文档库

最新最全的文档下载
当前位置:文档库 > 用待定系数法求an

用待定系数法求an

用待定系数法求an=Aan-1+B型数列通项

例:数列{an}满足a1=1且an+1+2an=1,求其通项公式。

解:由已知,an+1+2an=1,即an=-2 an—1+1

令an+x=-2(an-1+x),则an=-2 an-1-3x,于是-3x=1,故x=-13

∴an-13 =-2(an-1-13 )

故{ an-13 }是公比q为-2,首项为an-13 =23 的等比数列

∴an-13 =23 (-2)n-1=1-(-2)n3

评注:一般地,当A≠1时令an+x=A(an-1+x)有an=A an-1+(A-1)x,则有

(A-1)x=B知x=BA-1 ,从而an+BA-1 =A(an-1+BA-1 ),于是数列{an+BA-1 }是首项为a1+BA -1 、公比为A的等比数列,故an+BA-1 =(a1+BA-1 )An-1,从而

an=(a1+BA-1 )An-1-BA-1 ;特别地,当A=0时{an}为等差数列;当A≠0,B=0时,数列{an}为等比数列。

推广:对于an=A an-1+f(n)(A≠0且A∈R)型数列通项公式也可以用待定系数法求通项公式。

例:数列{an}满足a1=1且an=2an-1+13n(n≥2),求an。

解:令an+x?13n=2(an+x?13n-1)则an=2an-1+ 2x?13n-1-x?13n=53 x?13n-1=5x?13n

而由已知an=2an-1+13n故5x=1,则x=15 。故an+15 ?13n=2(an-1+15 ?13n-1)

从而{an+15 ?13n}是公比为q=2、首项为a1+15 ?13=1615 的等比数列。

于是an+15 ?13n=1615 ×2n-1,则an=1615 ×2n-1-15 ?13n=115 (2n+3-13n-1)

评注:一般情况,对条件an=Aan-1+f(n)而言,可设an+g(n)=A[an-1+g(n-1)],则有Ag(n -1)-g(n)=f(n),从而只要求出函数g(n)就可使数列{ an+g(n)}为等比数列,再利用等比数列通项公式求出an。值得注意的是an+g(n)与an-1+g(n-1)中的对应关系。特别地,当f(n)=B(B 为常数)时,就是前面叙述的例8型。

这种做法能否进一步推广呢?对于an=f(n)an-1+g(n)型数列可否用待定系数法求通项公式呢?

我们姑且类比做点尝试:令an+k(n)=f(n)[an-1+k(n-1)],展开得到

an =f(n)an-1+f(n)k(n-1)-k(n),从而f(n)k(n-1)-k(n)= g(n),理论上讲,通过这个等式k(n)可以确定出来,但实际操作上,k(n)未必能轻易确定出来,请看下题:

数列{an}满足a1=1且an=n2nan-1+1n+1 ,求其通项公式。

在这种做法下得到n2nk(n-1)-k(n)=1n+1 ,显然,目前我们用高中数学知识还无法轻易地求出k (n)来。

通过Sn求an

例10:数列{an}满足an =5Sn-3,求an。

解:令n=1,有a1=5an-3,∴a1=34 。由于an =5Sn-3………①

则an-1 =5 Sn-1-3………②

①-②得到an-an-1=5(Sn-Sn-1)∴an-an-1 =5an

故an=-14 an-1,则{an}是公比为q=-14 、首项an=34 的等比数列,则an=34 (-14 )n-1

评注:递推关系中含有Sn,通常是用Sn和an的关系an=Sn-Sn-1(n≥2)来求通项公式,具体来说有两类:一是通过an=Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为项与项的关系,再根据新的递推关系求出通项公式;二是通过an=Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为前n 项和与前n-1项和的关系,再根据新的递推关系求出通项公式

1 观察法

2 逐减法对an-a(n-1)=f(n)型

3 累商法对a(n+1)/a(n)=f(n)型

4 迭代法

5 待定系数法

6 对数转换法

7 倒数转换法

8 公式法有一个相当复杂的公式基本不会用到

9 a(n+1)=pan+q型

设a(n+1)-m=p(an-m)

a(n+1)=pan+m-pm

m-pm=q 就能求出m

x=px+q叫特征方程

10 a(n+1)=pan+f(n)型

a(n+1)/[p^(n+1)]=an/p^n+f(n)/[p^(n+1)]

设bn=an/p^n

b(n+1)=bn+ f(n)/[p^(n+1)]

11 a(n+2)=pa(n+1)+qn 型

an=pa(n-1)+qa(n-2)

设an-ma(n-1)=k[a(n-1)-ma(n-2)]

an=(m+k)a(n-1)-kma(n-2)

m,k是x^2-px+q=0两根

x^2-px+q=0是特征方程

求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法。

1、通过分解常数,可转化为特殊数列{a n +k }的形式求解

例1、数列{a n }满足a 1=1,a n =

2

1a 1-n +1(n ≥2),求数列{a n }的通项公式。 解:由a n =21a 1-n +1(n ≥2)得a n -2=2

1(a 1-n -2),而a 1-2=1-2=-1, ∴数列{ a n -2}是以2

1为公比,-1为首项的等比数列 ∴a n -2=-(21)1-n ∴a n =2-(21)1-n 说明:这个题目通过对常数1的分解,进行适当组合,可得等比数列{ a n -2},从而达到解决问题的目的。一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=

1

-p q ,从而得等比数列{a n +k }。

例2、数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。 解:由0731=-++n n a a 得3

7311+

-=+n n a a 设a )(311k a k n n +-=++,比较系数得373=--k k 解得4

7-=k ∴{47-n a }是以31-为公比,以4

3471471-=-=-a 为首项的等比数列 ∴1)3

1(4347--?-=-n n a ∴1)31(4347--?-=n n a 2、通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解

例3、数列{a n }满足23,5,21221+-==++n n a a a a n a =0,求数列{a n }的通项公式。

分析:递推式02312=+-++n n n a a a 中含相邻三项,因而考虑每相邻两项的组合,即把中间一项1+n a 的系数分解成1和2,适当组合,可发现一个等比数列}{1--n n a a 。

解:由02312=+-++n n n a a a 得0)(2112=---+++n n n n a a a a

即)n n n n a a a a -=-+++112(2,且32512=-=-a a

∴}{1n n a a -+是以2为公比,3为首项的等比数列

∴1123-+?=-n n n a a

利用逐差法可得112111)()()(a a a a a a a a n n n n n +-++-+-=-++

=2232323021+?++?+?-- n n

=2)1222(321

+++++?-- n n =22

1213+--?n

=123-?n

∴1231-?=-n n a

说明:这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,。

例4、数列{a n }中,n n n a a a a a +===++122123,2,1,求数列{a n }的通项公式。

解:由n n n a a a +=++1223得,3

13212n n n a a a +=

++设)(112n n n n ka a h ka a -=-+++ 比较系数得3132=-=+kh h k ,,解得31,1-==h k 或1,3

1=-=h k 若取31,1-==h k ,则有)(3

1112n n n n a a a a --=-+++ ∴}{1n n a a -+是以3

1-为公比,以11212=-=-a a 为首项的等比数列 ∴11)3

1(-+-=-n n n a a 由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=--- =11)3

1()31()31()31

(232++-+-++-+--- n n

=13

11)31(11

++---n =11)31(43471)31(143---?-=+??????--n n 说明:若本题中取1,31=-=h k ,则有n n n n a a a a 3

131112+=++++即得 }31{1n n a a ++为常数列,故3

73123131311211=+=+==+=+-+a a a a a a n n n n 可转

2。

高中数学解题基本方法——待定系数法

要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a 值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:

第一步,确定所求问题含有待定系数的解析式;

第二步,根据恒等的条件,列出一组含待定系数的方程;

第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:

① 利用对应系数相等列方程;

② 由恒等的概念用数值代入法列方程;

③ 利用定义本身的属性列方程;

④ 利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:

1. 设f(x)=x 2

+m ,f(x)的反函数f -1(x)=nx -5,那么m 、n 的值依次为_____。 A. 52 , -2 B. -52 , 2 C. 52 , 2 D. -52

,-2 2. 二次不等式ax 2+bx +2>0的解集是(-12,13

),则a +b 的值是_____。 A. 10 B. -10 C. 14 D. -14

3. 在(1-x 3)(1+x )10的展开式中,x 5的系数是_____。

A. -297

B.-252

C. 297

D. 207

4. 函数y =a -bcos3x (b<0)的最大值为32,最小值为-12

,则y =-4asin3bx 的最小正周期是_____。

5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________。

6. 与双曲线x 2-y 2

4=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________。

【简解】1小题:由f(x)=

x 2

+m 求出f -1(x)=2x -2m ,比较系数易求,选C ; 2小题:由不等式解集(-12,13),可知-12、13是方程ax 2+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ;

3小题:分析x 5的系数由C 105与(-1)C 102两项组成,相加后得x 5的系数,选D ;

4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案23π; 5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;

6小题:设双曲线方程x 2-y 2

4=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212=1。 Ⅱ、示范性题组:

例1. 已知函数y =mx x n x 22431

+++的最大值为7,最小值为-1,求此函数式。 【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。

【解】 函数式变形为: (y -m)x 2

-43x +(y -n)=0, x ∈R, 由已知得y -m ≠0 ∴ △=(-43)2-4(y -m)(y -n)≥0 即: y 2-(m +n)y +(mn -12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y 2-(m +n)y +(mn -12)=0的两根, 代入两根得:1120497120+++-=-++-=???()()m n mn m n mn 解得:m n ==???51或m n ==???

15 ∴ y =5431122x x x +++或者y =x x x 224351

+++

此题也可由解集(-1,7)而设(y +1)(y -7)≤0,即y 2-6y -7≤0,然后与不等式①比较系数而得:m n mn +=-=-???

6127,解出m 、n 而求得函数式y 。 【注】 在所求函数式中有两个系数m 、n 需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m 、n 的关于y 的一元二次不等式,且知道了它的解集,求参数m 、n 。两种方法可以求解,一是视为方程两根,代入后列出m 、n 的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m 、n 的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y 视为参数,函数式化成含参数y 的关于x 的一元二次方程,可知其有解,利用△≥0,建立了关于参数y 的不等式,解出y 的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。

例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。

用待定系数法求an

【分析】求椭圆方程,根据所给条件,确定几何数据a 、b 、c 之值,问题就全部解决了。设a 、b 、c 后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为a -c 的值后列出第二个方程。 【解】 设椭圆长轴2a 、短轴2b 、焦距2c ,则|BF ’|=a ∴ a b c a a b a c 2222222105=++=-=-?????() 解得:a b ==?????105

∴ 所求椭圆方程是:x 210+y 2

5

=1 也可有垂直关系推证出等腰Rt △BB ’F ’后,由其性质推证出等腰Rt △B ’O ’F ’,再进行如

下列式: b c a c a b c

=-=-=+?????105222 ,更容易求出a 、b 的值。

【注】 圆锥曲线中,参数(a 、b 、c 、e 、p )的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a 、b 、c 、e )不变,本题就利用了这一特征,列出关于a -c 的等式。

一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。

例3. 是否存在常数a 、b 、c ,使得等式1·22+2·32+…+n(n +1)2=n n ()+112

(an 2+bn +c)对一切自然数n 都成立?并证明你的结论。 (89年全国高考题)

【分析】是否存在,不妨假设存在。由已知等式对一切自然数n 都成立,取特殊值n =1、2、3列出关于a 、b 、c 的方程组,解方程组求出a 、b 、c 的值,再用数学归纳法证明等式对所有自然数n 都成立。

B

【解】假设存在a、b、c使得等式成立,令:n=1,得4=1

6

(a+b+c);n=2,得22

=1

2

(4a+2b+c);n=3,得70=9a+3b+c。整理得:

a b c

a b c

a b C

++=

++=

++=

?

?

?

?

?

24

4244

9370

,解得

a

b

c

=

=

=

?

?

?

?

?

3

11

10

于是对n=1、2、3,等式1·22+2·32+…+n(n+1)2=

n n()

+1

12

(3n2+11n+10)

成立,下面用数学归纳法证明对任意自然数n,该等式都成立:

假设对n=k时等式成立,即1·22+2·32+…+k(k+1)2=k k()

+1

12

(3k2+11k+10);

当n=k+1时,1·22+2·32+…+k(k+1)2+(k+1)(k+2)2=k k()

+1

12

(3k2+11k

+10) +(k+1)(k+2)2=k k()

+1

12

(k+2)(3k+5)+(k+1)(k+2)2=

()()

k k

++

12

12

(3k2

+5k+12k+24)=()()

k k

++

12

12

[3(k+1)2+11(k+1)+10],

也就是说,等式对n=k+1也成立。

综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。

【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到。此种解法中,也体现了方程思想和特殊值法。对于是否存在性问题待定系数时,可以按照先试值、再猜想、最

后归纳证明的步骤进行。本题如果记得两个特殊数列13+23+…+n3、12+22+…+n2求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n+1)2=n3+

2n2+n得S

n

=1·22+2·32+…+n(n+1)2=(13+23+…+n3)+2(12+22+…+n2)

+(1+2+…+n)=n n

22

1

4

()

+

+2×

n n n

()()

++

121

6

n n()

+1

2

n n()

+1

12

(3n2+11n+

10),综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。

例4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x为何值时,矩形盒子容积最大,最大容积是多少?

【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究。

【解】依题意,矩形盒子底边边长为(30-2x)cm,底边宽为(14-2x)cm,高为xcm。

∴盒子容积V=(30-2x)(14-2x)x=4(15-x)(7-x)x ,

显然:15-x>0,7-x>0,x>0。

设V=4

ab

(15a-ax)(7b-bx)x (a>0,b>0)

要使用均值不等式,则--+=-=-=???

a b a ax b bx x 10157 解得:a =14, b =34

, x =3 。 从而V =643(154-x 4)(214-34x)x ≤643(15421

43

+)3=643×27=576。 所以当x =3时,矩形盒子的容积最大,最大容积是576cm 3。

【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系数,可以用“待定系数法”求。本题解答中也可以令V =4ab (15a -ax)(7-x)bx 或 4ab

(15-x)(7a -ax)bx ,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了“凑配法”和“函数思想”。

Ⅲ、巩固性题组:

1. 函数y =log a x 的x ∈[2,+∞)上恒有|y|>1,则a 的取值范围是_____。

A. 2>a>12且a ≠1

B. 0

或12或0

2. 方程x 2+px +q =0与x 2

+qx +p =0只有一个公共根,则其余两个不同根之和为_____。

A. 1

B. -1

C. p +q

D. 无法确定

3. 如果函数y =sin2x +a ·cos2x 的图像关于直线x =-π8对称,那么a =_____。 A. 2 B. -2 C. 1 D. -1

4. 满足C n 0+1·C n 1+2·C n 2+…+n ·C n n

<500的最大正整数是_____。

A. 4

B. 5

C. 6

D. 7

5. 无穷等比数列{a n }的前n 项和为S n =a -1

2n , 则所有项的和等于_____。 A. -12 B. 1 C. 12

D.与a 有关 6. (1+kx)9=b 0+b 1x +b 2x 2+…+b 9x 9

,若b 0+b 1+b 2+…+b 9=-1,则k =______。

7. 经过两直线11x -3y -9=0与12x +y -19=0的交点,且过点(3,-2)的直线方程为_____________。

8. 正三棱锥底面边长为2,侧棱和底面所成角为60°,过底面一边作截面,使其与底面成30°角,则截面面积为______________。

9. 设y=f(x)是一次函数,已知f(8)=15,且f(2)、f(5)、(f14)成等比数列,求f(1)+f(2)+…+f(m)的值。

10. 设抛物线经过两点(-1,6)和(-1,-2),对称轴与x轴平行,开口向右,直线y=2x+7和抛物线截得的线段长是410, 求抛物线的方程。