文档库 最新最全的文档下载
当前位置:文档库 › 遗传算法综述

遗传算法综述

遗传算法综述
遗传算法综述

遗传算法综述

遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。

在阅读了一些相关资料后,我整理出这篇综述,将通过五个部分来介绍遗传算法以及其在计算机科学领域的相关应用、

一、起源和发展分支

尝试性地将生物进化过程在计算机中模拟并用于优化问题求解开始于20世纪50年代末,其目的是将生物进化的思想引入许多工程问题中而成为一种优化工具,这些开拓性的研究工作形成了遗传算法的雏形。但当时的研究进展缓慢,收效甚微。原因是由于缺少一种通用的编码方式,人们只有通过变异才能改变基因结构,而无法使用交叉,因而增加了迭代次数。同时算法本身需要较大的计算量,当时的计算机速度便无法满足要求,因而限制了这一仿生过程技术的迅速发展。20世纪60年代中期,Holland在Fraser和Bremermann等人研究成果的基础上提出了位串编码技术,这种编码技术同时适用于变异操作和交叉操作。

遗传算法的真正产生源于20世纪60年代末到70年代初,美国Michigan大学的Holland教授在设计人工适应系统中开创性地使用了一种基于自然演化原理的搜索机制,并于1975年出版了著名的专著“Adaptation in Natural and

Artificial Systems”,这些有关遗传算法的基础理论为遗传算法的发展和完善奠定了的基础。同时,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,设计了遗传算法执行策略和性能评价指标,他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指

标则仍是目前衡量遗传算法优化性能的主要手段。

在Holland教授和他的学生与同事De Jong进行大量有关遗传算法的开创性工作的同时,德国柏林工业大学的Rechenberg和Schwefel等在进行风洞实验时,为了对描述物体形状的参数进行优化以获得更好的实验数据,将变异操作引入计算模型中,获得了意外的优良效果。实验后,经过进一步系统地研究,形成了进化策略(evolutionary strategies, ES)。1962年,Fogel等人在设计有穷状态自动机(finite state machine, FSM)时借用进化和思想对一组FSM进行进化,提出了一种模仿人类智能的方法,称为进化编程(evolutionary programming, EP),也叫进化规划(evolutionary planning),随后将其应用于数值优化及神经网络的训练问题中。这两种算法和遗传算法以及遗传编程(genetic programming, GP)一起构成了目前进化计算的四大分支,它们从不同层次、不同角度模拟自然演化的规律,以达到求解实际问题的目的。而进化计算则与人工神经网络、模糊理论一起形成一个新的研究方向,即计算智能。计算智能以生物进化的观点认识和模拟智能,以数据为基础,通过进化过程建立联系而进行问题求解。人工智能已从传统的基于符号主义向以神经网络为代表的连接主义和以进化计算为代表的进化主义方向发展,形成了新的研究方法。

遗传算法被提出之后立即受到了各国学者的广泛关注,有关遗传算法的研究成果不断涌现。1968年Holland提出了著名的模式(schema)定理;1975年De Jong 首先尝试将遗传算法用于函数优化,提出了5个测试函数用以测试遗传算法的优化性能;1981年Bethke应用Walsh函数分析模式;1983年Wetzel用遗传算法解决了NP难问题旅行商问题(TSP);1985年Schaffer利用多种群遗传算法研究解决了多目标优化问题;1987年Goldberg等人提出了借助共享函数的小生境遗传

算法。1989年,Goldberg出版专著“Genetic Algorithm in

Search, Optimization, and Machine learning”,对遗传算法的研究产生了非常大的

影响。1992年,Michalewicz出版另一部具有极大影响力的著作“Genetic Algorithm Data Structure Evolutionary Programming”。从20世纪80年代中期起,遗传算法

和进化计算到达一个研究高潮,以遗传算法和进化计算为主题的国际学术会议在世界各地定期召开。1985年,第一届国际遗传算法会议

(international conference on genetic algorithms, ICGA)在美国卡耐基·梅隆大学召开,以后每两年召开一届。此外,进化规划年会(annual conference on evolutionary programming, ACEP)于1992年在美国的加州召开第一届会议,以后每隔两年召

开一届;进化计算会议(IEEE conference on evolutionary computation)也于1994年开始定期召开。相关的国际学术会议还有很多。[1]

目前遗传算法的主要分支有CHC算法、自适应遗传算法、小生境遗传算法、双倍体遗传算法以及双种群遗传算法。

二、重要人物和经典文章

对于遗传算法带来重要影响的人物和相关文献如下:

1.J.D.Bagley,1967年在其博士论文中首次提出“遗传算法(Genetic Algorithms)”一词。

2.Fogel等出版了《基于模拟进化的人工智能》,系统阐述了进化规划的思想。3.R.B.Hollstien,在他的博士论文中首次把遗传算法用于函数优化。4.Holland,于1975年出版了他的著名专著《自然系统和人工系统的自适应》(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专著,因此有人把1975年作为遗传算法的诞生年。Holland在该书中系统地阐述

了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。

5.K.A.De Jong,在1975年完成了他的博士论文《一类遗传自适应系统的行为分析》(An Analysis of the Behavior of a Class of Genetic Adaptive System)。该论文所做的研究工作,可看作是遗传算法发展进程中的一个里程碑,这是因为,他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien 一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论,迄今仍具有普遍的指导意义。

6.Smith教授,1980年首次将遗传算法应用于机器学习领域,并研制出一种称作分类器(Cla ssifier)的系统。

7.Goldberg,撰写了《遗传算法在搜索优化和机器学习中的应用》一书,对GA 的原理及应用做了比较详细、全面的论述。该书至今仍是遗传算法研究中广泛适用的经典之作。

8.D.E.Goldberg,出版了专著《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search , Optimization, and Machine Learning)。该书总结了遗传算法研究的主要成果,对遗传算法及其应用作了全面而系统的论述。

9.美国斯坦福大学的Koza,基于自然选择原则创造性地提出了用层次化的计算机程序来表达问题的遗传程序设计( genetic programming, GP)方法,成功地解决了许多问题。他的专著《遗传程序设计:基于自然选择法则的计算机程序设计》”。

1994年,他又出版了《遗传程序设计,第二册:可重用程序的自动发现》深化了遗传程序设计的研究,使程序设计自动化展现了新局面。

10.L.Davis编辑出版了《遗传算法手册》(Handbook of Genetic Algorithms),其中包括了遗传算法在工程技术和社会生活中的大量应用实例。

11.1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。

12. 1992年,Michalewicz出版具有极大影响力的著作“Genetic Algorithm

Data Structure Evolutionary Programming”。

三、算法结构

如下图所示。

[2]

[3]

四、最新研究成果

对于优化问题求解的任何搜索算法而言,其收敛性具有重要的理论意义。因此,遗传算法的收敛性一直是理论研究的一个重要方面。近几年,在遗传算法全局收敛性的分析方面取得了突破,运用的工具主要是Markov 链。

欺骗问题也是遗传算法的一个研究热点。

根据2008—2010 年三年内遗传算法研究方面发表在EI 源刊上的文章分布情况,分别从研究内容和应用领域两个方面进行统计,结果如图1 所示。[4]

由图1 可以得到如下结论: a) 从研究内容来看,涉及物种多样性、测试函数、遗传算子、参数确定等研究内容的文章占据较大数量; b) 从应用领域来看,针对遗传算法在生产调度及机器人学方面进行研究的文章占多数,在自动控制、组合优化和图像处理方面的研究也占很大一部分比例。有关遗传算法在函数优化、机器学习、人工生命、数据挖掘及遗传编程方面研究所涉及的文章不是很多。遗传算法在函数优化和组合优化方面进行研究的文章每年几乎都是最多的,而生产调度及自动控制等实际应用领域的研究成果较少。遗传算法在数据挖掘和机器学习领域进行研究的文章不多,但在研究成果中所占的比重逐年增长。

结合以上对比分析可知,遗传算法在函数优化及组合优化方面的研究在减少,尤其在函数优化方面减少更明显,但是在生产调度及自动控制等领域的研究比重明显增加,这充分说明遗传算法的研究已经从理论方面逐渐转向应用领域; 机器人学及图像处理也在逐渐成为研究的热点。涉及数据挖掘研究方面的文章不是很多,但随着数据挖掘技术的广泛应用,遗传算法在数据挖掘领域的研究会成为新的热点。

多智能体进化、免疫进化计算、粒子群遗传算法是这几年研究比较多的题目,对传统遗传算子( 选择、交叉、变异) 的改进也是讨论比较多的话题。随着应用的不断深入,遗传算法在优化多峰问题时的不足逐渐暴露出来。小生境作为优化多峰问题的一种有效手段,得到了广泛关注,并已经成为遗传算法领域的一个研究热点。协同进化算法是在进化算法的基础上,通过考虑种群与环境之间、种群与种群之间在进化过程中的协调关系提出的一类新的进化算法,目前遗传算法已经成为当前进化计算的一个热点问题。

五、遗传算法在计算机科学领域的应用与代表性文章

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等方面得到成功的应用。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。[5]

另外,遗传算法在数据挖掘领域的研究也是一个热点应用。见文献[6]。

参考文献:

[1]百度文库遗传算法综述与遗传算法学习入门

https://www.wendangku.net/doc/5f2298607.html,/link?url=4aQ25zBiU4sN0JcgZFpg4aPbtI5S8MzZzvDPjTQmq WfMM0UxrTQwNit2cEU79OCbBWqDxKWQgIr6EGYz_Ffkah3HnkF_glqufYczl9FLAcy

[2]百度百科——遗传算法

https://www.wendangku.net/doc/5f2298607.html,/view/45853.htm

[3]百度百科——遗传算法

https://www.wendangku.net/doc/5f2298607.html,/view/45853.htm

[4] 马永杰,云文霞. 遗传算法研究进展.计算机应用研究.2012年四月第九卷第四期:1204-1205.

[5] 百度百科——遗传算法

https://www.wendangku.net/doc/5f2298607.html,/view/45853.htm

[6] 王东龙, 李茂青. 基于遗传算法的数据挖掘技术应用.南昌大学学报(工科版).2005年3月第27卷第一期

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

遗传算法的流程图

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法的参数整定报告

基于遗传算法的PID控制器参数整定报告 一、遗传算法。 遗传算法(GAs)是基于自然界生物进化机制的搜索寻优技术。用遗传算法来整定PID参数,可以提高优化性能,对控制系统有良好的控制精度、动态性能和鲁棒性。 一般的,Gas包括三个基本要素:复制、交叉和突变。 二、PID Optimal-Tuning PID控制:对偏差信号e(t)进行比例、积分和微分运算变换后形成的一种控制规律。 (1) 可调参数:比例度δ(P)、积分时间Ti(I)、微分时间Td(D)。 通常,PID控制准则可以写成下面传递函数的形式: ) 1( ) (s T T s K s G d i p + + =(2) Kp、Ti和Td分别是比例放大率、积分时间常量和微分时间常量。 1)比例控制(P):是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误 差(Steady state error),比例度减小,稳态误差减小; 2)积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 3)微分(D)控制:在微分控制中,控制器的输出与输入误差信号()()()()? ? ? ? ? ? + + =?t e dt d T d e T t e K t u d t i p0 1 τ τ

的微分(即误差的变化率)成正比关系。 文中,性能指标是误差平方的时间加权积分,表示为: ),,1,0(,0 2n k dt e t J i t k ==? (3) 其中n 是非负整数,i t 是积分周期。此外,其他标准项如超调量、上升时间和稳定时间也被一个合成性能指标选择: ))(1(s s r r c t c t c os J ++= (4) s r os t t 、、分别代表超调量、上升时间和稳定时间。s r c 、c 两个系数有用户定义或决定。预期的性能指标的最下化可以认为是小的超调量、短的上升时间和稳定时间。 三个PID 参数的编码方式如下: 10101011:S 1010100011100111 p K i K d K p K 、i K 和d K 都是八位二进制字符格式。 自适应函数的选择关系到性能指标,如: 101)(J J F F == (5) 实际上,)(J F 可以是任何一个能切实表达F 和J 关系的非线性函数。 遗传操作是模拟生物基因遗传的操作,从优化搜索的角度而言,遗传操作可使问题的解一代一代地优化,并逼近最优解,主要包括三个遗传算子:选择、交叉和变异。关于他们的具体方法这里不在赘述。 三、 计算机实现 作者编程使用的事TURBO C 。程序包括两个部分:一个是仿真PID 控制系统的闭环阶跃响应;另一个是实施对一代所有成员的遗传算法的仿真,这里遗传算法将一代作为一个整体。在第一代生物的二进制代码随机产生之后,这个过程重复直至迭代次数达到预选的次数。 步长、PID 参数X 围、性能指标、自适应函数和方法得时间延迟都是从一个文件中读取。而遗传算法的的参数,诸如世代数、交叉概率、变异概率、选择概率等通过菜单选择。 整个闭环系统仿真的完成可以用四阶龙格库塔法或直接时域计算。在程序中,复制的实现是通过轮盘赌博法的线性搜索,面积加权于上一代成员的适应值。交叉发生在每一对复制产生的成员。 交叉操作是将一个随机产生的一个在0到1之间数与交叉概率比较决定是否需要交叉。如果需要交叉,则在1到47之间随机产生一个交叉位置代码。变异,对新一代所有成员都随机产生一个0到1之间的数与变异概率比较,然后再决定是否改变代码的一位。同理,反转也是这样判定和操作的。另一需要说明的事,两个反转位置代码是在1~48之间随机选择的。同样,

遗传算法综述

遗传算法综述 太原理工大学刘晶学号:s2******* 摘要:遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获得和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优的方案。遗传算法作为一种实用、高效、鲁棒性强的优化技术,有着广泛的应用前景。 关键词:遗传算法数学模型优点流程 一,概述。遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。美国Michigan 大学的Holland 教授及其学生受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适应于复杂系统优化的自适应概率优化技术———遗传算法。 二,基本遗传算法的数学模型。基本遗传算法可表示为:SGA=(C,E,P0,M,Φ,Γ,Ψ,T)式中,C为个体的编码方法;E 为个体适应度评价函数;P0 为初始种群;M为种群大小;Φ为选择算子;Γ为交叉算子;Ψ为变异算子;T为遗传运算终止条件。 三,遗传算法的优点。 3.1 对可行解的广泛性表示。遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码得到的基因个体。次编码操作

使得遗传算法可以直接对结构对象进行操作。 (1)通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化。 (2)通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的。 (3)通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树。 (4)通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造的顺序控制系统。 3.2 群体搜索特性。许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点,相反,遗传算法采用的是同时处理群体中多个个体的方法。 3.3 不需要辅助信息。遗传算法仅用适应度函数的数值来评估基因个体,并在此基础上进行遗传操作。更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且某定义域可以任意设定。对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。由于限制条件的缩小,使得遗传算法的应用范围大大扩展。 3.4 内在启发式随机搜索特性。遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。概率仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动的。虽然看起来它是一种盲目搜索方法,实际上它有明确的搜索方向,具有内

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

最新最全的遗传算法工具箱及说明

最新最全的遗传算法工具箱Gaot_v5及说明 Gaot_v5下载地址:https://www.wendangku.net/doc/5f2298607.html,/mirage/GAToolBox/gaot/gaotv5.zip 添加遗传算法路径: 1、 matlab的file下面的set path把它加上,把路径加进去后在 2、 file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下,就OK了

遗传算法工具箱Gaot_v5包括许多实用的函数,各种算子函数,各种类型的选择方式,交叉、变异方式。这些函数按照功能可以分成以下几类:

主程序 ga.m提供了 GAOT 与外部的接口。它的函数格式如下: [x endPop bPop traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFn,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 输出参数及其定义如表 1 所示。输入参数及其定义如表 2 所示。 表1 ga.m的输出参数 输出参数 定义 x 求得的最好的解,包括染色体和适应度 endPop 最后一代染色体(可选择的) bPop 最好染色体的轨迹(可选择的) traceInfo 每一代染色体中最好的个体和平均适应度(可选择的) 表2 ga.m的输入参数 表3 GAOT核心函数及其它函数

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】

遗传算法综述

遗传算法综述 遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。 在阅读了一些相关资料后,我整理出这篇综述,将通过五个部分来介绍遗传算法以及其在计算机科学领域的相关应用、 一、起源和发展分支 尝试性地将生物进化过程在计算机中模拟并用于优化问题求解开始于20世纪50年代末,其目的是将生物进化的思想引入许多工程问题中而成为一种优化工具,这些开拓性的研究工作形成了遗传算法的雏形。但当时的研究进展缓慢,收效甚微。原因是由于缺少一种通用的编码方式,人们只有通过变异才能改变基因结构,而无法使用交叉,因而增加了迭代次数。同时算法本身需要较大的计算量,当时的计算机速度便无法满足要求,因而限制了这一仿生过程技术的迅速发展。20世纪60年代中期,Holland在Fraser和Bremermann等人研究成果的基础上提出了位串编码技术,这种编码技术同时适用于变异操作和交叉操作。 遗传算法的真正产生源于20世纪60年代末到70年代初,美国Michigan大学的Holland教授在设计人工适应系统中开创性地使用了一种基于自然演化原理的搜索机制,并于1975年出版了著名的专著“Adaptation in Natural and Artificial Systems”,这些有关遗传算法的基础理论为遗传算法的发展和完善奠定了的基础。同时,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,设计了遗传算法执行策略和性能评价指标,他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

遗传算法概述

第一章 遗传算法概述 2.1 遗传算法的原理 遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种概率搜索算法。遗传算法是通过模拟生物在自然界中的进化过程而形成的一种优化算法。它的基本过程是:先随机生成规模为m 的初始群体,对连续优化问题即为n R 中的m 个点},,,{,},,,,{21112111m n m m m n x x x x x x x x ==的集合, },,,{21k sn k s k s x x x 称为个体或者染色体,通过对该群体使用遗传操作(包括选择、 交叉、变异遗传算子),得到m 个新的个体,这称作是群体的一代进化,相当于通常优化算法的一次迭代。不断重复这一过程,可看作是群体的逐代演化,直到得到满足给出条件的问题解。 可以看出,遗传算法的关键是进化过程中使用的遗传操作即选择、交叉和变异等算子,这些算子决定了下一代个体的具体位置。 选择策略对算法性能的影响有举足轻重的作用。常用的是轮盘选择和精英选择。 a. 轮盘选择(roulette wheel selection ) 选择的基本依据是个体的适应值,对于最小化问题,个体适应值取为)()(x f K x f -=',其中K 为一足够大的正数。定义第i 个体的选择概率为 ∑=''=n i i i i x f x f p 1)() ( (3) 其意义是个体适应值在群体总适应值中所占的比例。生成一个[0,1]内的随机数r ,若i i p p p r p p p +++≤<+++- 21110,假设00=p ,则选择个体i 。 b. 精英选择(elitist selection ) 当下一代群体的最佳个体适应值小于当前群体最佳个体的适应值,则将当前群体最佳个体或者适应值大于下一代最佳个体适应值的多个个体直接复制到下一代,随机替代或替代最差的下一代群体中的相应数量的个体。 交叉与变异算子的选取与编码方式有关,最初Holland[5] 提出的遗传算法是采用二进制编码来表现个体,后来发现对连续优化问题采用浮点编码可以达到更好的效果,因此越来越多地使用浮点编码,下述的交叉、变异算子针对浮点编码。

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

相关文档