文档库 最新最全的文档下载
当前位置:文档库 › 初学者如何在线快速判断MOS管是否不良

初学者如何在线快速判断MOS管是否不良

初学者如何在线快速判断MOS管是否不良
初学者如何在线快速判断MOS管是否不良

一般在维修过程中,MOS管是比较容易坏的一种器件,然而在板上判断其好坏时,是很多初学者容易误判的一种器件,往往很多初学者测量到某个MOS管DS极短路或半击穿时.

都认为是MOS管坏掉,着急着用风枪取下后,测量主板的原焊点DS极还是短路状况,而MOS管却是好的,又要装回去再找问题,这样徒劳无功又耽误时间,那么如何简单快速在板上判断MOS管好坏呢,方法非常简单:如下

一般mos管在板测量DS极短路,不一定是此mos管的问题,需测量GS脚的数值是否短路或偏小(一般在板正常范围300-800之间而且基本一致)可快速判断。若GS脚的数值也短路,基本就是此mos管不良。如下图CPU供电上MOS管为例:

上图中ABC三个(并联)MOS测量出ABC三个mos管的DS极都为短路,因为并联,任意一个mos管短路,都会导致量出其他两个mos管伴随着短路。测GS脚时,发现B mos 管的GS脚数值较小,取下此MOS管后,再测量一切正常

场效应管和mos管的区别

功率场效应晶体管MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET (Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS 器件为例进行讨论。 功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET 采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。 2.2功率MOSFET的工作原理 截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1 反偏,漏源极之间无电流流过。 导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面 当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。 2.3功率MOSFET的基本特性

三极管MOS管原理(很详细)

双极型晶体管
双极型晶体管又称三极管。电路表示符号: B J T 。根据功率的不同具有不同的外形结构。
(a )小功率管 (b )小功率管 (c )中功率管 (d )大功率管
1
双极型晶体管的几种常见外形

一. 基本结构
由两个掺杂浓度不同且背靠背排列的PN结组成, 根据排列方式的不同可分为NPN型和PNP型两种,每个 PN结所对应区域分别称为发射区、基区和集电区。
C NPN型 B
基极
集电极
集电极
C P N P E
2
N P N E 发射极
PNP型
B
基极 发射极

C B IB E
IC B IE IB
C
IC
E
IE
NPN型三极管
PNP型三极管
制成晶体管的材料可以为Si或Ge。
3

集电区: 面积较大
C N P N E
集电极
基区:较薄, 掺杂浓度低
基极
B
发射区:掺 杂浓度较高
4
发射极

C N P N E
集电极
集电结
B J T 是非线性元 件,其工作特性与其 工作模式有关: 当E B 结加正偏,C B 结 加反偏时, B J T 处于放 大模式;
基极
B
发射结 发射极
当E B 结和C B 结均加正偏时, B J T 处于饱和模式; 当E B 结加零偏或反偏、C B 结加反偏时, B J T 处于截止 模式。 B J T 主要用途是对变化的电流、电压信号进行放大, 饱和模式和截止模式主要用于数字电路中。
5

MOS管及MOS管的驱动电路设计

MOS管及MOS管的驱动电路设计 MOS管及MOS管的驱动电路设计 摘要:本文将对MOSFET的种类,结构,特性及应用电路作一简单介绍,并控讨了一下MOSFET驱动电路设计问题在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。右图是这两种MOS管的符号。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。下图是MOS管的构造图,通常的原理图中都画成右图所示的样子。(栅极保护用二极管有时不画) MOS管的三个管脚之间有寄生电容存在,如右图所示。这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,在MOS管的驱动电路设计时再详细介绍。

2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V 或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,使用与源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 右图是瑞萨2SK3418的Vgs电压和Vds电压的关系图。可以看出小电流时,Vgs达到4V,DS间压降已经很小,可以认为导通。 3、MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压(如 2SK3418特性图所示),这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

三极管与MOS管区别

1.场效应管和三极管输入电阻的差异? 答:1.场效应管是单极、三极管是双极区别. 2.解决问题方面: 场效应管是电压控制电流源,控制电压和电流属于不同的支路,因而电压的求解一般不难,进而根据漏极电流表达式来求出电流值,然后进行模型分析,求出跨导和输出电阻. 而三极管要先建立模型,然后进行电路分析,求解过程特别是计算很复杂,容易出错; 总体而言,我觉得场效应管的分析要比三极管简单一些. 3.三极管和场效应管的比较可以归纳以下几点: 一、在三极管中,空穴和自由电子都参与导电,称为双极型器件,用BJT表示;而场效应管只有多子导电,称为单极型器件,用FET表示.由于多子浓度不受外界温度、光照、辐射的影响,在环境变化剧烈的条件下,选用FET比较合适. 这也就是我们通常所说的场效应管比较稳定的原因. 二、在放大状态工作时,三极管发射结正偏,有基极电流,为电流控制器件,相应的输入电阻较小,约103Ω;FET在放大状态工作时无栅极电流,为电压控制器件,输入电阻很大,JFET的输入电阻大于107Ω,MOS管的输入电阻大于109Ω. 三、场效应管的源极和漏极在结构上对称,可以互换使用(但应注意,有时厂家已将MOS管的源极与衬底在管内已经短接,使用时就不能互换).对耗尽型MOS 管的VGS可正、可负、可为零,使用时比较灵活.三极管的集电极和发射

极一般不能互换使用. 四、在低电压小电流状态下工作时,FET可作为压控可变线性电阻器和导通电阻很小的无触点电子开关. 五、MOS管工艺简单,功耗小,适合于大规模集成.三极管的增益高,非线性失真小,性能稳定.在分立元件电路和中、小规模集成电路中,三极管仍占优势. 六、三极管的转移特性(ic-vbe的关系)按指数规律变化,场效应管的转移特性按平方规律变化,因此场效应管的非线性失真比三极管的非线性失真大.七、场效应管的三种基本组态电路(共源、共漏和共栅)可以对照三极管的共发、共集和共基电路,由于场效应管的栅极无电流,所以输入电阻R'i≈∞.跨导gm 比三极管的小一个数量级,gm我们可以用转移特性求导得到 4.三极管可以说是电流控制电流源的器件,而电流是通过输入电阻的大小来体现的;但场效应管是电压控制电流源的器件 5.记住四种mos管的特性曲线的方法:只需记住n沟道的emos管的曲线,它的Vgs是大于0的,且曲线呈递增趋势.而p沟道的emos的Vgs是小于0的,且呈现递减趋势.dmos的Vgs既有大于0的部分,又有小于0的部分,按照n沟道递增,p沟道递减的曲线特征就可以将dmos的特性曲线记住了 6.1)场效应管是电压控制元件,而三级管是电流控制元件; 2)场效应管是利用多数载流子导电,所以称为单极性器件,而三级管既有多子,

分享一个比较经典的MOS管驱动电路

问题提出: 现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V 左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。 为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate 电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。 同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。 3,双电压应用 在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。两个电压采用共地方式连接。 这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS 管,同时高压侧的MOS管也同样会面对1和2中提到的问题。 在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。 于是我设计了一个相对通用的电路来满足这三种需求。 电路图如下:

图1 用于NMOS的驱动电路 图2 用于PMOS的驱动电路 这里我只针对NMOS驱动电路做一个简单分析: Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超

三极管和MOS管做开关用时的区别

三极管和MOS管做开关用时的区别 ?我们在做电路设计中三极管和MOS管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 ?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

MOS管特性(经典)

MOS管开关 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失

三极管和MOS管的区别

工作性质:三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,mos管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和mos 晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而mos三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。 (5)场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。

MOS管与三极管做开关用法比较

Kevin pen 1/1 MOS 管(MOSFET )的压降 是指MOSFET 饱和导通的时候,VDS=I*RDS(on)的电压。VDS 表示场效应管的漏极和源极的电压,G 表示栅极,I 表示流过DS 的电流,RDS(on)表示导通电阻,一般为几百毫欧。 MOSFET 的管压降,一般指的是静态压降。只要知道导通阻抗和通过的电流的话用上面的公式就可以计算出来压降是多少了。 三极管管压降 三极管的管压降Uce 就是指集电极与发射极的电压。一般情况下,CE 极电压在0.3或者0.3V 以下时,三极管进入饱和区的工作状态,集电极电流不随着基集电流增加而增加了,也叫饱和电压。 正常三极管管压降为0.1-0.7V 。 由于管压降Uce 与集电极电流ic 具有非线性的函数关系,Uce 的大小随着Ice 的增大,在一定的范围内增大。 通过Ic 与Uce (饱和压降)的曲线图,就可以清晰的知道Uce 的大小了。 对比应用 通过初步计算,在流过相同的电流(小于100MA )的情况下,场效应管的管压降要比三极管的管压降略低。一般小于0.1V 。随着电流增大,三极管管压降最大达到0.7V 左右。 下图为三极管的管压降示例图,一般在DATASHEET 中都有给出。 对于场效应管(MOSFET ),VDS 取决于电流和导通电阻RDS(on)。导通电阻一般变化不大,但是与VGS 有关,VGS 大导通程度也大,导通电阻就小。 如果RDS(on)=250M Ω,流过电流为100MA ,管压降VDS=0.025V 。图一为0.05V ,图二为0.03V 。 因此,可以看出,在实际开关应用中,如果要使被控的电压的压降尽量小,MOSFET 比三极管有略微的优势。

分享一个比较经典的MOS管驱动电路

问题提出:现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate 上的电压只有。这时候,我们选用标称gate 电压的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM fe 路提供给MOS管的驱动电压是不稳定的。 为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。同时,如果简单的用电阻分压的原理降低gate 电压,就会出现输入电压比较高的时候,MOS I工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。 3,双电压应用

在一些控制电路中,逻辑部分使用典型的5V 或者数字电压,而功率部分使用12V 甚至更高的电压。两个电压采用共地方式连接。 这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS 管,同时高压侧的MOS t也同样会面对1和2中提到的问题。 在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS区动IC,似 乎也没有包含gate 电压限制的结构。于是我设计了一个相对通用的电路来满足这三种需求。 电路图如下: ? 图1用于NMO的驱动电路 图2用于PMO的驱动电路 这里我只针对NMO驱动电路做一个简单分析: VI和Vh分别是低端和高端的电源,两个电压可以是相同的,但是VI不应该超过Vh。 Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4 不会同时导通。

三极管MOS管复习题

习题3 客观检测题 一、填空题 2. 三极管的发射区 杂质 浓度很高,而基区很薄。 5. 处于放大状态的晶体管,集电极电流是 少数载流 子漂移运动形成的。 6. 工作在放大区的某三极管,如果当I B 从12μA 增大到22μA 时,I C 从1mA 变为2mA ,那么它的β约为 100 。 8. 双极型三极管是指它部的 参与导电载流子 有两种。 9. 三极管工作在放大区时,它的发射结保持 正向 偏置,集电结保持 反向 偏置。 11. 为了使高阻信号源与低电阻负载能很好的配合,可以在信号源与低电阻负载间接入 共 集电极 组态的放大电路。 12. 题图3.0.1所示的图解,画出了某单管共射放大电路中晶体管的输出特性和直流、交流负载线。由此可以得出: (1)电源电压CC V = 6V ; (2)静态集电极电流CQ I = 1mA ;集电极电压CEQ U = 3V ; (3)集电极电阻C R = 3k Ω ;负载电阻L R = 3k Ω ; (4)晶体管的电流放大系数β= 50 ,进一步计算可得电压放大倍数v A = -50 ;('bb r 取200Ω); (5)放大电路最大不失真输出正弦电压有效值约为 1.06V ; (6)要使放大电路不失真,基极正弦电流的振幅度应小于 20μA 。 13. 稳定静态工作点的常用方法有 射极偏置电路 和 集电极-基极偏置电路 。 14. 有两个放大倍数相同,输入电阻和输出电阻不同的放大电路A 和B ,对同一个具有阻的信号源电压进行放大。在负载开路的条件下,测得A 放大器的输出电压小,这说明A 的输入电阻 小 。 15. 三极管的交流等效输入电阻随 静态工作点 变化。 16. 共集电极放大电路的输入电阻很 大 ,输出电阻很 小 。 17. 放大电路必须加上合适的直流 偏置 才能正常工作。 题图3.0.1

三极管和MOS管的区别是什么

三极管和MOS管的区别是什么 三极管和MOS管的区别是什么? 工作性质: 1.三极管用电流控制,MOS管属于电压控制。 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以 npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

MOS管驱动电路详解

MOS管驱动电路综述连载(一) 时间:2009-07-06 8756次阅读【网友评论2条我要评论】收藏 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS 的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P 沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3、MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

晶体三极管放大电路和MOS管工作原理

晶体三极管可以组成三种基本放大电路,如图5-38所示。的三种放大电路外图(a)是共发射极电路,信号从基极发射极输人,从集电极发射极输出,发射极是公共端。这是最常用的放大电路,图(b)是共基极电路,信号从发射极基极输入,从集电极基极输出,基极是公共端。图(c)是共集电极电路,信号从基极集电极输人,从发射极集电极输出,集电极是公共端。必须指出,电源对交流信号来说可以看成短路,三种电路的比较见表5-23.

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电

阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

MOS管与三极管做开关用法比较

1 MOS 管(MOSFET )的 是指MOSFET 饱和导通的时候,VDS=I*RDS(on)的电压。VDS 表示场效应管的漏极和源极的电压,G 表示栅极,I 表示流过DS 的电流,RDS(on)表示导通电阻,一般为几百毫欧。 MOSFET 的管压降,一般指的是静态压降。只要知道导通和通过的电流的话用上面的公式就可以计算出来是多少了。 三极管管压降 三极管的管Uce 就是指与的电压。一般情况下,CE 极电压在0.3或者0.3V 以下时,三极管进入饱和区的工作状态,集电极电流不随着基集电流增加而增加了,也叫饱和电压。 正常三极管管压降为0.1-0.7V 。 由于管压降Uce 与集电极电流ic 具有非线性的函数关系,Uce 的大小随着Ice 的增大,在一定的范围内增大。 通过Ic 与Uce (饱和压降)的曲线图,就可以清晰的知道Uce 的大小了。 对比应用 通过初步计算,在流过相同的电流(小于100MA )的情况下,场效应管的管压降要比三极管的管压降略低。一般小于0.1V 。随着电流增大,三极管管压降最大达到0.7V 左右。 下图为三极管的管压降示例图,一般在DATASHEET 中都有给出。 对于场效应管(MOSFET ),VDS 取决于电流和导通电阻RDS(on)。导通电阻一般变化不大,但是与VGS 有关,VGS 大导通程度也大,导通电阻就小。 如果RDS(on)=250M Ω,流过电流为100MA ,管压降VDS=0.025V 。图一为0.05V ,图二为0.03V 。 因此,可以看出,在实际开关应用中,如果要使被控的电压的压降尽量小,MOSFET 比三极管有略微的优势。

MOS管驱动电路总结

MOS管驱动电路总结 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N 沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS 指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电

路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电

MOS管与三极管测量法

下面是三极管的架构以及在电路图中的各种标识方法 (原文件名:1.jpg) (原文件名:2.jpg)

(原文件名:3.jpg) 万用表打到二极管档(蜂鸣档)对三极管测量时...首先我们要确定哪只脚是b极.于是用红表笔接触其中任意一只脚不动.用黑表笔去接触另外两只脚.如果能够测得两组相近且小于1的数字.说明此时红笔接触的就是b极.如果测得两组数字不相近..那说明此时红笔接触的不是b极..应把红笔换一只脚..黑笔去测另外两只脚...直到找到b极为止...假设我们知道哪只脚是b极...怎样去判断另外两只脚c极和e极呐!如下图:

(原文件名:4.jpg) 图中红笔为b极.黑笔在另外两脚分别没得两组相近的数据..其中有一组数据会稍微大一点...此脚即为e极.小的那脚则为c极....并且我们知道此管为NPN型三极管.因为红笔在b 极! 而对于PNP型三极管的测量方法也一样...只不过是黑表笔在b极..红笔接触另外两脚能测得两组相近的数据.,如下图: (原文件名:5.jpg) 下面是对场效应管的测量方法. 场效应管英文缩写为FET.可分为结型场效应管(JFET)和绝缘栅型场效应管(MOSFET),我们平常简称为MOS管.而MOS管又可分为增强型和耗尽型而我们平常主板中常见使用的也就是增强型的MOS管. 下图为MOS管的标识

(原文件名:6.jpg) 我们主板中常用的MOS管GDS三个引脚是固定的..不管是N沟道还是P沟道都一样..把芯片放正...从左到右分别为G极D极S极!如下图:

(原文件名:7.jpg) 用二极管档对MOS管的测量...首先要短接三只引脚对管子进行放电.. 1然后用红表笔接S极.黑表笔接D极.如果测得有500多的数值..说明此管为N沟道..

二极管、三极管和MOS管

一、二极管三极管MOS器件基本原理 P-N结及其电流电压特性 晶体二极管为一个由 p 型半导体和 n 型半导体形成的 p-n 结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于 p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流:。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流 I0 。当外加的反向电压高到一定程度时, p-n 结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

双极结型三极管相当于两个背靠背的二极管 PN 结。正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。在共发射极晶体管电路中 , 发射结在基极电路中正向偏置 , 其电压降很小。绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。 首页 [1][2][3]下一页尾页 由于 VBE 很小,所以基极电流约为 IB= 5V/50 k Ω = 0.1mA 。如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC= β*IB=10mA。在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,现了双极晶实体管的电流放大作用。

电路设计中三极管和mos管做开关用时有什么区别

电路设计中三极管和mos管做开关用时有什么区别 我们在做电路设计中三极管和mos管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,mos管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和mos晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN

的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn 结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而mos 三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。 (5)场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。 (6)场效应管分成结型和绝缘栅型两大类,其控制原理都是一样的。

相关文档
相关文档 最新文档