文档库 最新最全的文档下载
当前位置:文档库 › matlab动力学分析程序详解

matlab动力学分析程序详解

matlab动力学分析程序详解
matlab动力学分析程序详解

1

1.微分方程的定义

对于duffing 方程03

2

=++x x x ω

,先将方程写作???

--==3

1122

21x x x x x ω function dy=duffing(t,x) omega=1;%定义参数 f1=x(2);

f2=-omega^2*x(1)-x(1)^3; dy=[f1;f2];

2.微分方程的求解

function solve (tstop) tstop=500;%定义时间长度 y0=[0.01;0];%定义初始条件

[t,y]=ode45('duffing',tstop,y0,[]);

function solve (tstop) step=0.01;%定义步长

y0=rand(1,2);%随机初始条件

tspan=[0:step:500];%定义时间范围 [t,y]=ode45('duffing',tspan,y0);

3.时间历程的绘制

时间历程横轴为t ,纵轴为y ,绘制时只取稳态部分。 plot(t,y(:,1));%绘制y 的时间历程 xlabel('t')%横轴为t ylabel('y')%纵轴为y grid;%显示网格线

2

axis([460 500 -Inf Inf])%图形显示范围设置

4.相图的绘制

相图的横轴为y ,纵轴为dy/dt ,绘制时也只取稳态部分。红色部分表示只取最后1000个点。

plot(y(end-1000:end ,1),y(end-1000:end ,2));%绘制y 的时间历程

xlabel('y')%横轴为y

ylabel('dy/dt')%纵轴为dy/dt grid;%显示网格线

5.Poincare 映射的绘制

对于不同的系统,Poincare 截面的选取方法也不同

对于自治系统一般每过其对应线性系统的固有周期,截取一次 对于非自治系统,一般每过其激励的周期,截取一次

例程:duffing 方程03

2=++x x x ω

的poincare 映射 function poincare(tstop)

global omega; omega=1;

T=2*pi/omega;%线性系统的周期或激励的周期 step=T/100;%定义步长为T/100 y0=[0.01;0];%初始条件

tspan=[0:step:100*T];%定义时间范围 [t,y]=ode45('duffing',tspan,y0);

for i=5000:100:10000%稳态过程每个周期取一个点 plot(y(i,1),y(i,2),'b.'); hold on;% 保留上一次的图形 end

xlabel('y');ylabel('dy/dt');

3

Poincare 映射也可以通过取极值点得到 function poincare(tstop) y0=[0.01;0];

tspan=[0:0.01:500];

[t,y]=ode45('duffing',tspan,y0); count=find(t>100);%截取稳态过程 y=y(count,:);

n=length(y(:,1));%计算点的总数 for i=2:n-1

if y(i-1,1)+epsy(i+1,1)+eps % 简单的取出局部最大值

plot(y(i,1),y(i,2),'.'); hold on end end

xlabel('y');ylabel('dy/dt');

6.频谱

yy=fft(y(end-1000:end,1)); N=length(yy); power=abs(yy);

freq=(1:N-1)*1/step/N;

plot(freq(1:N/2),power(1:N/2)); xlabel('f(y)') ylabel('y')

7.算例

duffing 方程03

=++x x x

的时间历程,相图,频谱和poincare 映射。

function dy=duffing(t,x)

omega=1;%定义参数

f1=x(2);

f2=-omega^2*x(1)-x(1)^3;

dy=[f1;f2]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function duffsim(tstop)

step=0.01

y0=[0.1;0];

tspan=[0:step:500];

[t,y]=ode45('duffing',tspan,y0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,1)

plot(t,y(:,1));%绘制y的时间历程

xlabel('t')%横轴为t

ylabel('y')%纵轴为y

grid;%显示网格线

axis([460 500 -Inf Inf])%显示范围设置%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,2)

plot(y(end-1000:end,1),y(end-1000:end,2));%绘制y的时间历程

xlabel('y')%横轴为y

ylabel('dy/dt')%纵轴为dy/dt

grid;%显示网格线%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,3)

yy=fft(y(end-1000:end,1));

4

N=length(yy);

power=abs(yy);

freq=(1:N-1)*1/step/N;

plot(freq(1:N/2),power(1:N/2));

xlabel('f(y)')

ylabel('y') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,4)

count=find(t>100);%截取稳态过程

y=y(count,:);

n=length(y(:,1));%计算点的总数

for i=2:n-1

if y(i-1,1)+epsy(i+1,1)+eps % 简单的取出局部最大值

plot(y(i,1),y(i,2),'.');hold on;

end

end

xlabel('y');ylabel('dy/dt');

5

8.分岔图的绘制

随F变化的分岔图。

+

+

3.03=

-

x2.1

F

t

x

x

x

cos

function dy=duffing(t,x)

global c;

omega=1;%定义参数

f1=x(2);

f2=omega^2*x(1)-x(1)^3-0.3*x(2)+c*cos(1.2*t); dy=[f1;f2]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

global c; %定义全局变量

range=[0.1:0.002:0.9];%定义参数变化范围

k=0;

6

YY=[];%定义空数组

for c=range

y0=[0.1;0];%初始条件

k=k+1;

tspan=[0:0.01:400];

[t,Y]=ode45('duffing',tspan,y0);

count=find(t>200);

Y=Y(count,:);

j=1;

n=length(Y(:,1));

for i=2:n-1

if Y(i-1,1)+epsY(i+1,1)+eps % 简单的取出局部最大值。

YY(k,j)=Y(i,1);

j=j+1;

end

end

if j>1

plot(c,YY(k,[1:j-1]),'k.','markersize',3);

end

hold on;

index(k)=j-1;

end

xlabel('c');

ylabel('y');

7

随F变化的分岔图

F=0.20

8

9

F=0.27

F=0.275

F=0.2875

10

F=0.32

F=0.36

F=0.4

11

F=0.652

F=0.8

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

matlab在统计数据的描述性分析的应用

统计数据的描述性分析 一、实验目的 熟悉在matlab中实现数据的统计描述方法,掌握基本统计命令:样本均值、样本中位数、样本标准差、样本方差、概率密度函数pdf、概率分布函数df、随机数生成rnd。 二、实验内容 1 、频数表和直方图 数据输入,将你班的任意科目考试成绩输入 >> data=[91 78 90 88 76 81 77 74]; >> [N,X]=hist(data,5) N = 3 1 1 0 3 X = 75.7000 79.1000 82.5000 85.9000 89.3000 >> hist(data,5)

2、基本统计量 1) 样本均值 语法: m=mean(x) 若x 为向量,返回结果m是x 中元素的均值; 若x 为矩阵,返回结果m是行向量,它包含x 每列数据的均值。 2) 样本中位数 语法: m=median(x) 若x 为向量,返回结果m是x 中元素的中位数; 若x 为矩阵,返回结果m是行向量,它包含x 每列数据的中位数3) 样本标准差 语法:y=std(x) 若x 为向量,返回结果y 是x 中元素的标准差; 若x 为矩阵,返回结果y 是行向量,它包含x 每列数据的标准差

std(x)运用n-1 进行标准化处理,n是样本的个数。 4) 样本方差 语法:y=var(x); y=var(x,1) 若x 为向量,返回结果y 是x 中元素的方差; 若x 为矩阵,返回结果y 是行向量,它包含x 每列数据的方差 var(x)运用n-1 进行标准化处理(满足无偏估计的要求),n 是样本的个数。var(x,1)运用n 进行标准化处理,生成关于样本均值的二阶矩。 5) 样本的极差(最大之和最小值之差) 语法:z= range(x) 返回结果z是数组x 的极差。 6) 样本的偏度 语法:s=skewness(x) 说明:偏度反映分布的对称性,s>0 称为右偏态,此时数据位于均值右边的比左边的多;s<0,情况相反;s 接近0 则可认为分布是对称的。 7) 样本的峰度 语法:k= kurtosis(x) 说明:正态分布峰度是3,若k 比3 大得多,表示分布有沉重的尾巴,即样本中含有较多远离均值的数据,峰度可以作衡量偏离正态分布的尺度之一。 >> mean(data) ,

MATLAB数据分析与多项式计算(M)

第7章 MATLAB数据分析与多项式计算 6.1 数据统计处理 6.2 数据插值 6.3 曲线拟合 6.4 离散傅立叶变换 6.5 多项式计算 6.1 数据统计处理 6.1.1 最大值和最小值 MATLAB提供的求数据序列的最大值和最小值的函数分别为max 和min,两个函数的调用格式和操作过程类似。 1.求向量的最大值和最小值 求一个向量X的最大值的函数有两种调用格式,分别是: (1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。 (2) [y,I]=max(X):返回向量X的最大值存入y,最大值的序号存入I,如果X中包含复数元素,则按模取最大值。 求向量X的最小值的函数是min(X),用法和max(X)完全相同。 例6-1 求向量x的最大值。 命令如下: x=[-43,72,9,16,23,47]; y=max(x) %求向量x中的最大值 [y,l]=max(x) %求向量x中的最大值及其该元素的位置 2.求矩阵的最大值和最小值 求矩阵A的最大值的函数有3种调用格式,分别是: (1) max(A):返回一个行向量,向量的第i个元素是矩阵A的第i 列上的最大值。 (2) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列的最大值,U向量记录每列最大值的行号。 (3) max(A,[],dim):dim取1或2。dim取1时,该函数和max(A)完全相同;dim取2时,该函数返回一个列向量,其第i个元素是A矩阵的第i行上的最大值。 求最小值的函数是min,其用法和max完全相同。

例6-2 分别求3×4矩阵x中各列和各行元素中的最大值,并求整个矩阵的最大值和最小值。 3.两个向量或矩阵对应元素的比较 函数max和min还能对两个同型的向量或矩阵进行比较,调用格式为: (1) U=max(A,B):A,B是两个同型的向量或矩阵,结果U是与A,B 同型的向量或矩阵,U的每个元素等于A,B对应元素的较大者。 (2) U=max(A,n):n是一个标量,结果U是与A同型的向量或矩阵,U的每个元素等于A对应元素和n中的较大者。 min函数的用法和max完全相同。 例6-3 求两个2×3矩阵x, y所有同一位置上的较大元素构成的新矩阵p。 6.1.2 求和与求积 数据序列求和与求积的函数是sum和prod,其使用方法类似。设X是一个向量,A是一个矩阵,函数的调用格式为: sum(X):返回向量X各元素的和。 prod(X):返回向量X各元素的乘积。 sum(A):返回一个行向量,其第i个元素是A的第i列的元素和。 prod(A):返回一个行向量,其第i个元素是A的第i列的元素乘积。 sum(A,dim):当dim为1时,该函数等同于sum(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素之和。 prod(A,dim):当dim为1时,该函数等同于prod(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素乘积。 例6-4 求矩阵A的每行元素的乘积和全部元素的乘积。 6.1.3 平均值和中值 求数据序列平均值的函数是mean,求数据序列中值的函数是median。两个函数的调用格式为: mean(X):返回向量X的算术平均值。 median(X):返回向量X的中值。

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

Matlab对采样数据进行频谱分析

使用Matlab对采样数据进行频谱分析 1、采样数据导入Matlab 采样数据的导入至少有三种方法。 第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。 第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。据本人经验,当数据大于15万对之后,读入速度就会显著变慢,出现假死而失败。 第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load 等,如果采样数据保存在txt文件中,则推荐使用 textread命令。如 [a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。强烈推荐! 2、对采样数据进行频谱分析 频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100; t=[0:1/fs:100]; N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t); %上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析 figure(1) plot(t,p); grid on title('信号 p(t)'); xlabel('t') ylabel('p')

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

Matlab大数据处理

Matlab大数据处理2:硬盘访问.mat文件 分类:Matlab Hack2013-09-08 20:16 146人阅读评论(0) 收藏举报Matlab程序中经常要访问.mat文件,通常在作法是用load函数直接加载.mat文件。如果.mat文件非常大,超过了系统可用内存的时候该怎么办呢?Matlab2013b为提供了matfile函数,matfile函数可以通过索引直接访问.mat文件中的Matlab变量,而无需将.mat文件加载入内存。 matfile有两种用法: m = matfile(filename),用文件名创建matfile对象,通过这个对象可以直接访问mat文件中的matlab变量。 m = matfile(filename,'Writable',isWritable),isWritable开启或关闭文件写操作。 使用示例: 1. 向mat文件中写入变量 x = magic(20); m = matfile('myFile.mat'); % 创建一个指向myFile.mat的matfile对象 m.x = x; % 写入x m.y(81:100,81:100) = magic(20); % 使用坐标索引

2. 加载变量 filename = 'topography.mat'; m = matfile(filename); topo = m.topo; %读取变量topo [nrows,ncols] = size(m,'stocks'); %读取stocks变量的size avgs = zeros(1,ncols); for idx = 1:ncols avgs(idx) = mean(m.stocks(:,idx)); end 3. 开启写权限 filename = 'myFile.mat'; m = matfile(filename,'Writable',true); 或者 m.Properties.Writable = true;

数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序

(Hilbert 矩阵)病态线性方程组的求解 理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组的求解Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ?=,11 ij h i j = +-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系 2. 对不同的n ,取(1,1,,1)n x =∈K ?,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭 代,SOR 迭代和共轭梯度法求解,比较结果。 3. 结合计算结果,试讨论病态线性方程组的求解。 第1小题: condition.m %第1小题程序 t1=20;%阶数n=20 x1=1:t1; y1=1:t1; for i=1:t1 H=hilb(i); y1(i)=log(cond(H)); end plot(x1,y1); xlabel('阶数n'); ylabel('2-条件数的对数(log(cond(H))'); title('2-条件数的对数(log(cond(H))与阶数n 的关系图'); t2=200;%阶数n=200 x2=1:t2; y2=1:t2; for i=1:t2 H=hilb(i); y2(i)=log(cond(H)); end plot(x2,y2); xlabel('阶数n'); ylabel('2-条件数的对数(log(cond(H))'); title('2-条件数的对数(log(cond(H))与阶数n 的关系图'); 画出Hilbert 矩阵2-条件数的对数和阶数的关系

n=200时 n=20时 从图中可以看出, 1)在n小于等于13之前,图像近似直线 log(cond(H))~1.519n-1.833 2)在n大于13之后,图像趋于平缓,并在一定范围内上下波动,同时随着n的增加稍有上升的趋势 第2小题: solve.m%m第2小题主程序 N=4000;

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

数值分析算法在matlab中的实现

数值分析matlab实现高斯消元法: function[RA,RB,n,X]=gaus(A,b) B=[A b];n=length(b);RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 for k=p+1:n m=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); end else disp('请注意:因为RA=RB0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1);C=zeros(1,n+1); for p=1:n-1

第6章matlab数据分析与多项式计算_习题答案

第6章 MATLAB数据分析与多项式计算 习题6 一、选择题 1.设A=[1,2,3,4,5;3,4,5,6,7],则min(max(A))的值是()。B A.1 B.3 C.5 D.7 2.已知a为3×3矩阵,则运行mean(a)命令是()。B A.计算a每行的平均值 B.计算a每列的平均值 C.a增加一行平均值 D.a增加一列平均值 3.在MATLAB命令行窗口输入下列命令: >> x=[1,2,3,4]; >> y=polyval(x,1); 则y的值为()。 D A.5 B.8 C.24 D.10 4.设P是多项式系数向量,A为方阵,则函数polyval(P,A)与函数polyvalm(P,A)的值()。D A.一个是标量,一个是方阵 B.都是标量 C.值相等 D.值不相等 5.在MATLAB命令行窗口输入下列命令: >> A=[1,0,-2]; >> x=roots(A); 则x(1)的值为()。 C A.1 B.-2 C. D. 6.关于数据插值与曲线拟合,下列说法不正确的是()。A A.3次样条方法的插值结果肯定比线性插值方法精度高。 B.插值函数是必须满足原始数据点坐标,而拟合函数则是整体最接近原始数据点,而不一定要必须经过原始数据点。 C.曲线拟合常常采用最小二乘原理,即要求拟合函数与原始数据的均方误差达到极小。 D.插值和拟合都是通过已知数据集来求取未知点的函数值。 二、填空题 1.设A=[1,2,3;10 20 30;4 5 6],则sum(A)= ,median(A)= 。 [15 27 39],[4 5 6[ 2.向量[2,0,-1]所代表的多项式是。2x2-1 3.为了求ax2+bx+c=0的根,相应的命令是(假定a、b、c已经赋值)。为了

数值分析matlab代码

1、%用牛顿法求f(x)=x-sin x 的零点,e=10^(-6) disp('牛顿法'); i=1; n0=180; p0=pi/3; tol=10^(-6); for i=1:n0 p=p0-(p0-sin(p0))/(1-cos(p0)); if abs(p-p0)<=10^(-6) disp('用牛顿法求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次牛顿迭代后无法求出方程的解') end 2、disp('Steffensen加速'); p0=pi/3; for i=1:n0 p1=0.5*p0+0.5*cos(p0); p2=0.5*p1+0.5*cos(p1); p=p0-((p1-p0).^2)./(p2-2.*p1+p0); if abs(p-p0)<=10^(-6) disp('用Steffensen加速求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次Steffensen加速后无法求出方程的解') end 1、%使用二分法找到方程 600 x^4 -550 x^3 +200 x^2 -20 x -1 =0 在区间[0.1,1]上的根, %误差限为 e=10^-4 disp('二分法')

a=0.2;b=0.26; tol=0.0001; n0=10; fa=600*(a.^4)-550*(a.^3)+200*(a.^2)-20*a-1; for i=1:n0 p=(a+b)/2; fp=600*(p.^4)-550*(p.^3)+200*(p.^2)-20*p-1; if fp==0||(abs((b-a)/2)0 a=p; else b=p; end end if i==n0&&~(fp==0||(abs((b-a)/2)

实验一数据处理方法MATLAB实现

实验一数据处理方法的MATLAB实现 一、实验目的 学会在MATLAB环境下对已知的数据进行处理。 二、实验方法 1. 求取数据的最大值或最小值。 2. 求取向量的均值、标准方差和中间值。 3.在MATLAB环境下,对已知的数据分别进行曲线拟合和插值。 三、实验设备 1.586以上微机,16M以上内存,400M硬盘空间,2X CD-ROM 2.MATLAB5.3以上含CONTROL SYSTEM TOOLBOX。 四、实验内容 1.在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 2.在MATLAB环境下,选择合适的曲线拟合和插值方法,编写程序,对已知的数据分别进行曲线拟合和插值。 五、实验步骤 1. 在MATLAB环境下,将已知的数据存到数据文件mydat.mat中。 双击打开Matlab,在命令窗口(command window)中,输入一组数据:实验一数据处理方法的MATLAB实现 一、实验目的 学会在MATLAB环境下对已知的数据进行处理。 二、实验方法 1. 求取数据的最大值或最小值。 2. 求取向量的均值、标准方差和中间值。 3.在MATLAB环境下,对已知的数据分别进行曲线拟合和插值。 三、实验设备 1.586以上微机,16M以上内存,400M硬盘空间,2X CD-ROM 2.MATLAB5.3以上含CONTROL SYSTEM TOOLBOX。 四、实验内容

1.在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 2.在MATLAB环境下,选择合适的曲线拟合和插值方法,编写程序,对已知的数据分别进行曲线拟合和插值。 五、实验步骤 1. 在MATLAB环境下,将已知的数据存到数据文件mydat.mat中。 双击打开Matlab,在命令窗口(command window)中,输入一组数据: x=[1,4,2,81,23,45] x = 1 4 2 81 2 3 45 单击保存按钮,保存在Matlab指定目录(C:\Program Files\MATLAB71)下,文件名为“mydat.mat”。 2. 在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 继续在命令窗口中输入命令: (1)求取最大值“max(a)”; >> max(x) ans = 81 (2)求取最小值“min(a)”; >> min(x) ans = 1 (3)求取均值“mean(a)”; >> mean(x) ans =

数值分析幂法与反幂法-matlab程序

数值分析幂法与反幂法 matlab程序 随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。 要求 1)比较不同的原点位移和初值说明收敛性 2)给出迭代结果,生成DOC文件。 3)程序清单,生成M文件。 解答: >> A=rand(5) %随机产生5*5矩阵求随机矩阵 A = 0.7094 0.1626 0.5853 0.6991 0.1493 0.7547 0.1190 0.2238 0.8909 0.2575 0.2760 0.4984 0.7513 0.9593 0.8407 0.6797 0.9597 0.2551 0.5472 0.2543 0.6551 0.3404 0.5060 0.1386 0.8143 >> B=A+A' %A矩阵和A的转置相加,得到随机对称矩阵B B = 1.4187 0.9173 0.8613 1.3788 0.8044 0.9173 0.2380 0.7222 1.8506 0.5979 0.8613 0.7222 1.5025 1.2144 1.3467 1.3788 1.8506 1.2144 1.0944 0.3929 0.8044 0.5979 1.3467 0.3929 1.6286

B=?? ????? ???? ?? ???6286.13929.03467.15979.08044 .03929.00944 .12144.18506 .13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613 .09173 .04187.1 编写幂法、反幂法程序: function [m,u,index,k]=pow(A,u,ep,it_max) % 求矩阵最大特征值的幂法,其中 % A 为矩阵; % ep 为精度要求,缺省为1e-5; % it_max 为最大迭代次数,缺省为100; % m 为绝对值最大的特征值; % u 为对应最大特征值的特征向量; % index ,当index=1时,迭代成功,当index=0时,迭代失败 if nargin<4 it_max=100; end if nargin<3 ep=1e-5; end n=length(A); index=0; k=0; m1=0; m0=0.01; % 修改移位参数,原点移位法加速收敛,为0时,即为幂法 I=eye(n) T=A-m0*I while k<=it_max v=T*u; [vmax,i]=max(abs(v)); m=v(i); u=v/m; if abs(m-m1)

数值分析 matlab 实验4

(1) 解题过程如下: (1)MATLAB中创建复化梯形公式和复化辛普森公式的 M 文件:1)复化梯形公式文件: function s=T_fuhua(f,a,b,n) h=(b-a)/n; s=0; for k=1:(n-1) x=a+h*k; s=s+feval(f,x); end s=h*(feval(f,a)+feval(f,b))/2+h*s; 2)复化辛普森公式文件: function s=S_fuhua(f,a,b,n) h=0; h=(b-a)./(2*n); s1=0; https://www.wendangku.net/doc/5216590029.html, -5- s2=0; for k=1:n-1 x=a+h*2*k; s1=s1+feval(f,x); end for k=1:n x=a+h*(2*k-1); s2=s2+feval(f,x); end

s=h*(feval(f,a)+feval(f,b)+s1*2+s2*4)/3; 在MATLAB中输入: f=inline('x/(4+x^2)');a=0;b=1; %inline 构造内联函数对象 for n=2:10 s(n-1)=T_fuhua(f,a,b,n);s(n-1)=vpa(s(n-1),10); %调用复化梯形公式,生成任意精度的数值 end exact=int('x/(4+x^2)',0,1);exact=vpa(exact,10) %求出积分的精确值 输出结果:exact = .1115717755 s = Columns 1 through 6 0.1088 0.1104 0.1109 0.1111 0.1113 0.1114 Columns 7 through 9 0.1114 0.1114 0.1115 在MATLAB中输入以下函数用以画出计算误差与 n 之间的曲线: r=abs(exact-s); n=2:10; plot(double(n),double(r(n-1))) 得到结果如图所示: (2)在 MATLAB中输入以下程序代码: f=inline('x/(4+x^2)');a=0;b=1;n=9; %inline 构造内联函数对象 t=T_fuhua(f,a,b,n);t=vpa(t,10) s=S_fuhua(f,a,b,n);s=vpa(s,10)

数值分析实验— MATLAB实现

数值分析实验 ——MATLAB实现 姓名sumnat 学号2013326600000 班级13级应用数学2班 指导老师 2016年1月

一、插值:拉格朗日插值 (1) 1、代码: (1) 2、示例: (1) 二、函数逼近:最佳平方逼近 (2) 1、代码: (2) 2、示例: (2) 三、数值积分:非反常积分的Romberg算法 (3) 1、代码: (3) 2、示例: (4) 四、数值微分:5点法 (5) 1、代码: (5) 2、示例: (6) 五、常微分方程:四阶龙格库塔及Adams加速法 (6) 1、代码:四阶龙格库塔 (6) 2、示例: (7) 3、代码:Adams加速法 (7) 4、示例: (8) 六、方程求根:Aitken 迭代 (8) 1、代码: (8) 2、示例: (9) 七、线性方程组直接法:三角分解 (9) 1、代码: (9) 2、示例: (10) 八、线性方程组迭代法:Jacobi法及G-S法 (11) 1、代码:Jacobi法 (11) 2、示例: (12) 3、代码:G-S法 (12) 4、示例: (12) 九、矩阵的特征值及特征向量:幂法 (13) 1、代码: (13) 2、示例: (13)

一、插值:拉格朗日插值 1、代码: function z=LGIP(x,y)%拉格朗日插值 n=size(x); n=n(2);%计算点的个数 syms a; u=0;%拉格朗日多项式 f=1;%插值基函数 for i=1:n for j=1:n if j==i f=f; else f=f*(a-x(j))/(x(i)-x(j)); end end u=u+y(i)*f;f=1; end z=expand(u);%展开 2、示例: >> x=1:6; y1=x.^5+3*x.^2-6; y2=sin(x)+sqrt(x); >> f1=LGIP(x,y1) f1 = -6+3*a^2+a^5 %可知多项式吻合得很好 >> f2=vpa(LGIP(x,y2),3) f2 = .962e-1*a^4+1.38*a+.300*a^2+.504-.436*a^3-.616e-2*a^5

数值分析五个题目的C语言及Matlab程序

本文档包含上一个文档中的五个数值分析实验题C语言程序及Matlab程序实验一 C程序 #include "stdio.h" #include "math.h" void main() { inti=0; float a=0.1,b=1.9,t=0.0,e=1.9; if((pow(a,7)-28*pow(a,4)+14)*(pow(b,7)-28*pow(b,4)+14)<0) if((7*pow(x,6)-112*pow(x,3))) printf("x=%f,i=%d,e=%f\n",x,i,e); for(i=1;i<7&&e>0.00001;i++) { t=x; x=x-(pow(x,7)-28*pow(x,4)+14)/(7*pow(x,6)-112*pow(x,3)); e=fabs(t-x); printf("x=%f,i=%d,e=%f\n",x,i,e);

} } Matable 程序 i=0; x=1.9;t=0.0;e=1.9; disp(['i=',num2str(i),' ','x=',num2str(x),' ','e=',num2str(e)]); for i=1:7 t=x; x=x-(x^7-28*x^4+14)/(7*x^6-112*x^3); e=abs(t-x); disp(['i=',num2str(i),' ','x=',num2str(x),' ','e=',num2str(e)]); if e<0.00001 break; end end 实验二 C程序 #include"stdio.h" #include"math.h" //已知量 double x[10]={1,2,3,4,5,6,7,8,9,10};

相关文档
相关文档 最新文档