文档库 最新最全的文档下载
当前位置:文档库 › (完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总
(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布

X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)

p k

f (t)dt

分布函数

k

x

X 的概率分布用概率密度 f (x)

F(x)

分布函数

连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)

其联合分布函数 1 2 n 1 1 2 离散型

联合分布列

连续型联合概率密度

3.随机变量 的数字特征 数学期望:离散型随机变量 X

EX x p k

k

X

EX xf (x)dx

连续型随机变量

2

DX E(X EX) 2 EX (EX) 2

方差:

反映随机变量取值 的离散程度

协方差(两个随机变量 X ,Y ):

B E[( X EX)(Y EY)] E(XY) EX EY

XY

B XY

相关系数(两个随机变量

X,Y ):

0,则称 X ,Y 不相关。

XY

DX DY

独立

不相关

itX

g(t) E(e )

itx

e p k 连续 g(t)

k

e itx

f (x)dx

4.特征函数

离散 g(t) 重要性质: g(0) 1,

g(t) 1 g( t) g(t)

, g (0) i EX k

k k

5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布

P( X 1) p,P( X 0) q

EX p

DX pq

P(X k) C p q n k

k k

EX np

DX n p q

n

k

泊松分布

P( X k) e

k!

EX

DX

均匀分布略

( x a)2

1 2

N(a, ) f (x)

2

2

2

EX a

正态分布

e

DX

2

x

e ,x 0 0, x 0

1

1

指数分布

f (x)

EX

DX

2

X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量

1 2 n

1

1 2

T 1

(x a) B (x a)}

f (x , x , , x n ) exp{ 1

1 2

n 2

(2 ) | B |2

a (a ,a , ,a ), x (x , x , ,x ), B (

b ) 正定协方差阵 1 2 n 1 2 n ij n n

二.随机过程 的基本概念 1.随机过程 的一般定义

设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是

P)上 的随机过程。简记为 X(t),t T 。

则称随机变量族

含义:随机过程是随机现象 的变化过程,

用一族随机变量才能刻画出这种随机现象 的全部统计规

律性。另一方面,它是某种随机实验 的结果,而实验出现 的样本函数是随机 的。 t 当固定时, X (t,e)是随机变量。当 e 固定时, X (t,e)时普通函数,称为随机过程 的一个样本

函数或轨道。

分类:根据参数集 T 和状态空间 I 是否可列,分四类。 也可以根据 X (t)之间 的概率关系分类,

如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程 的分布律和数字特征

用有限维分布函数族来刻划随机过程 的统计规律性。随机过程

X (t),t T 的一维分布,二维分

布,?, n 维分布 的全体称为有限维分布函数族。随机过程 的有限维分布函数族是随机过程概率特征 的完整描述。在实际中,要知道随机过程 的全部有限维分布函数族是不可能 的,因此用某些统计特征 来取代。 m (t) EX(t)

X

X(t),t T

(1)均值函数

t

在时刻 的平均值。

表示随机过程

(2)方差函数 D (t) E[X(t) m (t)] 2

t 对均值 的偏离程度。

表示随机过程在时刻

X X B (s,t ) E[( X (s) m (s))( X (t) m (t))] X X X

B (t,t) D (t) 且有

(3)协方差函数 (4)相关函数

X X

E[ X (s)X (t)] m (s)m (t) X X

R (s,t) E[ X(s)X(t)]

X

(3) (4)

表示随机过程在时刻 s t 和 ,时 的线性相关程度。 (5)互相关函数: 数。

X(t),t T , Y(t),t T 是两个二阶距过程,则下式称为它们 的互协方差函

B (s, t) E[( X (s) m (s))(Y(t) m (t))] X Y X Y

,那么 R (s,t) E[ X(s)Y(t)],称为互相关函数。

XY

E[X (s)Y(t)] m (s)m (t ) X Y

E[X(s)Y(t)] m (s)m (t),则称两个随机过程不相关。 若 X Y 3.复随机过程

Z X t jY t

t

均值函数 m (t) EX t jEY t

Z

方差函数

D (t) E[| Z m (t) |]2 E[(Z m (t))(Z m (t))] Z t Z t Z t Z

B (s,t) E[(Z m (s))(Z m (t))] Z s Z t Z

R (s,t) E[Z Z t ]

协方差函数

相关函数

Z s E[Z Z ] m (s)m (t) s t Z Z

4.常用 的随机过程

2

(1)二阶距过程:实(或复)随机过程 X(t),t T ,若对每一个 t T ,都有 E X (t)

(二

阶距存在),则称该随机过程为二阶距过程。 t 1 t t t T ,有

2 3 4

(2)正交增量过程:设

X(t),t T 是零均值 的二阶距过程,对任意 的 E[( X(t ) X(t ))(X(t ) X(t ))] 0,则称该随机过程为正交增量过程。 2 1 4 3

2

X

其协方差函数 B (s,t) R (s,t) (min(s,t))

X X

(3)独立增量过程:随机过程 X(t),t T ,若对任意正整数 n 2,以及任意 的 t t 2 1

t n T ,

X(t ) X (t ), X (t ) X(t ), ,X(t ) X(t )是相互独立 的,则称 X(t),t T 是独立 随机变量

2 1 4

3 n n 1

X(t),t T

是独立增量过程,对任意

s t ,随机变量 X (t) X (s) 的分

增量过程。 进一步,如

布仅依赖于

t s ,则称 X(t),t T 是平稳独立增量过程。

X(t),t T 具有马尔可夫性,即对任意正整数 n 及

( 4)马尔可夫过程:如果随机过程

t 1 t 2

t n T , P(X(t ) x , , X(t ) x ) 0,都有

1 1 n 1 n 1

P X(t ) x X(t ) x , , X(t ) x n 1

P X(t ) x X(t ) x n 1,则则称 X(t),t T n n 1 1 n 1 n n n 1

是马尔可夫过程。 X(t),t T

n 及 t 1,t , ,t T

2 n

( 5)正态过程:随机过程

,若对任意正整数

X(t ), X(t ) X(t ))是 n维正态随机变量,其联合分布函数是

(n维正态分布函数,则称

1 2 n

X(t),t T是正态过程或高斯过程。

(6)维纳过程:是正态过程的一种特殊情形。

设W(t), t 为实随机过程,如果,① W(0) 0;②是平稳独立增量过程;③对任意s,t增

2

W(t) W(s) ~ N(0, t s) 2

量W (t) W(s)服从正态分布,即0。则称

W(t), t 为维纳过程,或布朗运动过程。

另外:①它是一个 Markov过程。因此该过程的当前值就是做出其未来预测中所需的全部信息。

②维纳过程具有独立增量。该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间

上变化的概率。③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加。

(7)平稳过程:

X(t),t T n t ,t , ,t T,

1 2 n

严(狭义)平稳过程:,如果对任意常数和正整数

t1 ,t2 , ,t n T,(X (t ), X(t ) X(t ))与(X(t1 ), X(t 2 ) X(t n ))有相

1 2 n

X(t),t T

同的联合分布,则称是严(狭义)平稳过程。

X(t),t T X (t),t T

是二阶距过程;②对任意的t T,

广义平稳过程:随机过程,如果①

m (t) EX(t)常数;③对任意s, t T R (s,t) E[ X(s)X(t)] R (t s),或仅与时间

X X X

差t s有关。则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程。

第二章泊松过程

一.泊松过程的定义(两种定义方法)

1,设随机计数过程X(t),t 0,其状态仅取非负整数值,若满足以下三个条件,则称:X(t),t T 是具有参数的泊松过程。① X (0) 0;②独立增量过程,对任意正整数n,以及任意的

t1 t2 t n T X(t ) X(t ), X(t ) X(t ), ,X (t ) X(t )相互独立,即不同时间间隔

2 1

3 2 n n 1

的计数相互独立;③在任一长度为t的区间中,事件A发生的次数服从参数t 0的的泊松分布,即

( t) n

t

对任意t, s 0,有P X (t s) X (s) n e n 0,1,

n!

E[ X (t)]

,表示单位时间内时间A发生的平均个数,也称速率或强度。

t

E[ X (t)] t,

2,设随机计数过程X (t),t 0,其状态仅取非负整数值,若满足以下三个条件,则称:X (t),t 0

是具有参数

的泊松过程。① X (0) 0;②独立、平稳增量过程;③

P X (t h ) X (t ) 1 P X (t h ) X (t ) 2

h o (h ) 。

o (h )

第三个条件说明,在充分小 的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同 时发生,也称为单跳性。 二.基本性质 s ( t 1) s t m (t ) E [ X (t )]

X

t D [X (t )] R (s ,t )

X

1,数字特征

t ( s 1) s t

B (s ,t ) R (s ,t ) m (s )m (t ) min(s ,t )

推导过程要非常熟悉

X X X

X 2, T n

n 1事件A发生到第 n 次事件发生 的时间间隔,

T ,n 1是时间序列,随机变量 T n

n

表示第 t

t

e ,t 0 1 e ,t 0 服从参数为

的指数分布。概率密度为 f (t )

,分布函数 F (t ) 均值

T 0,

t 0

n

0,

t 0

1

为 ET n

证明过程也要很熟悉 三.非齐次泊松过程

到达时间 的分布 略

到达强度是 t 的函数

P X (t h ) X (t ) 1 (t )h o (h )

① X (0) 0;②独立增量过程;③ 。 不具有平稳增量

P X (t h ) X (t ) 2 o (h )

性。 t m (t ) E [X (t )]

X

(s )ds

均值函数

t 定理: X (t ),t 0是具有均值为 m (t )

X

(s )ds 的非齐次泊松过程,则有

[ m (t s ) m (t )] n

X

X P X (t s ) X (t ) n

exp [m (t s ) m (t )]

X X

n !

四.复合泊松过程 N (t ),t 0 Y ,k 1,2,

k

是强度为

的泊松过程,

是一列独立同分布 的随机变量,且与

N (t )

N (t ), t 0独立,令 X (t )

Y k 则称 X (t ),t 0为复合泊松过程。

k 1

重要结论:

X (t ),t 0是独立增量过程;若 E (Y 2)

1

E [ X ( t ) ] tE ( Y ,)

1

,则

D[X(t)] tE(Y 2)

1

第五章马尔可夫链

泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程。时间和状态都离散的马尔可夫过程称为马尔可夫链。

马尔可夫过程的特性:马尔可夫性或无后效性。即:在过程时刻t

所处的状态为已知的条件下,

过程在时刻t t 0所处状态的条件分布与过程在时刻t 0之前所处的状态无关。也就是说,将来只与现

在有关,而与过去无关。表示为P X(t ) x X(t ) x , , X(t ) x n 1 P X(t ) x X(t ) x n 1

n n n 1

n n 1 1 n 1

一.马尔可夫链的概念及转移概率

1.定义:设随机过程X ,n T,对任意的整数

n n T和任意的i0,i , ,i n 1 I,条件概率满足

1

P X n 1 i n 1 X0 i0, X i , , X n i n P X n 1 i X n i n

n 1

X ,n T

为马尔可夫

n

,则称

1 1

链。

马尔可夫链的统计特性完全由条件概率P X n 1 i n 1 X n i n 所决定。

P X n 1 j X n i n i

处于状态的条件下,下一步转2.转移概率相当于随机游动的质点在时刻

移到j的概率。记为p (n)。则p ij (n) P X n 1 j X n

ij i n的一步转移概称为马尔可夫链在时刻

p (n)与n无关,记为p。率。若齐次马尔可夫链,则

ij ij

P [ p ] i, j I

ij I 1,2, p ij 0,每行的和

称为系统的一步转移矩阵。性质:每个元素

为 1。

p ij (n) P X m n j X m = i P(n) [ p ] i, j I

(n)

3.n步转移概率移矩阵。;I 1,2, n

称为步转ij

重要性质:① p ij (n) p ik p kj (n l )称为 C K方程,证明中用到条件概率的乘法公式、马尔可夫

(l )

k I

性、齐次性。

P X m i , X m n j

p ij (n) P X m n j X m

i

P X m i P X m i, X m l k, X m n

P X m j

k T

i

掌握证明方法:

P X m i, X m l k, X m n j P X m i, X m l

k

P X m

i , X m l

k P X m i k T

(n l ) kj

(l ) ik

(l ) p

ik

(n l ) p

kj

p

(m l) p (m)

k I

k I

② P (n) P n

说明步转移概率矩阵是一步转移概率矩阵 的

n

n 次乘方。

4. X ,n T 是马尔可夫链,称

n

p P X 0

j

j 为初始概率,即

0时刻状态为 j 的概率;称

T

p (n) P X n j 为绝对概率,即 n 时刻状态为 j 的概率。 P (0) p 1, p 2,

为初始概率向量,

j T

P (n)

p 1(n), p (n),

2

为绝对概率向量。

p p ij 矩阵形式: P (n) P (0)P (n) (n) T T

定理:① p (n)

j

p (n)

j

p (n 1)p ij

i

② i

i I

i I

定理: P X 1 i 1, X 2 i 2, , X n i n

p i p ii p i

i

n 1 n

说明马氏链 的有限维分布完全由它 的初

1

i I

始概率和一步转移概率所决定。 二.马尔可夫链 的状态分类

1.周期:自某状态出发,再返回某状态 的所有可能步数最大公约数,即

d 1,则称该状态是周期 的;若

d GC D n : p ii(n) 0。若

d 1,则称该状态是非周期 的。

2.首中概率: f ij(n)表示由出发经 n 步首次到达

i

j 的概率。

f ij(n)表示由出发经终于(迟早要)到达

i

j 的概率。

f 3. ij

n 1

4.如果 f 1,则状态是常返态;如果 i f ii 1,状态是非常返(滑过)态。

i

ii 5.

nf ii(n) ,

表示由 i 出发再返回到 i 的平均返回时间。若

i

,则称是正常返态;若

i

i

i

n 1

则称 i 是零常返态。非周期 的正常返态是遍历状态。

1 (n)

(n)

i

6.状态是常返充要条件是

p ;状态 i 是非常返充要条件是

p

ii

ii

1 f ii

n 0

n 0

i j i j,即i j 且j i 。如果 i

j i

,则他们同为常返态或非常返态,;若,

7.称状态与互通, j 同为常返态,则他们同为正常返态或零常返态,且

i , j 有相同 的周期。

1

lim p ii(n)

0。一个不可约 的、非周期 的、有限状态 的马尔可

i

8.状态是遍历状态 的充要条件是 n

i

夫链是遍历 的。

9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态。 三.状态空间 的分解 1.设 C 是状态空间

i C ,状态 j C ,都有 p 0(即从出发

i

ij

经一步转移不能到达 j ),则称 C 为闭集。如果 C 的状态互通,则称 C 是不可约 的。如果状态空间不

I 的一个闭集,如果对任意 的状态

X , n T 不可约。或者说除了 n

C 之外没有其他闭集,则称马尔可夫链 可约,则马尔可夫链 X ,n T 不可约。

n

(n)

2. C 为闭集 的充要条件是:对任意 的状态 i C ,状态 j C ,都有

p

0。所以闭集 的意思是自

ij

C 的内部不能到达 C 的外部。意味着一旦质点进入闭集

C 中,它将永远留在 C 中运动。

如果 p 1,则状态为吸收 的。等价于单点 i i

为闭集。

ii

3.马尔可夫链 的分解定理:任一马尔可夫链 的状态空间 I ,必可唯一地分解成有限个互不相交 的子 集 D,C ,C , C n C C 的和,①每一个

都是常返态组成 的不可约闭集;②

中 的状态同类,或全是

n

1 2

n f ij 1。③ D 是由全体非常返态组成。

正常返态,或全是零常返态,有相同 的周期,且

分解定理

说明:状态空间 的状态可按常返与非常返分为两类,非常返态组成集合 D ,常返态组成一个闭集 C 。

闭集 C 又可按互通关系分为若干个互不相交 的基本常返闭集 C ,C , C n

1 2

含义:一个马尔

可夫链如果从 D 中某个非常返态出发,它或者一直停留在

D 中,或某一时刻进入某个基本常返闭集

C C

n

,一旦进入就永不离开。一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集

n 永远在该闭集 C n

中运动。

4.有限马尔可夫链:一个马尔可夫链 的状态空间是一个有限集合。

性质:①所有非常返态组成 的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间

I D C C 2

1

C ,

D 是非常返集合, C ,C , C 是正常返集合。

n 1 2 n

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X,分布函数F(x)P(X x) 离散型随机变量X的概率分布用分布列p k P(X x)分布函数F(x)p k k 连续型随机变量X的概率分布用概率密度f(x)分布函数 x F(x)f(t)dt 2.n维随机变量X(X1,X2,,X n) 其联合分布函数()(1,x,,x n)P(X x,X x,,X n x n,) F x F x 21122 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X E X x k p连续型随机变量X EX xf(x)dx k 方差:2() 2 2 DX E(X EX)EX EX反映随机变量取值的离散程度 协方差(两个随机变量X,Y):B XY E[(X EX)(Y EY)]E(XY)EX EY 相关系数(两个随机变量X,Y): B XY XY若0,则称X,Y不相关。 DX DY 独立不相关0 itX 4.特征函数g(t)E(e)离散g(t)e连续g(t)e f x dx itx p itx() k k 重要性质:g(0)1,g(t)1,g(t)g(t),k i k EX g(0) k 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布P(X1)p,P(X0)q EX p DX pq 二项分布k k n k P(X k)C n p q EX np DX n p q k 泊松分布P(X k)e EX DX均匀分布略 k!

2正态分布N(a,) 2 (x a) 1 2 f(x)e EX a 2 2 D X2

指数分布f(x) e 0, x1 ,x0 EX x0 DX 1 2 6.N维正态随机变量(X1,X,,X n) X的联合概率密度X~N(a,B) 2 f( 11 T1 x1,x,,x)exp{(x a)B(x a)} 2n n1 2 22 (2)|B| a(a1,a2,,a n),x(x1,x2,,x n),B(b ij)n n正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设 (,P)是概率空间,T是给定的参数集,若对每个t T,都有一个随机变量X与之对应, 则称随机变量族X(t,e),t T是(,P)上的随机过程。简记为X(t),t T。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规 律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当 t固定时,X(t,e)是随机变量。当e固定时,X(t,e)时普通函数,称为随机过程的一个样本 函数或轨道。 分类:根据参数集T和状态空间I是否可列,分四类。也可以根据X(t)之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳 过程等 。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程X(t),t T的一维分布,二维分布,?,n维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征 的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些 统计特征 来取代。 (1)均值函数 m X(t)EX(t)表示随机过程X(t),t T在时刻t的平均值。 (2)方差函数2 D X(t)E[X(t)m X(t)]表示随机过程在时刻t对均值的偏离程度。 (3)协方差函数B X (s,t)E[(X( E[X s) (s) m ( s ) ) (t) (s) m X m X (t) (t))] 且有 B(t,t)D(t) X X

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

随机过程知识点汇总

第一章 随机过程得基本概念与基本类型 一.随机变量及其分布 1.随机变量, 分布函数 离散型随机变量得概率分布用分布列 分布函数 连续型随机变量得概率分布用概率密度 分布函数 2.n 维随机变量 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量得数字特征 数学期望:离散型随机变量 连续型随机变量 方差: 反映随机变量取值得离散程度 协方差(两个随机变量): 相关系数(两个随机变量): 若,则称不相关。 独立不相关 4.特征函数 离散 连续 重要性质:,,, 5.常见随机变量得分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布 均匀分布略 正态分布 指数分布 6.N维正态随机变量得联合概率密度 )}()(2 1ex p{||)2(1 ),,,(121221a x B a x B x x x f T n n ---=-π ,,正定协方差阵 二.随机过程得基本概念 1.随机过程得一般定义 设就是概率空间,就是给定得参数集,若对每个,都有一个随机变量与之对应,则称随机变量族就是上得随机过程。简记为。 含义:随机过程就是随机现象得变化过程,用一族随机变量才能刻画出这种随机现象得全部统计规律性。另一方面,它就是某种随机实验得结果,而实验出现得样本函数就是随机得。 当固定时,就是随机变量。当固定时,时普通函数,称为随机过程得一个样本函数或轨道。 分类:根据参数集与状态空间就是否可列,分四类。 也可以根据之间得概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程得分布律与数字特征 用有限维分布函数族来刻划随机过程得统计规律性。随机过程得一维分布,二维分布,…,维分布得全体称为有限维分布函数族。随机过程得有限维分布函数族就是随机过程概率特征得完整描述。在实际中,要知道随机过程得全部有限维分布函数族就是不可能得,因此用某些统计特征来取代。 (1)均值函数 表示随机过程在时刻得平均值。

概率论与随机过程考点总结

概率论与随机过程考点总 结 This manuscript was revised by the office on December 10, 2020.

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

电子科大随机信号分析随机期末试题答案

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷 一、设有正弦随机信号()cos X t V t ω=, 其中0t ≤<∞,ω为常数,V 是[0,1)均匀 分布的随机变量。( 共10分) 1.画出该过程两条样本函数。(2分) 2.确定02t πω=,134t πω=时随机信号()X t 的 一维概率密度函数,并画出其图形。(5 分) 3.随机信号()X t 是否广义平稳和严格平 稳?(3分) 解:1.随机信号()X t 的任意两条样本函 数如题解图(a)所示: 2.当02t πω=时,()02X πω=,()012P X πω??==????, 此时概率密度函数为:(;)()2X f x x πδω =

当34t πω=时, 3()42X πω=-,随机过程的一维 概率密度函数为: 3. ()[]1cos cos 2E X t E V t t ωω==???? 均值不平稳, 所以()X t 非广义平稳,非严格平稳。 二、设随机信号()()sin 2X n n πφ=+与 ()()cos 2Y n n πφ=+,其中φ为0~π上均 匀分布随机变量。( 共10分) 1.求两个随机信号的互相关函数 12(,)XY R n n 。(2分) 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数 其中()12sin 2220E n n ππφ++=???? 2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =, 故两个随机信号正交。

又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、()W t 为独立二进制传输信号,时隙长度T 。在时隙内的任一点 ()30.3P W t =+=????和 ()30.7P W t =-=????,试求( 共10分) 1.()W t 的一维概率密度函数。(3分) 2.()W t 的二维概率密度函数。(4分) 3.()W t 是否严格平稳?(3分)

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

随机过程知识点

第一章:预备知识 §1、1 概率空间 随机试验,样本空间记为Ω。 定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。如果 (1)∈ΩF; (2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则 ∞=∈1n n A F; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。如果 ()()()()∑∞ =∞==???? ???=?≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(; )(; 任意 则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1、3 设(P F ,,Ω)就是概率空间,F G ?,如果对任意 G A A A n ∈,,,21 , ,2,1=n 有: (),1 1∏===???? ??n i i n i i A P A P 则称G 为独立事件族。 §1、2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函 数,{}T t X t ∈,就是独立的。 §1、3随机变量的数字特征 定义1、7 设随机变量X 的分布函数为)(x F ,若?∞ ∞-∞<)(||x dF x ,则称 )(X E =?∞ ∞-)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY = ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,22∞<∞

随机过程知识点汇总

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 ) (k k x X P p == 分 布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞ -=x dt t f x F )()( 2.n 维随机变量) ,,,(2 1 n X X X X Λ= 其联合分布函数) ,,,,(),,,()(2211 2 1 n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随 机变量X ?∞ ∞-=dx x xf EX )( 方差:2 22 )() (EX EX EX X E DX -=-= 反映随机变量取值的 离散程度 协方差(两个随机变量Y X ,): EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,): DY DX B XY XY ?= ρ 若 0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ =EX λ =DX 均匀分布 略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX 指数分布 ?? ?<≥=-0, 00,)(x x e x f x λλ λ 1 = EX 2 1 λ = DX 6.N维正态随机变量) ,,,(2 1 n X X X X Λ=的联合概率密度 ),(~B a N X )} ()(2 1 ex p{| |)2(1),,,(12 12 21a x B a x B x x x f T n n ---= -πΛ ) ,,,(21n a a a a Λ=,),,,(2 1 n x x x x Λ=,n n ij b B ?=)(正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设) , (P Ω是概率空间,T 是给定的参数集,若对每 个T t ∈,都有一个随机变量X 与之对应,则称随机变量

概率论与随机过程考点总结定稿版

概率论与随机过程考点 总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?=ρ 若0=ρ,则称Y X ,不相 关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X T n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ?=)(正定协方差阵 3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

随机过程学习总结

随机过程学习报告 通过这一段时间以来的学习,我认识到我们的生活中充满了随机过程的实例,在生活中我们经常需要了解在一定时间间隔[0,t)内某随机事件出现次数的统计规律,如到某商店的顾客数;某电话总机接到的呼唤次数;在电子技术领域中的散粒噪声和脉冲噪声;已编码信号的误码数等。在我们的专业学习——通信工程中,研究数字通信中已编码信号的误码流,数模变换中对信号进行采样等也都会应用到随机过程的知识,因此这门课程的学习是非常重要的。 一、认识泊松过程与复合泊松过程的区别 泊松过程是一类很重要的随机过程,随机质点流描述的随机现象十分广泛,下面我就通过运用泊松过程的知识解答一道书本中的实际应用题目: 设移民到某地区定居的户数是一泊松过程,平均每周有两户定居,即λ=2。若每户的人口数是随机变量,一户4人的概率是1/6,一户3人的概率是1/3,一户两人的概率是1/3,一户一人的概率是1/6,且每户的人口数是相互独立的,①5周内移民到该地区定居的人口数是否为泊松过程?②求上述随机过程的数学期望与方差。 分析:这道题目中的问题就是复合泊松过程的实际应用,这类过程具有泊松过程的一部分性质,不同的地方就在于随机质点流的到达不必再满足每次只能到一个的标准,这就将随机过程的研究与实际相融合,生活中的大部分过程其实是不可能满足每次到达一个这样的苛刻要求的,比如调查到达商场购物的人数等问题时,实际去商场购物时人们大多都是与好朋友结伴出行而不可能存在每个人都是独自来购物的现象,所以引入复合泊松过程是十分有必要的。 解:设[0,t)时间内到该地定居的户数为N(t),则{N(t),t>=0}是一泊松过程,X(n)为第n 户移民到该地定居的家庭人口数,{X(0)=0,X(n),n=1,2,3···}是独立同分布随机变量列,Y(t)为[0,t)时间内定居到该地的人数。 则Y(t)=∑=) (0 )n (X t N n t>=0 为一复合泊松过程, )()(υ?n X =4γi e *1/6+3γi e *1/3+2γi e *1/3+γi e *1/6 )()t (υ?Y =)1)((t )1(-γ?λX e 由特征函数的唯一性可知,Y(t)不是泊松过程。 E[X(n)]=4*1/6+3*1/3+2*1/3+1*1/6=5/2 E[)(n X 2 ]=16*1/6+9*1/3+4*1/3+1*1/6=43/6 则E[Y(t)]=λt*E[X(1)]=t*5; D[Y(t)]=λt*E[)(1X 2 ]=t*43/3; 则五周内定居到该地的人数数学期望为:5*5=25 方差为:5*43/3=215/3

随机过程知识点总结

第一章: 考试范围1.3,1.4 1、计算指数分布的矩母函数. 2、计算标准正态分布)1,0(~N X 的矩母函数. 3、计算标准正态分布)1,0(~N X 的特征函数. 第二章: 1. 随机过程的均值函数、协方差函数与自相关函数 2. 宽平稳过程、均值遍历性的定义及定理 3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件 1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ?????? ,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示). 3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程. 4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程. 第三章: 1. 泊松过程的定义(定义3.1.2)及相关概率计算 2. 与泊松过程相联系的若干分布及其概率计算 3. 复合泊松过程和条件泊松过程的定义 1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算: (1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥. 2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程. (1).试求到某时刻t 时到达商场的总人数的分布;

概率论与随机过程考点总结

概率论与随机过程考点 总结 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

随机过程简史

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:随机过程简史 院系:电气工程学院 班级: 11S0104 设计者:孙延博 学号: 11S001070 指导教师:田波平 设计时间: 2011-10-23 随机过程简史 摘要 本文简要地介绍了随机过程从20世纪初创立至今,100年的发展历程考察了导致随机过程产生的历史契机,以及早期数学家在这方面作出的杰出工作。并简要介绍了随机过程的概念,研究方法

和研究内容,在现代工程技术领域的应用。 关键词:随机过程平稳随机过程平稳随机序列 1.随机过程的概念研究方法及研究内容 随机过程是现代概率论研究的一个重要分支。数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。由于物理学生物学,通讯和控制管理科学等学科的需要随机过程逐步发展起来的。马尔柯夫最早研究了随机过程。研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度轮、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。 2.随机过程的历史 1900年,Bachelier在分析股票市场波动时.发现了随机过程的一个重过程——独立增量过程的特恻。1905年,物理学家Einstein在研究Brown运动时,也遇到了相同的过程.1923年,Wiener 给出了Brown运动的数学描述- wiener过程。 Lunbderg在1903年研究一个保险公司所承担索赔累计数的变化规律时.导出了另一类型的随机过程——Lundberg过程。而众所周知、应用甚广的Poisson过程是当所有得付出的索赔总数中每一笔数目都相同时的Lundberg过程。 1909年,Erlang在研究电话业务时引入了Poisson过程,并被物理学家Rutherford和Geiger用于分析放射性蜕变。这些早期对随机过程的研究都是同实际问题紧密联系在一起的。虽然在数学上用了不太严密的方法,却表现出了直观处理这些概念和方法的绝妙能力。

随机过程知识点汇总

随机过程知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k e k X P k λλ-== λ=EX λ=DX 均匀分布略

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数? ∞ -=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:2 2 2 )()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1(p EX =pq DX = 二项分布 k n k k n q p C k X P -==)(np EX =npq DX = 泊松分布 ! )(k e k X P k λλ -==λ=EX λ=DX 均匀分布略

相关文档
相关文档 最新文档