期限内可靠、有效地实现其功能。

1滚动轴承的基本参数

1.1.1滚动轴承的典型结构

图2标准滚动轴承图

滚动轴承的典型结构如图2.1所示,它由内圈,外圈,滚动体和保持架四部分组成。 滚动轴承的几何参数主要有:

滚动轴承节径D 、滚动体直径d 、内圈滚道半径r 1

、外圈滚道半径r

2

、接触角α、

滚动体个数Z 。

1.1.2滚动轴承的特征频率

为分析滚动轴承各部分的运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)承受径向,轴向载荷时各部分无变形; (3)滚动轴承外圈固定,内圈(即轴)的旋转频率为f

s

;

则滚动轴承工作时各点的转动速度如下:

内圈滚道上一点的速度为:

()απ

πcos 21

1

d D f f

r V

s

s

-== (2-1)

外圈滚道上一点的速度为:

00

=V

(2-2)

保持架上一点的速度为:

()

D f

V V V c

c π

=+=

0121

(2-3)

由此可得保持架的旋转频率(即滚动体的公转频率)为:

()

f

V V f

s

c

D d D

?

?

? ??

-=

+=

απcos 12120

1

(2-4)

从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与

r d

1

2成反比: []??

????-=

-==

ααcos 1cos 21D d d D d D d

r f

F s

b

由此可得滚动体自转频率(滚动体通过内滚道或外滚道的频率)fb:

???????

???? ??-=

α2

2cos 12D d d

D f

F

s b

(2-5) 同时考虑到滚动轴承有Z 个滚动体,则:

(1)Z 个滚动体与外圈滚道上某一固定点的接触频率

f

为:

f

f

f

s

c

D d Z Z

??

? ??-=

=αcos 1210

(2-6)

(2)Z 个滚动体与内圈滚道上某一固定点的接触频率f

i

为:

()f f

f

f

s

c

s

i

D d Z Z

??

?

??+=-

=αcos 121 (2-7)

(3)Z 个滚动体上某一固定点与外圈或者内圈滚道的接触频率

f

b

为:

???

???????? ??-=α2

2cos 1*21D d d

D

f

f

s b (2-8) f

f

i

f

b

分别为外圈、内圈和滚动体的通过频率.当“某一固定点”是局部损伤点(如

点蚀点、剥落点等)时,f

f

i

f

b

分别成为局部损伤点撞击滚动轴承元件的频率,因

f

f

i

f

b

又分别称为外圈、内圈和滚动体的故障特征频率.

1.1.3滚动轴承的固有频率

滚动轴承在运行过程中,由于滚动体与内圈或外圈冲击而产生振动,这时的振动频率为滚动轴承各部分的固有频率。固有振动中,内、外圈的振动表现最明显,滚动轴承元件的固有振动频率如下:

1)轴承圈在自由状态下的径向弯曲振动的固有频率为:

()

A

EIg

D

n n n f

n

λπ2

224

*

121

+-=

(2-9) 式中E --弹性模量,钢材为210GPa; I--套圈横截面的惯性矩mm 4;

γ --密度 , 钢材为786x10-6kg/mm 3;A--套圈横截面积,A =bh ,mm 2;

D --套圈横截面中性轴直径,mm; g --重力加速度,9=9800mm/s 2。 n --振动阶数(变形波数),n =2,3………;

对钢材 ,将各常数代入式得 2)钢球振动的固有频率为:

γ

R Eg

f

bn

212

.0= (2-10) 式中R ----钢球半径。

1.2滚动轴承故障诊断常用参数

特征参数被定义为在各个时间领域、频率领域中的参数。在此之中,分为有量纲特征参数和无量纲特征参数。以前的故障诊断中主要被使用的是有量纲特征参数,现在,和有量纲特征参数相比,更多的是使用了对运作状态的依赖小、诊断散乱少的无量纲诊断参数。在本研究中,运用时间领域无量纲特征参数和频率领域无量纲特征参数进行研究。

1.2.1时间领域有量纲特征参数

在对滚动轴承故障诊断和监测中,迄今为止一直使用的是以振动为主的特征参数。另外,作为被使用的振动的特征参数,以速度的实效值,变位的实效值等有量纲参数为主。在此,在滚动轴承诊断中常用的有量纲特征参数,用以下的公式表示,另外,没有特别说明的,取时间序列数据的绝对值。 (1)绝对值总和:∑X=

∑=N

i Xi 1

][ (2-11)

(2)平均值:X =

∑][X /N (2-12) (3)标准方差:б=1

)

]([2

1--∑=N X Xi N

i (2-13)

(4)最大值:Xmax=

Mi

t X Mi i ∑=1max Xmax ∈{Xmaxt/Xmaxt ≥2б} (2-14)

(5)最大平均值:X max=

2

21

max M t

X M i ∑= Xmax ∈{Xmaxt/Xmaxt ≥б} (2-15)

(6)极大值的平均值:P

X

X p i p p

1

11

1

∑==

(2-16)

(7)极大值的标准方差:

1

1)(1

12

1--=

=p p X X p i p p

σ

(2-17)

(8)极小值的平均值:L

X

X L i L L

1

11

1

∑==

(2-18)

在此:

}......1,{1

1

1

11

N i X X

X

X

X X

i L i L L ==≥

∈+-

(9)极小值的标准方差:

1

1)(1

1

2

1

--=

∑=L X L i l L L X

σ (2-19)

1.2.2时间领域的无量纲特征参数

在此,在滚动轴承诊断中常用的有量纲特征参数,用以下的公式表示。

(1)波形率:X

F σ

=

S (2-20)

(2)歪度:3

1

3

1

)(σ

β∑=-=

N i i X X (2-21)

(3)峭度:

4

14

2

)(σ

β

∑=-=

N

i i

X X (2-22)

(4)波高率:

σ

X

C

F

max

=

(2-23)

(5)最大值比率:

X

X R max

max max =

(2-24)

(6)极大值的变动率:

σ

γL

L L

X =

(2-25)

(7)极小值的变动率:

σ

γ

L

L L

X

=

(2-26)

(8)平方根的平均值:

σ

==

N

i i

F

X

L

1

(2-27)

(9)自乘平均值:

σ

2

1

2∑==

N i i

R

X P

(2-28)

(10)对数平均数:)

log()1log(1

σ∑=+=

N i i X LR (2-29)

1.2.3频率领域的无量纲特征参数

(1)平均特征频率:

∑===

N

i i N

i i f S f S f

P

1

1

2

1

)

()

(* (2-30)

(2)波形安定指数:

∑∑====

N

i N

i i i N

i i i f S f f S f S f P

114

12

2

)(*)()(* (2-31)

(3)变动率:

f

P σ

=

3 (2-32)

(4)歪度:

N

f S f f N

i i P

31

3

4

)

(*)

(σ∑=-=

(2-33)

(5)峭度:

N

f S f f i N

i P

44

1

5

)

(*)

(σ∑=-=

(2-34)

(6)平方根比率:

N

f f f N

i i P

σ∑

=-=1

6

S *)()

( (2-35)

以上各式中:∑

∑===

N

i i N

i i i f S f S f f 1

1)

()(* 1

)(*)(1

2

--=

=N f S f f N

i i σ

分辨指数和识别率[16][17]

分辨指数:22

21

12σ

σμ

μ+=

-

DI 或者=

2

2

2

1

12σσ

+-X X

(2-36)

识别率:P DR 01-= 其中:μμπ

d DI

P ?∞

???? ??-=

2exp 21

20 (2-37)

2峭度系数诊断法的基本原理

峭度指标是无量纲参数,由于它与轴承转速、尺寸、载荷等无关,对冲击信号特别敏感,特别适用于表面损伤类故障、尤其是早期故障的诊断。

在轴承无故障运转时,由于各种不确定因素的影响,

振动信号的幅值分布接近正态分布,峭度指标值K≈3;随着故障的出现和发展,振动信号中大幅值的概率密度增加,信号幅值的分布偏离正态分布,正态曲线出现偏斜或分散,峭度值也随之增大。峭度指标的绝对值越大,说明轴承偏离其正常状态,故障越严重,如当其K>8时,则很可能出现了较大的故障。

峭度(Kurtosis )β定义为归一化的4阶中心矩,即

式中x —瞬时振幅; X —振幅均值; p (x )—概率密度; σ—标准差。

振幅满足正态分布规律的无故障轴承,其峭度值约为3。随着故障的出现和发展,峭度值具有与波峰因数类似的变化趋势。此方法的优点在于与轴承的转速、尺寸和载荷无关,主要适用于点蚀类故障的诊断。

图2 滚动轴承的损伤

3 峭度系数诊断法在诊断中的应用

英国钢铁公司研制的峭度仪在滚动轴承故障的监测诊断方面取得了很好的效果。利用快装接头,仪器的加速度传感器探头直接接触轴承外圈,可以测量峭度系数、加速度峰值和RMS值。图3为使用该仪器监测同一轴承疲劳试验的结果。试验中第74h轴承发生了疲劳破坏,峭度系数由3上升到6[图(a)],而此时峰值[图(b)]和RMS值尚无明显增大。故障进一步明显恶化后,峰值、RMS值才有所反映。

图中虚线表示在不同转速(800~2700r/min )和不同载荷(0~11kN)下进行试验时上述各值的变动范围。很明显,峭度系数的变化范围最小,约为士8%。轴承的工作条件对它的影响最小,即可靠性及一致性较高。

有统计资料表明,使用峭度系数和RMS值共同来监测,滚动轴承振动情况,故障诊断成功率可达到96%以上。

图3 轴承疲劳试验过程

4 在齿轮故障诊断中应注意的问题

4.1.1 测点部位的确定

首先,测试信号的获取过程中,需要将测量装置摆放在合适的位置,才能测得准确的、代表性的测量数据。对重要的、经常发生故障的部位可多布测点,而不重要的、不常发生故障的部位可少布测点。

4.1.2 测定参数的确定

1)测量正常和故障状态下的信号;

2)定义几个特征参数;

3)用信号计算这些特征参数的值;

4)检查每个特征参数的灵敏度,如果均不够高,则回到(2);

5)用高灵敏度的特征参数进行故障诊断

4.1.3 测定周期的选择

为了及时发现滚动轴承初期状态的异常,需要合理确定测量周期。一般来讲,当滚动轴承处于正常工作情况下,可保持固有周期;当振动增大或出现异常征兆时,则应采用缩短周期的对策,并应将测定周期尽可能安排得短些。

4.1.4 判断标准的确定

峭度指标值K≈3;随着故障的出现和发展,振动信号中大幅值的概率密度增加,信号幅值的分布偏离正态分布,正态曲线出现偏斜或分散,峭度值也随之增大。峭度指标的绝对值越大,说明轴承偏离其正常状态,故障越严重,如当其K>8时,则很可能出现了较大的故障。

5 结语

1)峭度系数诊断法可以有效、快速地诊断出滚动轴承故障部位,以便做出相应的改变来消除这种故障,从而保证机械在一定的工作期限内能够可靠、有效地实现其特定的功能。

因此,这种方法可以在实际生产过程中广泛应用。

2)对于明显存在问题的设备进行分析诊断,而用通常的技术手段诊断未果时,运用峭度系数法往往能得到满意的结果。

3)运用振动诊断技术对设备的基本运行状态进行判别时,不仅要考察设备振值的大小,还应对振动波形,谱图及峭度系数在内的无量纲参数的变化进行考察,以提高判断结果的准确程度。

参考文献

[1]曲梁生,何正嘉. 机械故障振动学. 上海: 上海科技出版社.1984

[2]徐玉秀,原培新. 复杂机械故障诊断的分形与小波方法.北京:机械工业出版社.2003

[3] 廖伯瑜. 机械故障诊断基础. 北京: 冶金工业出版社.1994

[4] 徐金梧,徐科等.小波在滚动轴承故障诊断中的应用.机械工程学报.1997(4)

[5] 王峰. 滚动轴承故障特征的提取和优化.西安:西安交通大学硕士论文.2002

[6] 陈进. 机械设备振动监测及故障诊断. 上海:上海交通大学出版社.1999

[7]胡文君,褚家荣.设备故障诊断技术与发展.后勤工程学院学报.2004(2)

[8]陈炜峰,陆静霞.故障诊断技术及其发展趋势. 农机化研究.2005(3)

[9]陈进.机械设备振动监测与故障诊断. 上海: 上海交通大学出版社.1999

[10]王肇琪等.滚动轴承故障的振动监测方法.有色矿山.1999(1)

[11]陈长征,胡立新,周勃,费朝阳.振动设备分析于故障诊断技术.科学出版社,2007

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

滚动轴承故障诊断频谱分析讲解学习

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障诊断(附MATLAB程序)

第二组实验 轴承故障数据: Test2.mat 数据打开后应采用 X105_DE_time 作为分析数据,其他可作为参考,转速 1797rpm 轴承型号: 6205-2RS JEM SKF, 深沟球轴承 采样频率: 12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率通过以上原始数据可知次轴承的参数为: 轴承转速 r=1797r/min;滚珠个数 n=9;滚动体直径 d=7.938mm;轴承节径 D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为:外圈故障频率 f1=r/60 * 1/2 * n(1-d/D *cos α )=107.34Hz 内圈故障频率 f2=r/60 * 1/2 * n(1+d/D *cos α)=162.21Hz 滚动体故障频率 f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2( α)]=70.53Hz 保持架外圈故障频率 f4=r/60 * 1/2 * (1-d/D *cos α )=11.92Hz 2.对轴承故障数据进行时域波形分析 将轴承数据Test2.mat导入 MATLAB 中直接做 FFT 分析得到时域图如下:

并求得时域信号的各项特征: 1)有效值:0.2909; 3)峰值因子:5.2441;2)峰值: 1.5256;4)峭度: 5.2793;6)裕度因子:

3.包络谱分析 对信号做 EMD 模态分解,分解得到的每一个 IMF 信号分别和原信号做相关分析,找出相关系数较大的 IMF 分量并对此 IMF 分量进行 Hilbert 变换。 Empirical Mode Decomposition im 由图中可以看出经过 EMD 分解后得到的9个 IMF 分量和一个残余量。 IMF 分量分别和原信号做相关分析后得出相关系数如下: 由上表得:IMF1 的相关系数明显最大,所以选用 IMF1 做 Hilbert 包络谱分析。所得 Hilbert 包络谱图如下:

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。 引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。故障诊断技术是20世纪中后迅速发展起来的一门新型技术。国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。 目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。其中共振解调技术是目前公认最有效的方法。 振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。因而,振动诊断法得到一致认可。包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。Fourier变换在频域上是完全局部化的,但由于其基函数在时域上的全局性使它没有任何的时间分辨率,因此不适合非平稳信号的分析。短时Fourier 变换虽然在时域和频域上都具有一定的分辨率而由于其基函数只能对信号进行等带宽的分解。因此基函数一旦确定,其时域和频域分辨率也就不能变化,从而不能自适应地确定信号在不同频段的分辨率。小波变

声发射检测技术用于滚动轴承故障诊断的研究综述_郝如江

振 动 与 冲 击 第27卷第3期 J OURNAL OF V IBRAT I ON AND SHOCK Vo.l 27No .32008 声发射检测技术用于滚动轴承故障诊断的研究综述 基金项目:863计划(2006AA04Z438)资助;河北省自然科学基金(E2007000649)资助 收稿日期: 2007-06-25 修改稿收到日期:2007-07-12 第一作者郝如江男,博士生,副教授,1971年生 郝如江1,2 , 卢文秀1 , 褚福磊 1 (1.清华大学精密仪器与机械学系,北京 100084;2.石家庄铁道学院计算机与信息工程分院,石家庄 050043) 摘 要:声发射是材料受力变形产生弹性波的现象,故障滚动轴承在运转过程中会产生声发射。从几个方面综合 阐述了国内外轴承故障声发射检测技术的研究和发展现状,即轴承故障声发射信号的产生机理,故障声发射信号的传播衰减特性,声发射信号的参数分析法和波形分析法对故障特征的描述,轴承故障声发射源的定位问题,根据信号特征进行 故障模式识别以及声发射检测和振动检测的比较问题。通过分析总结出滚动轴承声发射检测技术下一步的研究方向,并指出滚动轴承故障的声发射检测是振动检测的有力补充工具,特别是在轴承低转速和故障早期的检测中更能发挥作用。 关键词:声发射;滚动轴承;故障诊断 中图分类号:TH 113,TG 115 文献标识码:A 滚动轴承是各种旋转机械中最常用的通用零部件之一,也是旋转机械易损件之一。据统计,旋转机械的故障有30%是轴承故障引起的,它的好坏对机器的工 作状况影响极大[1] 。滚动轴承主要损伤形式有:疲劳、 胶合、磨损、烧伤、腐蚀、破损、压痕等[2] 。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会引起设备的损坏。因此,对重要用途的轴承进行工况检测与故障诊断是非常必要的。 滚动轴承故障的检测诊断技术有很多种,如振动信号检测、润滑油液分析检测、温度检测、声发射检测等。在各种诊断方法中,基于振动信号的诊断技术应用最为广泛,该技术分为简易诊断法和精密诊断法两种。简易诊断利用振动信号波形的各种参数,如幅值、波形因数、波峰因数、概率密度、峭度系数等,以及各种解调技术对轴承进行初步判断以确认是否出现故障;精密诊断则利用各种现代信号处理方法判断在简易诊断中被认为是出现了故障的轴承的故障类别及原因。振动信号检测并非在任何场合都很适用,例如在汽轮机、航空器变速箱及液体火箭发动机等鲁棒性较低的系统中,轴承的早期微弱故障就会导致灾难性的后果,但是早期故障的振动信号很微弱,又容易被周围相对幅度较大的低频环境噪声所淹没,从而无法有效检测出故障的存在[3] 。由于声发射是故障结构本身发出的高频应力波 信号,不易受周围环境噪声的干扰[4] ,因此声发射检测方法在滚动轴承的故障诊断中得到了应用。 1 滚动轴承故障声发射检测机理 111 声发射检测技术原理 材料受到外力或内力作用产生变形或者裂纹扩展 时,以弹性波的形式释放出应变能的现象称为声发射[5] 。用仪器检测、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射检测技术,它是20世纪60年代发展起来的一种动态无损检测新技术,其利用物质内部微粒(包括原子、分子及粒子群)由于相对运动而以弹性波的形式释放应变能的现象来识别和了解物质或结构内部状态。 声发射信号包括突发型和连续型两种。突发型声发射信号由区别于背景噪声的脉冲组成,且在时间上可以分开;连续型声发射信号的单个脉冲不可分辨。实际上,连续型声发射信号也是由大量小的突发型信号组成的,只不过太密集而不能分辨而已。目前对于声发射信号的分析方法主要包括参数分析法和波形分析法。112 滚动轴承故障声发射源问题 滚动轴承在运行不良的情况下,突发型和连续型的声发射信号都有可能产生。轴承各组成部分(内圈、外圈、滚动体以及保持架)接触面间的相对运动、碰摩所产生的赫兹接触应力,以及由于失效、过载等产生的诸如表面裂纹、磨损、压痕、切槽、咬合、润滑不良造成的的表面粗糙、润滑污染颗粒造成的表面硬边以及通过轴承的电流造成的点蚀等故障,都会产生突发型的声发射信号。 连续型声发射信号主要来源于润滑不良(如润滑油膜的失效、润滑脂中污染物的浸入)导致轴承表面产生氧化磨损而产生的全局性故障、过高的温度以及轴承局部故障的多发等,这些因素造成短时间内的大量突发声发射事件,从而产生了连续型声发射信号。 滚动轴承在运行过程中,其故障(不管是表面损伤、裂纹还是磨损故障)会引起接触面的弹性冲击而产生声发射信号,该信号蕴涵了丰富的碰摩信息,因此可利用声发射来监测和诊断滚动轴承故障。与振动方法不同的是,声发射信号的频率范围一般在20kH z 以上,而振动信号频率比较低,因此它不受机械振动和噪声

滚动轴承故障诊断技术

目录 摘要 (3) 第1章绪论 (4) 1.1滚动轴承故障诊断技术的发展现状 (4) 1.2滚动轴承故障诊断技术的发展趋势 (6) 1.3滚动轴承诊断基础 (7) 1.3.1滚动轴承的常见故障形式 (7) 1.3.2滚动轴承的诊断方法 (8) 1.4本课题的研究意义和内容 (9) 第2章滚动轴承振动机理 (11) 2.1滚动轴承的基本参数 (11) 2.1.1滚动轴承的典型结构 (7) 2.1.2滚动轴承的特征频率 (11) 2.1.3滚动轴承的固有频率 (13) 2.2滚动轴承故障诊断常用参数 (14) 2.2.1时间领域有量纲特征参数 (14) 2.2.2时间领域的无量纲特征参数 (15) 2.2.3频率领域的无量纲特征参数 (16) 第3章滚动轴承故障诊断实验系统及实验方案 (17) 3.1滚动轴承故障诊断实验系统 (17) 3.1.1滚动轴承故障实验机械平台 (18) 3.1.2设备的组成: (19) 3.1.3设备的主要参数: (19) 3.1.4实验平台信号采集及故障诊断系统 (21) 3.2实验方案 (23) 3.2.1轴承的故障状态 (23) 3.2.2实验步骤 (23) 第4章实验的操作过程及数据的提取 (25) 4.1装拆轴承 (25)

4.1.1实验前期准备 (25) 4.1.2试机 (25) 4.1.3拆卸并安装轴承 (25) 4.2信号的采集过程 (27) 4.2.1前期准备 (27) 4.2.2数据采集过程 (28) 4.3数据信号的处理过程 (30) 第5章结论 (35) 致谢 (36) 参考文献 (37)

旋转机械故障诊断特征参数的提取 摘要:本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常用的特征参数。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,本文所提出的方法不仅仅适用滚动轴承故障的诊断,还可推广适用旋转机械其它故障的诊断。 关键词:滚动轴承;故障诊断;特征参数;分辨指数;识别率 The Extraction on Fault Diagnosis Symptom Parameters of Rotating Machinery ABSTRACT:In the thesis ,the fault types,diagnostic methods and vibration principle of rolling bearing are discussed.the thesis sets up a series of academic models of faulty rolling bearings and lists some symptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration principle of rolling bearings can help us to know the essence and feature of rolling bearings.In this paper, the parameters of the extraction, theoretical analysis, and process are described in detail, the paper by the way not only to the Rolling fault diagnosis, but also promote the application of other rotating machinery fault diagnosis. Keywords:Rolling Bearing; Fault Diagnosis; Symptom Parameter; Distinction Index; Distinction Rate

滚动轴承故障诊断

滚动轴承故障诊断 旋转机械是设备状态监测与故障诊断工作的重点,而旋转机械的故障有相当大比例与滚动轴承有关。滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30%是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。 最初的轴承故障诊断是利用听棒,靠听觉来判断。这种方法至今仍在沿用,其中的一部分已改进为电子听诊器,例如用电子听诊器来检查、判断轴承的疲劳损伤。训练有素的人员凭经验能诊断出刚刚发生的疲劳剥落,有时甚至能辨别出损伤的位置,但毕竟影响因素较多,可靠性较差。 继听棒、电子听诊器之后,在滚动轴承的状态监测与故障诊断工作中又引入了各种测振仪,用振动位移、速度和加速度的均方根值或峰值来判断轴承有无故障,这样减少了监测人员对经验的依赖性,提高了监测诊断的准确性,但仍很难在故障初期及时做出诊断。 1966年,全球主要滚动轴承生产商之一,瑞典SKF公司在多年对轴承故障机理研究的基础上发明了用冲击脉冲仪(Shock Pulse Meter)检测轴承损伤,将滚动轴承的故障诊断水平提高了一个档次。之后,几十家公司相继安装了大批传感器用于长期监测轴承的运转情况,在航空飞机上也安装了类似的检测仪器。 1976年,日本新日铁株式会社研制了MCV系列机器检测仪(Machine Checker),可分别在低频、中频和高频段检测轴承的异常信号。同时推出的还有油膜检查仪,利用超声波或高频电流对轴承的润滑状态进行监测,探测油膜是否破裂,发生金属间直接接触。1976-1983年,日本精工公司(NSK)相继研制出了NB 系列轴承监测仪,利用1~15kHz范围内的轴承振动信号测量其RMS值和峰值来检测轴承故障。由于滤除了低频干扰,灵敏度有所提高,其中有些型号的仪器仪表还具有报警、自动停机功能。 随着对滚动轴承的运动学、动力学的深入研究,对于轴承振动信号中的频率成分和轴承零件的几何尺寸及缺陷类型的关系有了比较清楚的了解,加之快速傅里叶变换技术的发展,开创了用频域分析方法来检测和诊断轴承故障的新领域。其中最具代表性的有对钢球共振频率的研究,对轴承圈自由共振频率的研究,对滚动轴承振动和缺陷、尺寸不均匀及磨损之间关系的研究。1969年,H. L. Balderston根据滚动轴承的运动分析得出了滚动轴承的滚动体在内外滚道上的通过频率和滚动体及保持架的旋转频率的计算公式,以上研究奠定了这方面的理论基础。目前已有多种信号分析仪可供滚动轴承的故障诊断,美国恩泰克公司根据滚动轴承振动时域波形的冲击情况推出的“波尖能量”法及相应仪器,对滚动轴承的故障诊断非常有效。还有多种信号分析处理技术用于滚动轴承的状态监测与故障诊断,如频率细化技术、倒频谱、包络线分析等。在信号预处理上也采用了各种滤波技术,如相干滤波、自适应滤波等,提高了诊断灵敏度。 除了利用振动信号对轴承运行状态进行诊断监测外,还发展了其他一些技术,如光纤维监测技术、油污染分析法(光谱测定法、磁性磁屑探测法和铁谱分析法等)、声发射法、电阻法等 简易诊断法确定轴承已经发生故障之后,进一步判定故障的类别和发生部位,以便采取相应对策。 滚动轴承的精密诊断与旋转机械、往复机械等精密诊断一样,主要采用频谱分析法。由于滚动轴承的振动频率成分十分丰富,既含有低频成分,又含有高频成分,而且每一种特定的故障都对应特定的频率成分。进行频谱分析之前需要通过适当的信号处理方法将特定的频率成分分离出来,然后对其进行绝对值处理,最后进行频率分析,以找出信号的特征频率,确定故障的部位和类别。 一、轴承内滚道损伤 轴承内滚道产生损伤时,如:剥落、裂纹、点蚀等(如图1所示),若滚动轴无径向间隙时,会产生频率为nZfi(n=1,2,…)的冲击振动。

滚动轴承故障诊断的频谱分析

滚动轴承故障诊断的频谱分析 滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。 滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。可以认为此时轴承出现了初期故障。这时就要对轴承进行严密监测,密切注意其变化。此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。 1、滚动轴承故障诊断方式 振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。 2、滚动轴承正常运行特点与诊断技巧 滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。继续运行一段时

滚动轴承故障诊断 文献综述

滚动轴承故障诊断文献综述 [ 2008-4-2 14:38:00 | By: mp2 ] 推荐 文献综述 ——滚动轴承故障诊断 1.前言 滚动轴承是各种旋转机械中应用最广泛的一种通用机械零件,它是机器最易损坏的零件之一。据统计。旋转机械的故障有30%是由轴承引起的。可见轴承的好坏对机器的工作状况影响很大。轴承故障诊断就是要通过对能够反映轴承工作状态的信号的测取,分析与处理,来识别轴承的状态。包括以下几个环节:信号测取;特征提取;状态识别:故障诊断;决策干预[1]。 滚动轴承故障诊断传统的分析方法有冲击脉冲法,共振解调法,倒频谱分析技术。 在现代分析方法中,小波分析是最近几年才出现井得以应用和发展的一种时—频信号分析方法。它具有时域和频域的局部化和可变时频窗的特点.用它分析非平稳信号比传统的傅里叶分析更为最著。由于滚动轴承的故障信号中禽有非稳态成分,所以刚小波分析来处理其振动信号.可望获得更为有效的诊断特征信息[2]。 滚动轴承故障的智能诊断技术就是把神经网络、专家系统、模糊理论等技术与滚动轴承的特征参数有机地结合起来进行综合分析的故障诊断技术。 2.故障信号诊断方法 2.1冲击脉冲法(spm) SPM技术(Shock Pulse Method),是在滚动轴承运转中,当滚动体接触到内外道面的缺陷区时,会产生低频冲击作用,所产生的冲击脉冲信号,会激起SPM 传感器的共振,共振波形一般为20kHz~60kHz,包含了低频冲击和随机干扰的幅值调制波,经过窄带滤波器和脉冲形成电路后,得到包含有高频和低频的脉冲序列。SPM 方法是根据这一反映冲击力大小的脉冲序列来判断轴承状态的。此种方法目前被公认为对诊断滚动轴承局部损伤故障工程实用性最强的。此方法虽然克服了选择滤波中心频率和带宽的困难,但这种固定中心频率和带宽的方法也有其局限性,因为,一些研究结果表明,滚动轴承局部损伤故障所激起的结构共振频率并不是固定不变的,在故障的不同阶段可能激起不同结构的共振响应,而不同部位的故障(内、外圈、滚子)也会激起不同频率结构的共振响应。显然,固定的滤波频带有其局限性。实际使用情况表明,当背景噪声很强或有其他冲击源时,

滚动轴承的故障诊断系统研究时域系统研究

摘要 滚动轴承是旋转机械中应用最广泛的一种通用部件,也是机械设备中的易损零件,许多机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约30%的机械故障是由于滚动轴承的损坏造成的。可见,滚动轴承的好坏对机械系统工作状况的影响极大。由于设计不当和安装工艺不好或轴承的使用条件不佳,或突发载荷的影响,使轴承运转一段时间后会产生各种各样的缺陷,并且在继续运行中进一步扩大,使轴承运行状态发生变化。因此,滚动轴承的故障诊断一直是研究的热点。 本文首先从理论上分析了滚动轴承的失效形式、振动机理、振动类型、及发生故障的原因、振动频率;然后在理论基础上提出了滚动轴承的时域、频域的诊断方法;最后搭建了基于Matlab的滚动轴承故障诊断系统,并通过Matlab仿真轴承故障信号,在软件中进行信号分析和处理,验证各种诊断方法的优劣和滚动轴承的故障特征。 本论文按照预定的要求完成了设计任务,研究了滚动轴承的故障诊断方法,完成了故障诊断系统的设计,通过仿真验证了滚动轴承的故障诊断方法。 关键词:滚动轴承;故障诊断;时域分析;频域分析;Matlab

Abstract Rolling element bearing is one of the most widely used general part of rotating machinery,and one of the most easily damaged parts of mechanical equipment. A lot of mechanical failure is relevant to the state of rolling element bearings. It is estimated that about 30 percent of mechanical failure is caused by its fault in the rotating machine with rolling element bearings. It is obvious that the quality of rolling element bearings has a great impact on the working condition of electromechanical systems. Because of wrong design, poor working condition or a jump heavy load, bearing will be damaged and worse during the running time. So at present, the fault diagnosis of rolling element bearings is a research hotspot. Firstly, the failure forms, the vibration mechanism, vibration type, and the failure cause, vibration frequency of bearing are analyzed in theory.Secondly, based on the theory put forward the time domain, frequency domain diagnostic methods.Finally, the software for the fault diagnosis system of the rolling bearings is designed by Matlab,along with the simulation of bearing fault signals by Matlab.To analysis and processing the signal in software. Verify the merits of various diagnostic methods and characteristics of rolling bearing faults. The paper successfully completed the design task and the result meets the expectation. We researched the fault diagnosis methods and completed the fault diagnosis system design and simulation shows the fault diagnosis methods of rolling element bearings. KeyWords:rolling element bearings,fault diagnosis,time-domain analysis, frequency-domain analysis,Matlab

轴承故障诊断技术及发展现状和前景

轴承故障诊断技术及发展现状和前景 摘要 本文分析了轴承故障信号的基本特征,并将共振解调技术的原理和基于振动信号的信号处理方法用于滚动轴承的故障诊断. 在实践中运用该技术手段消减了背景噪声的干扰,提高了轴承的信噪比, 取得了与实际情况完全吻合的诊断结果。并概述了滚动轴承故障监测和诊断工程与试验应用技术的现状,并预测了滚动轴承故障监测和诊断技术应用新进展和发展方向。 关键词:滚动轴承;共振解调;小波 分析;信噪比(SN R );变速箱;故障监测;信号处理;故障诊断;应用技术。 1 轴承故障信号的基木 特征 机器在正常工作的条件下其转轴 总是匀速转动的. 由轴承的结构可知, 当轴承某元件的工作而产生缺陷时, 由加速度传感器所测取到的轴承信号 具有周期性冲击的特征,由信号理论 可知, 时域中短暂而尖锐的冲击信号 变换到频域中去时必具有宽频带的特 性, 而非冲击的干扰信号则不具有上 述特性,所以时域中的周期性冲击与 频域中的宽频带特性构成了轴承故障 信号区别于其它非冲击性干扰信号的 基木特征。 2 用共振解调技术提高 轴承信号的信噪比 我们来考察一下用共振解调技术提高轴承信号信噪比的过程。传感器拾取到的轴承信号包含两部分内容, 即轴承的故障信号和干扰噪声两部分。带通滤波器的中心频率与传感器的安装片振圆频率相一致, 它将保存被传感器的共振响应所加强了的冲击性故障信号, 滤除掉频率较低的干扰噪声信号, 这种保留下来的瞬态冲击信号经过包络检波器后就形成了一个与故障冲击重复频率相一致的包络脉冲串, 然后对该脉冲串进行普分析便在低频域内得到一个与冲击币复频率相一致的峰值。峰值的大小反映了冲击的强弱即故障的严重程度这样我们就借助共振解调技术实现了故障信号与干扰信号的分离, 并在低频域内重新得到了故障冲击的信息。而在常规的信号分析与处理过程中一开始就使用了抗混频滤波器(低通滤波器这种分析方法没有利用轴承故障信号的特点, 经抗混频滤波器后将被传感器的共振以加强放大了的故障特征信号无情地滤除了, 所剩下的只是强大的背景噪声信号及微弱的故障特征信号, 因此用常规的信号分析方法难以排除干扰信号的影响而采用共振解调技术就可以排除背景噪声的干扰, 提高轴承故障诊断的有效率。

滚动轴承故障诊断技术研究

滚动轴承故障诊断技术研究 摘要:滚动轴承是机器的易损件之一。滚动轴承故障诊断的传统方法和现代方法有冲击脉冲法、共振解调法、小波分析法等。滚动轴承诊断技术的发展方向为非线性理论、现代信号处理技术与智能诊断技术的融合、信号处理技术之间的相互融合。 关键词:滚动轴承;故障诊断;冲击脉冲;共振解调技术;小波变换;遗传算法0 前言 滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30%是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵人、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 1 滚动轴承故障诊断技术的发展和现状 1.1 国外发展概况 国外对滚动轴承的监测与诊断开始于20世纪60年代。至今为止的超过40年的时间内,随着科学技术的不断发展,滚动轴承的诊断技术亦不断向前发展。现在在工业发达国家,滚动轴承工况监测与故障诊断技术己经实用化和商品化。总的来说,该技术的发展可以分为四个阶段。 第一阶段:利用通用的频谱分析仪诊断轴承故障。。20世纪60年代,由于快速傅里叶变换(FFT)技术的出现和发展,振动信号的频谱分析技术得到很大发展,随之而来的是各种通用的频谱分析仪纷纷问世。人们通过频谱分析仪分析轴承振动信号频谱中是否出现故障特征频率来判断轴承是否有故障。由于背景噪声的影响,频谱图往往比较复杂,轴承的特征频率在故障初期很难识别出来。另外,当时频谱仪的价格很昂贵,所以没能得到普及利用。

滚动轴承故障诊断

滚动轴承故障诊断 目录 一、滚动轴承的认识 (1) 1.1功能 (1) 1.2结构 (1) 二、滚动轴承故障介绍 (2) 2.1疲劳点蚀 (2) 2.2塑性变形 (2) 2.3磨损 (2) 2.4疲劳剥落 (3) 2.5锈蚀 (3) 2.6断裂 (3) 2.7胶合 (3) 2.8保持架损坏 (3) 三、滚动轴承故障诊断综述 (4) 3.1故障信号诊断方法 (4) 3.1.1冲击脉冲法(SPM) (4) 3.1.2共振解调法 (4) 3.1.3小波分析 (4) 3.1.4 倒频谱诊断滚动轴承故障 (5) 3.2故障信号的智能诊断技术 (5) 四、实验数据处理.............................................................................. 错误!未定义书签。 4.1数据预处理 (6) 4.2时域数据处理及特征提取 (8) 4.2.1时域数据处理 (8) 4.2.2时域分析特征值提取 (9) 4.3频域数据处理及特征值提取 (10) 4.3.1频谱图特征值的提取 (10) 4.4归一化处理 (11) 五、BP神经网络 (14) 5.1BP神经网络模型的建立 (14) 5.2 BP神经网络训练及仿真 (15) 六、参考查阅 (16)

一、滚动轴承的认识 1.1功能 滚动轴承使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高。与滑动轴承比较,滚动轴承的径向尺寸较大,减振能力较差,高速时寿命低,声响较大。 2.1结构 滚动轴承的结构由部分组成 (1)外圈——装在轴承座孔内,一般随轴转动,有滚道,限制滚动体的侧向移动 (2)内圈——装在轴颈上,一般不转动,有滚道,限制滚动体的侧向移动 (3)滚动体——核心元件,在滚道中产生滚动摩擦有球、圆柱磙子、圆锥磙子等 (4)保持架——将滚动体均匀分开,避免相互碰撞,减小磨损(如果滚动体接触,速度方向相反,是两倍),减少发热 目前,润滑剂也被认为是滚动轴承第五大件,它主要起润滑、冷却、清洗等作用。

相关文档