文档库 最新最全的文档下载
当前位置:文档库 › 基于单片机的太阳能充电器的设计

基于单片机的太阳能充电器的设计

基于单片机的太阳能充电器的设计
基于单片机的太阳能充电器的设计

山东交通学院

课程设计报告

课题名称基于单片机的太阳能充电器的设计

学生姓名傅传银唐飞翔

学号 140818108 140818110 专业电子信息工程(信职141)

指导教师张波

2016年06月26日

1 绪论

1.1 本课题研究背景及现状

当代社会随着一些不可再生资源如煤炭,石油等日益减少,使得各国社会经济越来越受能源问题的约制,因此许多国家开始逐渐的实行“阳光计划”,开发洁净的能源如太阳能,用以成为本国经济发展的新动力。

首先让我们想到的是太阳能电池,因为它不会消耗水,燃料等物质,并且不会释放任何对环境有污染的气体,是直接通过太阳光与材料的相互作用释放出电能,这种无污染资源对环境的保护有着相当重要的意义[1]。由于无公害的作用,目前世界太阳能电池产业已经出具规模,1995年到2004年的十年内平均年增长率达到30%以上。随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势[2]。世界各国对光伏发电也越来越重视,目前全世界已超过一百个国家使用光伏发电系统,其中以欧洲为代表的发达国家为主,占总市场的80.1%,早在09年的时候,世界各国总的光伏新加装机容量接近800万千瓦,截至当年低,世界光伏装机容量总共接近2700万千瓦[3]。随着并网光伏发电市场的迅速发展,让它受到了世界各地的关注。

目前,太阳能电池的应用已经逐渐广泛得到推广,众所周知,沙漠地区由于气温特别高,因此最具有大规模开发太阳能的潜力,这使得沙漠等偏远地区对其的使用更加方便,并且能减低甚至节省昂贵的输电线路,从长远发展状况来看,随着改善太阳能电池制造技术和新的光 - 电转换装置发明,国家环保和清洁能源,光伏发电系统和太阳能发电的巨大需求恢复将继续利用太阳辐射能比较实用方法,这可以为人类以后能使用太阳能提供了广阔的开辟前景[4]。

当代社会太阳能手机充电器得到了一定的使用,它具有运用方便,环保,节能,格外使用于应急场合,高效率充电,性价比较高,让大家无论身处何处,都不会受到手机没电的困扰[5]。借此太阳能手机充电器的众多优点,因此提出本课题。

1.2 课题设计思想

基于单片机的太阳能充电器的设计是本次探导的课题。首先,由于太阳能电池板的电压会随太阳光的强度波动,强烈的太阳光的太阳能电池板的电压是高的数,当太阳光弱的强度,所述太阳能电池板的输出电压低时,从太阳能电池板的输出到稳定的电压[6]。本设计采用了稳压器LM7805,LM7805输出端口可以输出稳定的5V电

压,因为电力可以用于单芯片和其它芯片,其次,作为下一个电源电压转换电路。第二,考虑到电池的充电过程的电压要求各不相同,不能简单稳定的直流输出,因此提出了利用DC / DC 转换器电路的,通过控制关断时间的占空比,以调节输出电压。 SCM 是控制中心,在控制信号产生电路是由充电过程的一个外部状态产生的,外部充电电压的比较信号和充电电流与理想充电过程中,占空比调节。单个微控制器设计用于该目的,所述电压检测电路和一个电流检测电路,并且为了方便用户知道系统的状态,设计设置在显示模块和指标。

2 基于单片机的太阳能充电器系统总体方案设计 2.1 设计方案一

方案一方框图如图2.1所示

控制是用2.2 2.2。

图2.2 方案二方框图

如从图

2可以看出,以弥补设计用于检测电路的状态的方案的缺点,并通过模拟转换到数字的转换模块的信号到微控制器。 PWM 控制芯片微控制器可以产生施加PWM 波转换电路的控制主要模块和显示模块,但此次方案是将生成PWM 部分用芯片替换,这使得电路复杂硬件部分的设计,它是更好地使用软件允许硬件电路简单,而且还能

2.3

图2.3整体设计框图

相对于前两种方案,此整体方案显示的优点,不仅能对充电电路进行检测,单片机还可以根据充电电路的关键电路的信号处理后的分析来检测的情况进行控制可以选择系统可以实现功能。显示电路可以显示用于实现本方案的电路中,PWM控制信号的工作状态,从而使硬件电路非常简单,节省资源,提高系统的性能。

3 基于单片机的太阳能充电器系统的硬件设计

3.1太阳能电池板的选用

太阳能电池板是通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能的装置,大部分太阳能电池板的主要材料为“硅”,但因制作成本很大,以致于它还不能被大量广泛和普遍地使用。硅太阳能电池分为晶体硅电池板,非晶硅电池板等几种。单晶硅太阳能电池的光电转换效率为15%左右,最高通常可以达到24%,它是所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被普遍地使用,因为单晶硅通常会用钢化玻璃和防水树脂包装起来,所以会十分耐用,通常能用十几年,最长可以用25年。多晶硅太阳电池的制作过程与单晶的差不多,可相对而言起光电转换效率要比单晶降低很多,其效率大概在12%左右 (其中世界上最高的多晶硅转换效率为14.8%)[7]。但如果我们从制作费用上来讲,多晶硅的由于制造简单,节能节电,因此其生产费用就会降低不少,从而得到了一定的发展。另外,其使用年限没有单晶硅太阳能电池那么长。如果从性价比来说,自然是单晶硅太阳能电池还略好。接下来我们说下非晶硅太阳电池,它是1976年出现的新型薄膜式太阳电池,其制造过程得到了很多简化,对硅材料的使用很少,电耗也更低,它突出的优点是在很多情况下都能发电包括弱光时候。但它也有一定的问题,就是光电转换效率相对而言偏低,就算国际上的先进水平也只大约在10%,不够稳定,时间越久,其转换效率会衰减。

根据所需要的不同数目的太阳能电池,其转换效率是通过光,温度和结晶型太阳能电池的制造工艺和其他因素的影响,2010年中国平均效率接近为18%,一般的太阳能电池电压有很多种,其主要用于太阳能发电。

太阳能电池板的太阳能发电系统是其工作的基础,是充电器的第一部分,其功能是将太阳光转为电能,如今更多种类型的便携式数字设备,电压和电流范围所需的输入功率较大的器件,面积较大,必须使用太阳能电池板,这给了携带不便。因此,模块化设计的组合,可根据不同的负载充电需求,太阳能电池板组合起来以实现一组光伏电池在某个期望的输出功率和输出电压。本文通过一些常用的小功率设备例如手机,来讲解太阳能充电器设计的过程。

3.2 LM7805稳压电路

由于太阳能电池板的电压会随太阳光的强度波动,强烈的太阳光会使太阳能电池板的电压变高,当太阳光强度变弱时,自然会使电池板输出电压变低。为了获得到稳定的输出,本设计应用稳压管LM7805,其输出口能输出稳定的所需要电压(5V),以便能保持稳定的输出电压。典型LM7805的应用电路图如图3.1所示。

图3.1 LM7805稳压电路图

图中C4、C7的是用于清除因长期连接时由于电感效应产生的自激振荡,降低了纹波电压,在其输出端接上电容C6、C5的作用是清除电路高频产生的噪声,以便提高所用负载的瞬态响应。一般来说电容的耐压性都会比电源输入、输出电压要强。此外,在稳压器输入、输出端之间加上二极管,可以避免对稳压器的破坏,从而实现对LM7805的保护。

LM7805输入电压在7V至37V之间,其最大工作电流可达1.5A,且拥有电路精简,电流输出高,运行工作稳定,即使电压不稳定,也能使太阳能电池拥有不变的输出电压(5V),最后能让单片机控制的电路正常稳定的运行,并且性价比高,不需要消耗多余的材料。

3.3 充电主电路的设计

充电主电路图如图3.2所示。

图3.2电池充电电路图

DC/DC变换是将直流电能(DC)转换成另一种固定电压或电压可调的直流电能,又可称成直流斩波[8]。若其输出电压较输入之电源电压低,则称为降压式(Buck )直流斩波器即频率调制(1)Buck电路,若其输出电压较输入之电源电压高,则称为升压式(Boost)直流斩波器。主电路核心由图可以看出,主要由三部分组成即电感

L1,三极管区和续流二极管D1,其也就形成了一个完整的BUCK降压DC/DC转换电路;上图Q2是具有将PWM信号打开变大,从而到达驱动Q1开关管的功能。

3.4 信号采集处理电路

为了使锂电池能完成安全充电,本设计的电流取样处理电路图如下图3.3所示

图3.3电流取样处理电路图

电池电压与单片机A/D接口相连,通过A/D转换和微控制器即单片机,以获得测量的电压值得到计算处理。此次充电电流通过0.1Ω的取样电阻,产生的电压再使用LM358,将电流取样电压放大相应的倍数后输到单片机A/D接口进行采集。电压检测输出电压直接进行模数转换之后被发送到A/D输入接口的单片机进行处理。

3.5 单片机选型

单片机型号众多,但大家熟悉了解的就那么几种类型。我们在学校接触到的也就是C51系列,C51是51单片机C语言程序设计的简称,由于接触到的单片机以型号为AT开头的为多,所以选用了型号是AT89C51为此次设计的单片机。

3.6 单片机AT89C51介绍

AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机[9]。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪速存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。AT89C51单片机引脚图如下图3.4所示。

图3.4单片机引脚图

以下为其引脚功能及作用

VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1

口作为低八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(计时器0外部输入)

P3.5 T1(计时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA 端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V 编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

3.7单片机电路

3.7.1单片机复位电路

单片机复位电路图如图3.5所示。

图3.5复位电路图

当系统正常工作时,由于上图使用的是按键复位,当电源给电容充电的过程中,会使电容存储的电能增加,致使单片机复位端电平减低,这时候得人为的按下键,才能使电平变高,单片机收集到信号后就会自动复位。

3.7.2单片机时钟电路

单片机可作为驱动时钟定时逻辑电路,在其工作过程中可以看出,所有的工作都是在时钟信号的控制下进行的,当执行一个指令事,CPU控制器必须发出一系列特定的控制信号。单片机时钟电路图如图3.6所示

图3.6单片机时钟电路图

3.7.3单片机A/D转换电路

ADC0809是8位的采样分辨率,以模拟数字转换的逐次逼近原理。ADC0809由一个8通道模拟开关,地址锁存器,解码器,A/D转换器。内部有一个8通道多路复用器,它能根据信号的地址锁存译码后,门控8模拟输入信号的A/D转换。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器转换。数字锁存器的A/D转换完成三态输出锁存器,当OE端为高电平,可以从三态输出锁存器的数据转换。A/D转换的数据要发送数据后,应该传给单片机进行处理。关键的问题是如何确定数据的A/D转换完成转移,因为只有确认完成后,可以发送。A/D转换电路图如图3.7所示

图3.7 A/D电路图

ADC0809的引脚功能及作用

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。

ALE:地址锁存允许信号,输入端,高电平有效。

START:A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC: A/D转换结束信号,输出端,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入端,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。要求时钟频率不高于640KHz。

REF(+)、REF(-):基准电压。

Vcc:电源(+5V)。

GND:接地。

3.7.4按键电路

按照键盘与单片机的连接方式分为独立式键盘和矩阵式键盘[11]。独立式键盘相互独立,每个按键占用一根I/O口线,每根I/O口线上的按键工作状态对其他按键的工作状态不会产生不好作用。这种按键软件程序简单,但占用I/O口线较多(一根口线只能接一个键),适用于键盘应用数量较少的系统中。矩阵式键盘又称行列式键盘,与独立式键盘对比,单片机口线资源利用率提高了一倍。

按键接线图如图3.8所示。

图3.8按键电路图

键盘抖动的时间一般为5~10ms,抖动现象会引起CPU对一次键操作进行多次处理,从而可能产生错误,因而必须设法消除抖动的不良后果。通过去抖动处理,可以得到按键闭合与断开的稳定状态。为了准确判断闭合键的位置,要对每个按键进行编码。根据矩阵式键盘的结构,采用行扫描的键位识别方法。使某条列线为低电平,如果这条列线上没有闭合键,则各行线的状态都为高电平;如果列线上有键闭合,则相应的那条行线即变为低电平。于是就可以根据行线号与列线号计算出闭合键的键码。扫描时由第一列开始,即由PA口先输出0FEH,然后由PC口输入行线状态,判

断哪一行有键闭合,若无键闭合,再输出0FDH检测下一列各行键闭合状态,由此一直扫描下去。

在这个设计中,按键的数量设置为3,它们中的一个作为一个复位按钮;另一个作为电压按键,这样的设计提供3V,3.5V,4.0V,4.5V为周期的四个电压值,可以“电压选择”键选择一个电压输出;另一个开始充电,装上一个电池为电池充电,当按下“开始充电”按钮,系统开始为锂电池充电。因此,使用一个独立的密钥的方法,它可以减少编程的难度。

3.7.5数码管显示电路

LED数码管组成的多个发光二极管打包在一起,以形成“8”字状的装置中,连接导线已在内部做好,只要能导致它们导出各自的笔划,公共电极。

数码管显示电路图如图3.9所示

图3.9数码管显示电路图

本设计使用四位LED数码管数码管段加小数点为7或8个数码管,数码管有两种阴阳,本设计采用共阴极数码管,8段LED阴极接地连接在一起,阳极当某一高电平时,二极管被点亮而发光,设计时允许数码管阳极的某一组合被设置高。3.8锂电池充电原理

锂电池充电的工作原理就是指其充放电原理。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。一般而言电池容量指的就是放电容量。可以看到,锂电池在充放电的过程中,锂离子是存在于正极→负极→正极的运动状态。如果我们把锂电池形象地比喻为一把摇椅,摇椅的两端为电池的两极,而锂离子就象优秀的运动健将,在摇椅的两端来回奔跑。

锂蓄电池的充电特性曲线图如图3.10所示:

图3.10锂电池充电特性曲线图

为保证安全充电,对锂离子电池充电要求首先是在充电时保持电流不变,电池电压会在充电过程中渐渐升高,当电池端电压达到4.2V(4.1V),会改变充电状态,即变化为电压不变的恒压充电。电流会依照电芯的饱和程度,随着充电过程的渐渐降低,当降低到0.01CA时,认为充电终止。大家注意,其中C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA,注意是mA而不是mAh,0.01CA就是10mA。当然,规范的表示方式是0.01C5A。4基于单片机的太阳能充电器系统的软件设计

4.1 设计思想

首先主程序由初始化段和循环主体段两部分组成,在执行循环体时,需要一个个的调用所需的任务模块,不会直接去执行程序,其中每一个任务为一个子函数,这种机制也叫称为轮询机制。举个例子说明:就是当一个正在被主程序执行的子函数,它会自动确认其执行条件有无可行性,如果可以就执行,反之,就会返回。按键处理是以10ms为周期的选择一次。PWM的控制调节不能过快,最好以200ms为周期,如果太快,会影响到数码管刷屏,A/D采样速度也是一样。

子程序主要由4部分组成,包括初始化程序,PWM波程序,按键采集程序,信号采集与转换程序;如果从系统表现出的功能来看,又可以分成充电子程序、电源子程序,这两程序都会用到子程序的4个程序。

本次设计使用的PWM波是可以掌控开关管的占空比,它的生成是运用了输出在低电平和高电平的转换、延时。即当输出为低电平时,将输出信号放大驱动开关管断开,反之,如果其为高电平时,开关管则会打开。开关管的占空比是通过低电平和高电平的时间的比值(即PWM波的占空比)来控制。

本设计单片机采用AT89C51芯片,由于其内部没有AD转换模块,单片机需外接转换模块,本设计采用ADC0809,模拟信号输入有两路,一路是电压信号,一路是电流信号。ADC0809在对多路输入的模拟量进行模数转换时采用分时复用的方法,即AD转换器对两路信号轮换采集转换。轮换周期根据模数转换时间和控制的情况设定

4.2 基于单片机的太阳能充电器系统的整体程序设计

本设计由单片机程序控制来实现整体工作,其工作过程主要为:电路启动初始化,电路功能的选择,输出选择及确定输出,单片机集合计算输出PWM信号,定时采集数据及处理调节PWM信号占空比等,程序整体框架图如下图4.1所示。

图4.1 程序整体框架流程图

4.3基于单片机的太阳能充电器系统的子程序的设计

4.3.1电路启动初始化

初始化设置初始运行环境为单片机运行,主要完成以下任务:清理片内RAM,每一个微控制器上电,上电复位将导致单片机操作。在复位操作完成后,单芯片寄存器将被设置为不同的值,该值的一个相当大的部分是未知的。在微控制器的复位完成这些未知的值,正式工作后,会产生不能让程序员掌握的后果,甚至会损坏系统。因此,微控制器运行后,先设置为0,这样的初始参数设置,方便编程人员掌握,以方便系统的工作。设置系统运行所需的参数,设置定时器和中断设置。

初始化程序流程图如下图4.2所示。

图4.2 初始化程序流程图

4.3.2按键采集程序

键盘子程序用于检测开关,是否在有效的开关状态来决定是否启动系统运行。读线、读取、连接到该端口,它的值存储处理后确定相关的缓存。看完端口在其中做了一定的延迟,以排除引起的误动作键晃动。按键子程序结构流程图如图4.3所示。

4.3.3

图4.4所示。

图4.4 数据采集子程序结构流程图

4.3.4数码管显示子程序

开机时,先让数码管初始化,通过串口为“0”字形码输出使数码管显示“O”。然后来确认按键是否被按下,如果没有键被按下继续确认。

显示子程序时要先初始化串口,以致串口工作会显示在方式0,以便读取显示缓冲区的数据(其用来存储数据也就是将被显示出来的数据),然后找到通过字形码查表相应的方式,再将字形码写入串口寄存器SBUF通过串口方式0发送出去显示。子

程序是如何显示在缓冲区中的数据转换成相应的字形码呢?具体方法是,从小型字形

3V)

,4V ,

图4.6 电源子程序结构流程图

5 仿真与调试

5.1 充电电路仿真

总所周知buck斩波电路中调整输出电压值的变化是由控制开关管开通与关断时间控制,multisim仿真电路如下图5.1所示

图5.1电压检测仿真图

5.2 电流采样处理电路仿真

上面提出将电流采样电压是采用LM358电路让其放大到相应倍后再输送到单片机的A/D接口,输入的电压是5V时,输出时的电压则为125V,这样就能看出其电路所具有放大多少倍(计算可得21倍)的功能。如下图5.2所示

图5.2电流采样处理电路仿真图

5.3系统做直流电源使用时电路仿真图

Protues软件因为不存在太阳能电池模拟模块,所以在仿真时我们把稳压输出电压值用直流电源电压为5V的来更换,当数字到达3时,表示充电已经完成。按复位键会显示0,点开始键表示开始充电。整体电路仿真图如下图5.4所示

图5.3整体电路仿真图

5.4系统做充电器使用时仿真结果

充电器在运行过程中它会随着充电的进行,充电电压会渐渐升高,指示灯会从0逐渐变成3,此过程可表示充电从开始到结束。仿真结果如下图5.4、5.5、5.6所示。

图5.4 充电过程仿真

图5.5 充电过程仿真

图5.6充电过程仿真

时附录A 整体电路图

附录B 整体程序

#include

#define uchar unsigned char

#define uint unsigned int

sbit P3_3=P3^3; //开始充电

sbit P3_4=P3^4; //电压切换

sbit PWM=P3^5;

sbit EOC=P3^1; //定义ADC0808的控制引脚/

sbit OE=P3^0;

sbit START=P3^2;

sbit P3_6=P3^6;

sbit P3_7=P3^7;

sbit wela=P2^1;

sbit dula=P2^0;

uchar time=0,time1=0;

uchar period=40;

uchar high=6,high1=12;

uchar th0=0;

uchar tl0=1;

uchar i=0,j=0;

uint x,z,n;

uchar code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};

//uchar n=0;

//uchar flag1;

//unsigned char volatile g_delay_count;

uchar disp[4]={0,0,0,0}; //显示数据,保存段码,四位/

//================================/

void delay(uchar z) //100us延时子程序/

{

while(z--);

}

//==============================/

void display() //定义显示子函数/ 可以使用锁存器实现{

for(n=0;n<4;n++)

{

P0=0x00;

dula=1;

P0 =disp[1]; //显示第一位小数

dula=0;

wela=1;

P0=0xfb;

wela=0;

delay(2);

P0=0x00;

dula=1;

P0=disp[2]; //显示第二位小数

dula=0;

wela=1;

P0=0xfd;

wela=0;

delay(2);

P0=0x00;

dula=1;

P0 =disp[3]; //显示第三位小数

dula=0;

wela=1;

P0=0xfe;

wela=0;

delay(2);

P0=0x00;

dula=1;

P0 =disp[0]+0x80;

dula=0;

wela=1;

P0=0xf7;

wela=0;

delay(2);

}

}

//===============================/

uint ADC0808() //定义ADC0808读入数据子函数,并通过函数返回/ {

uchar d ;

uchar value;

START=1;START=0; //启动ADC0808,开始A/D转换/

while(!EOC); //等待ADC0808,转换结束,即EOC为高电平/

OE=1;

if(time1

{d=P1; //读入数据/

if(high1==16)

{

value=0.4*d;

}

else if(high1==20)

{

value=0.5*d;

}

else if(high1==24)

{

}

else if(high1==28)

{

value=0.7*d;

}

else if(high1==32)

{

value=0.8*d;

}

else if(high1==36)

{

value=0.9*d;

}

} //允许ADC0808输出数据 / if(time

{d=P1; //读入数据/

if(high==8)

{

value=0.2*d;

}

else if(high==10)

{

value=0.25*d;

}

else if(high==12)

{

value=0.3*d;

}

else if(high==14)

{

太阳能电池充电控制器电路图

太阳能电池充电控制器电路图(含原理说明) 采用专用蓄电池充电管理芯片UC3906设计太阳能充电控制器,经过实验室调试,其各项性能达到要求。控制器由切换电路、充电电路、放电电路三部分组成(见附图)。下面分别介绍其各个组成部分。 切换电路:太阳能电池接在常闭触点,继电器线圈受三极管Q2控制,当太阳能电池受光照时,Q1导通而02截止,使得继电器线圈绝大部分时间不耗电。在太阳能电池不受光照时,Q1截止而Q2导通,交流电经常开触点送出。 充电电路:由UC33906和一些附属元件共同组成了"双电平浮充充电器"。太阳电池的输入电压加入后.利用电阻R,检测出电流的大小,再利用R2、R3、R4、R5、R6检测蓄电池的工作参数,经过内部电路分忻.进而通过Q3对输出电压、电流进行控制。Rs取值为0.025Ω,充电电流最大为10A,根据蓄电池的容量大小.可改变R,以改变充电电流。 在恒流快速充电状态下,充电器输出恒定的充电电流Imax,同时充电器监视电池两端电压,当电池电压达到转换电压V12时,电池的电量已恢复到容量的70%~90%,,充电器转入过充电状态,在此状态下,充电器输出电压升高到V。。由于充电器输出电压恒定不变.所以充电电流连续下降.当充电电流下降到Io ct 时,电池容量已达到额定容量的100%,充电器输出电压下降到较低的浮充电压Vf蓄电池进入浮充状态。此时U C3906的⑩脚输出高电平,LM2903的①脚输出低电平,发光二极管发光,指示蓄电池已充足电。图中的电路还具有涓流充电的功能,涓流充电的电流值为It,R2为涓流充电的限流电阻。 放电电路:用LM2903接成双迟滞电压比较器,可使电路在比较电压的临界点附近不会产生振荡。R10、R Pl、RP2、LJ2B、Q4、Q5和K2组成过放电压检测比较控制电路。电位器RPl、RP2起设定过放电压的作用。可调三端稳压器LM317给LM2903提供稳定的8V工作电压。 当蓄电池端电压大于预先设定的过放电压值时,U2B的⑥脚电位高于⑤脚电位,⑦脚输出低电位使04截止,Q5导通,K2动作,其常开触点闭合,LED2发光指示负载工作正常;蓄电池对负载放电时端电压会逐渐降低,当端电压降低到小于预先设定的过放电址值时。U2B的⑥脚电位低于⑤脚电位,⑦脚输出高电位使Q 4导通,Q5截止,K2释放,LED2熄灭,指示过放电。该控制器能有效地防止蓄电池过充、过放、过流,可满足了太阳能充电控制器的需要。

基于单片机的太阳能充电器

本科生毕业设计便携式太阳能充电器 2013 年04 月

独创性声明 本人郑重声明:所呈交的毕业设计是本人在指导老师指导下取得的研究成果。除了文中特别加以注释和致谢的地方外,设计中不包含其他人已经发表的研究成果。与本研究成果相关的所有人所做出的任何贡献均已在设计中作了明确的说明并表示了谢意。 签名: 年月日 授权声明 本人完全了解许昌学院有关保留、使用本科生毕业设计的规定,即:有权保留并向国家有关部门或机构送交毕业设计的复印件和磁盘,允许毕业设计被查阅和借阅。本人授权许昌学院可以将毕业设计的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编设计。 本人设计中有原创性数据需要保密的部分为(如没有,请填写“无”): 学生签名: 年月日 指导教师签名: 年月日

便携式太阳能充电器 摘要 16到20世纪,随着工业革命的兴起,科学技术的不断发展,人们对自然界中化石能源的索取速度越来越快、数量越来越多。与此同时,化石能源的燃烧对于自然界的生态环境造成了难以弥补的破坏。作为可再生能源,太阳能有着广阔的应用前景,可以成为移动设备供电的有吸引力的能源。当我们外出或旅游时,常常因为手机没电所带来的麻烦而苦恼,但又不能及时找到可以充电的场所,影响了手机的正常使用。为了解决这一问题,本毕业设计介绍一种便携式的太阳能手机充电器,利用单片机控制,实现对移动设备充放电的自由与智能控制。与常规的充电器相比,太阳能充电器必将因为便携式而得到长远的发展。 关键词:能源;太阳能;电池;单片机;便携式

Portable Solar Charger based on Microcontroller Abstract From 16 to 20 century, with the rise of industrial revolution and continuous development of science and technology, people demand a large quantity of fossil energy with increasing speed. At the same time, the burning of fossil energy has caused irreparable damage to the environment. As a renewable energy, solar energy enjoys broad application prospect. Solar power is attractive, because it supplies power for portable devices. When we go out or travel, we are often bothered by the failing power of cellphone. And we can’t find places to charge in time, which affects the normal use of mobile phone. In order to solve this problem, this thesis will introduce a type of portable solar mobile charger, using single-chip microcomputer so that the charge and discharge of mobile devices can be freely and intelligently controlled. Compared with the conventional charger, solar energy charger will definitly have a long-term development for its portable type. Key words: energy;solar energy;battery;intelligent;portable

基于单片机的电动车智能充电器的设计

前言 (4) 第一章充电器原理 (5) 1.1 蓄电池与充电技术 (5) 1.2 密封铅酸蓄电池的充电特性 (5) 1.3 充电器充电原理 (6) 1.3.1 蓄电池充电理论基础 (6) 1.3.2 充电器的工作原理 (8) 第二章总体设计方案 (10) 2.1 系统设计 (10) 2.2 方案策略 (10) 第三章硬件电路设计 (12) 3.1 电路总体设计 (12) 3.2 芯片介绍 (12) 3.2.1 LM358双运放 (12) 3.2.2 UC3842单管开关电源 (13) 3.2.3 EL817光耦合器 (14) 3.2.4 场效应管K1358 (15) 3.3 电动车充电器原理及各元件作用的概述 (16) 3.3.1 充电器原理图 (16) 图3.5 充电器原理图 (16) 3.3.2 各元器件作用概述 (16) 3.4 功能模块电路设计 (17) 3.4.1 第一路通电开始 (17) 3.4.2 第二路UC3842电路 (17) 3.4.3 第三路LM358(双运算放大器)电路 (18) 3.5 电动车充电器改进方案 (21) 3.5.1 增加充满电发声提示电路 (21) 3.5.2 加散热风扇 (22) 第四章总结与展望 (23)

致谢 (25)

电动车智能充电器设计及应用 中文摘要: 本设计介绍了充电器对蓄电池充电的一般原理,从阀控蓄电池内部氧循环的设计理念出发,研究各种充电方法对铅酸蓄电池寿命的影响。针对蓄电池充电过程中出现的种种问题,分析现有各种充电方法存在的问题,提出一种可对铅酸蓄电池实现四段式慢脉冲充电的智能充电器设计方案。控制开关电源的脉冲频率和占空比,从而调节充电电流和电压,实现对蓄电池的分级慢脉冲充电。这个方案不仅可实现快速充电,同时可以减少析气,消除硫化,进行均衡充电,从而大大地延长了铅酸蓄电池的使用寿命。 关键词:慢脉冲充电;蓄电池;充电器; Abstract: The design describes the charger to the battery charger of the general principles, from the internal oxygen cycle of valve-regulated battery design concepts starting to study a variety of charging methods for lead-acid battery life implications. For battery charging problems arising in the process, analysis of existing problems in a variety of charging methods, proposed a lead-acid batteries could achieve the Four-slow pulse charge of the intelligent charger design. Control the switching power supply pulse frequency and duty cycle, thus regulating charge current and voltage to achieve the classification of the battery charge with slow pulse. This program not only for fast charging, while reducing analysis of gas, to eliminate sulfide, a balanced charge, thus greatly extending the service life of lead-acid batteries. Key words: slow pulse charge; batteries; charger;

(完整版)太阳能手机充电器设计说明

太阳能光伏组件技术 课程设计报告 一设计任务与要求 太阳能电池板可以工作在多种环境下,只要接受到的太足够的强烈就可以满足光电转换的需求。同时太阳能电池板提供的是直流电源,它在设计为小型充电设备充电时所需求的电路结构相对简单,相比使用交流电源充电时更加安全可靠。 具体要求:当按下总开关时,太阳能电池板开始给手机充电,并且LED灯亮表示太阳能电池板正在工作。 二方案设计与分析 本课程设计是通过太阳能电池板和LM2596S降压模块的连接,使太阳能电池板产生的电流通过降压集成电路形成稳定的电流,再通过USB接口给手机充电板充电。 2.1 LM2596 本实验需要LM2596芯片,下面是其功能介绍: LM2596是仪器生产的3A电流输出降压开关型集成稳压芯片,它部含固定频率振荡器和继续混稳压器(1.23V),并具有完善的保护电路、电流限制、热关段电路等。

LM2596的特点如下: 1、输出电压:3.3V、5V、12V及(ADJ)等,最大输出电压37V 2、工作模式:低功耗/正常两种模式。可外部控制 3、工作模式控制:TTL电平相容 4、所需外部组件:仅四个(不可调);六个(可调) 5、器件保护:热关断及电流限制 6、封装形式:5脚(TO-220(T);TO-263(S)) 下图分别为LM2596的实物图和部结构图。 实物图部结构图 管脚功能:VIN——正输入端,在这个管脚处必须加一个适当的输入旁路电容来减小暂态电压,同时为LM2596提供所需的开关电流。 GND——接地端。Output——输出端,这个脚上的电压可在(+VIN-VSAT)和-0.5V(大约)间转换。为了减小耦合,PCB上连接到该脚的铜线区域要尽量小。 Feedback——反馈端,这个管脚把输出端的电压反馈到闭环反馈回路。 ON /OFF——这个管脚可以利用逻辑电平把LM2596切断,使输入电流就降到大约

太阳能充电宝构成与选用方法

太阳能充电宝构成与选用方法: 太阳能充电宝主要由LM2575ADJ和LM3420等构成的充电电路,LM3420监视充电电器的电压,其输入加至开关集成稳压器LM2575ADJ的反馈端(FB)。当检测到用电器满充电电压时,电路停止对电池充电,另外,(LM358)放大器用于增强LM3420的检测能力。 随着通信技术的迅猛发展,化石能源被日益消耗甚至即将面临枯竭,全球能源问题日益严重。另外人们的环境保护意识越来越强烈,寻找各种清洁能的源来代替化石能源变得尤为重要。太阳能作为一种可再生资源有取之不尽用之不竭的有点,并且清洁安全。因此太阳能有着广泛的应用前景。 所以移动电源顺应时代的发展,本文主要介绍自制的简易移动电源,主要利用tp4056充电控制芯片来控制整个电路的运作,电路中还有多种贴片电阻,贴片电容,贴片二极管MDDSS14,和电感,接上5V电源后,会发现LED灯会亮,接不同的电压,灯亮的个数会不一样。通过这次实训,有了很大的收获。 电源稳压器选用的是TP4056芯片,TP4056充电控制芯片是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的 SOP8 封装与较少的外部元件数目使得 TP4056充电控制芯片成为便携式应用的理想选择。TP4056充电控制芯片可以适合 USB 电源和适配器电源工作。 由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于 4.2V,而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,TP4056充电控制芯片将自动终止充电循环。比如尚信光伏就是这样的产品,主要供应苹果等一线品牌手机的充电器,太阳能与普通款式均有供消费者选择,普通款式的国产产品可按照尺寸通用,提高了产品与手机的匹配度。 当输入电压(交流适配器或 USB 电源)被拿掉时,TP4056充电控制芯片自动进入一个低电流状态,将电池漏电流降至 2uA 以下。TP4056充电控制芯片在有电源时也可置于停机模式,以而将供电电流降至 55uA。TP4056充电控制芯片的其他特点包括电池温度检测、欠压闭锁、自动再充电和两个用于指示充电、结束的 LED 状态引脚。

太阳能充电控制器原理图之经典

● ZigBee Module产品,已经通过各种EMC/EMI测试,可以直接嵌入现有产品中使用。产品特色: 2.4GHz IEEE802.15.4 compliant / 2.7 - 3.6V operation / Sleep current (with active sleep timer) < 14?A / 0dBm power with on board antenna / Receiver sensitivity -90dBm / TX current < 45mA / RX current < 50mA / Modul e size 18x30mm ● Jennic的JN5121芯片: 全集成单芯片ZigBee解决方案ZigBee是最新的基于I EEE802.15.4规范的超低功耗,低速率(250Kbps),短距离(<100米)无线网络通信技术。ZigBee技术最大优势就是超低功耗,3节AA电池可以连续工作2年!固有的数据安全特性以及非常灵活的组网能力。目前主要应用市场包括:工业无线传感器网络/ 智能无线家庭监控网络/ 个人健康监护产品/ 汽车电子安 全报警产品 ● Jennic的JN5121是目前市场上唯一一颗开始大量出货的全集成单芯片ZigBee 解决方案。单个芯片即可以构成标准的ZigBee终端产品,因此可以在很大程度上降低产品成本,并缩短新产品的上市时间。JN5121主要特性:全集成﹑单芯片/ 2.4GHz兼容IEEE802.15.4规范/ 内建128位AES安全协处理器/ 内建高效的电源管理器/ 内建32位RISC处理器/ 内建96K RAM静态存储器/ 内建64K ROM程序存储器/ 内建4路12bit ADC,2路11bit DAC,2个比较器,1个温度传感器/ 内建3个系统Timer和2个用户Timer / 内建2个UART端口/ 内建1个SPI接口,带有5个片选线/ 内建1个2线串行接口,兼容SM-B US和I2C规范/ 内建21个通用I/O口/ 8 X 8 mm 56PIN的QFN封装. ● 借助Jennic的JN5121-EK000评估板开发套件,协议栈以及完整的ZigBee SD K软件开发包,您可以在短时间内构建出符合IEEE802.15.4以及ZigBee规范的无 线产品。 LMP2231 是一枚专为电池供电应用而设计的单路微功率高精度放大器。器件的1.8V 至5.0V 保证电源电压范围和仅仅18μW的静态功耗能够为便摈电池工作系统延长电池的寿命。LMP2231 是LMP高精度放大器家族的其中一员。器件当中的高阻抗CMOS输入令到它成为精密仪器和其它传感器接口应用上的最理想 选择。 LMP2231 的最大失调电压为150 μV,而其最大的失调电压漂移和偏置电流分别只仅有0.4 μV/°C和±20 fA。这些精密的规格皆使到LMP2231 有利于维持系统的 准确度和长期稳定性。 LMP2231 拥有一个轨到轨输出,其从电源电压的摇摆幅度为15 mV,从而增加了系统的动态范围。这样,器件的共模输入电压范围便可进一步扩展到负电源以下的200mV,因而令到LMP2231 适合使用在设有接地传感的单路电源应用中。

毕业设计-太阳能手机充电器

目录 摘要 (1) 一、设计题目与要求 (2) 1、设计题目 (2) 2、设计要求 (2) 二、设计思路及框架图 (2) 三、设计原理图 (3) 四、各部分电路介绍 (3) 1、光电转换电路 (3) 2、稳压电路 (4) 3、充电和指示部分 (5) 4、过充保护电路 (9) 五、元器件的选择 (9) 1、太阳能电池的介绍与选择 (9) 2、三端集成稳压器的原理与选用 (13) 六、谢辞 (17) 七、参考文献 (22) 八、附录 (18)

摘要 手机作为信息社会的一种通用商品,如今在世界范围内得到广泛的普及,而作为手机能源的提供者—电池的储能总是十分有限,几乎所有的用户都曾遇到过外出或通话过程中电池耗尽的尴尬,尤其是对于经常在野外作业的用户来说,在远离市电的环境下,电池的耗尽为我们的通信带来极大的不便,而太阳能作为一种可再生能源逐步在各个领域得到广泛应用。太阳能是人类取之不尽用之不竭的可再生能源,也是清洁能源,不产生任何的环境污染。若能以太阳能电池组件为基础,设计出成本低廉的太阳能手机充电器,直接完成太阳能辐射到电能转换,必然会为个人移动通信带来极大的方便。 本设计主要完成了具有不同于目前市场销售的同类产品的太阳能手机充电器的设计工作。该设计电路包括光电转换电路、稳压电路、充电和显示电路、过充保护电路。该充电器工作稳定、可靠,使用灵活。太阳能作为一种没有任何污染的、易取的绿色能源若能应用到消费类产品中,对于改善地球的整体的能源状况和环境有着非常重要的意义. 关键词:光电传感器、稳压电路、充电显示电路、过充保护电路

一、设计题目与要求 1、设计题目 太阳能手机充电器的设计与制作 2、设计要求 本设计的主要设计内容: 太阳能极板的设计、充电控制电路的设计、电压电流控制与显示电路 二、设计思路及框架图 此太阳能手机充电器设计中是利用光生伏特效应将光能转换成电能,其电能通过稳压器可直接给手几电池充电,也可将电能储存于蓄电池,在无太阳光时对手机充电。其基本框图如下: 图2-1 设计框图

智能充电器设计参考资料APPlication note

8-bit Microcontrollers Application Note Rev. 8080A-AVR-09/07 AVR458: Charging Lithium-Ion Batteries with ATAVRBC100 Features ? Fully Functional Design for Charging Lithium-Ion Batteries ? High Accuracy Measurement with 10-bit A/D Converter ? Modular “C” Source Code ? Easily Adjustable Battery and Charge Parameters ? Serial Interface for Communication with External Master ? One-wire Interface for Communication with Battery EEPROM ? Analogue Inputs for Reading Battery ID and Temperature ? Internal Temperature Sensor for Enhanced Thermal Management ? On-chip EEPROM for Storage of Battery and Run-Time Parameters 1 Introduction This application note is based on the ATAVRBC100 Battery Charger reference design (BC100) and focuses on how to use the reference design to charge Lithium-Ion (Li-Ion) batteries. The firmware is written entirely in C language (using IAR ? Systems Embedded Workbench) and is easy to port to other AVR ? microcontrollers. This application is based on the ATtiny861 microcontroller but it is possible to migrate the design to other AVR microcontrollers, such as pin-compatible devices ATtiny261 and ATtiny461. Low pin count devices such as ATtiny25/45/85 can also be used, but with reduced functionality.

基于单片机的太阳能充电器的设计毕业设计(论文)

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

新型车载便携式风力发电移动电源的设计

新型车载便携式风力发电移动电源的设计 李天然 (东北林业大学机电工程学院, 哈尔滨150040) 摘要: 以清洁能源的利用为设计出发点,针对自驾游途中可能发生的用电短缺现象,提出了一款便携式的风力发电移动电源设计方案。本设计方案利用交通工具在行驶过程中产生的风能进行发电,将机械能转化为电能储存在蓄电池中,并可通过USB接口为随身携带的电子产品进行充电。本设计方案集节能、经济、个性于一身,既方便人们生活,又低碳环保,是一款可行性及可普及性强的绿色产品,为绿色能源的具体应用提供了一定的参照,为新能源产品的设计研究提供了借鉴经验。 关键词: 绿色能源;风力发电;风能;环保 中图分类号: TK89 文献标识码: A 风能是一种清洁、廉价、储量极为丰富的可再生能源,利用风力发电是减少空气污染,缓解能源短缺的有效措施之一[1]。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,促使发电机发电[2]。目前,国内外的风力发电技术已基本成熟,风能市场迅速发展,商业化前景广阔。在大型风力发电机组技术成熟的基础上,小型风力发电装备的设计开发也越来越受人们的重视[3],在很多城市,风力发电路灯已经成为街路两边的风景。同时,随着数字科技的普及,现代人对电子产品愈发依赖,电子产品的电源补充是很多企业和科研单位的产品研发方向。本文正是基于这一发展趋势,利用风力发电技术,对便携式移动电源的设计进行了尝试。 1 设计思路 1.1 设计理念 现代人对手机、数码相机等电子设备愈发依赖,在旅游、户外运动中,经常会遇到电子设备供电不足的无奈状况,便携式充电器“移动电源”能够为这些电子设备提供应急充电[4]。移动电源是一个集储电、升压、充电管理于一体的便携式设备。在使用移动电源之前,要先为移动电源的储电单元完成充电,然后再通过电源转接头为各种电子设备供电。目前市场上主流的移动电源有充电式移动电源和太阳能移动电源两种。 1.2设计定位与分析 近年来,人们对户外运动的热情与日俱增,尤其是驾驶自行车、摩托车这种灵活、个性的出行方式,因其自由化、可选择性和自主性强的特点而备受人们青睐[5]。如电影《转山》中,选择这种旅行方式的人们往往会在野外露营,缺乏为电子设备充电的条件;在雨雪天气下,太阳能移动电源也会失去作用。本文设计定位于此类人群,利用旅行中驾驶自行车、摩托车等交通工具行驶过程中与空气摩擦产生的风能来进行移动电源的设计。 因此,本文设计的产品是一款便携式的,在车辆行驶过程中由风能发电装置进行发电,并将电能储存在蓄电池中,再通过接口为手机、数码相机、摄像机、便携式DVD、PDA、MP3、MP4、GPS、保暖设备、医疗保健设备等充电的新型移动电源。 2 设计方案 2.1设计原理

太阳能充电控制器及逆变器设计

摘要 太阳能光伏发电现已成为新能源和可再生能源的重要组成部分,也被认为是当前世界最有发展前景的新能源技术。目前太阳能光伏发电装置已广泛应用于通讯,交通,电力等各个方面,其核心部分就是充电控制器。 在总体方案的指导下,本设计使用低功耗、高性能,超强抗干扰的STC89C52单片机作为核心器件对整个电路进行控制。系统硬件电路由太阳能电池充放电电路,电压采集和显示电路,单片机控制电路和RS232串口通信电路组成,主要实现对蓄电池电压的采集和显示。软件部分依据PWM(Pulse Width Modulation)脉宽调制控制策略,编制程序使单片机输出PWM控制信号,通过控制光电耦合器通断进而控制MOSFET管开启和关闭,达到控制蓄电池充放电的目的,同时按照功能要求实现了对蓄电池过充、过放保护和短路保护。实验表明,该控制器性能优良,可靠性高,可以时刻监视太阳能电池板和蓄电池状态,实现控制蓄电池最优充放电,达到延长蓄电池的使用寿命。 关键词:充电控制器太阳能光伏发电PWM脉宽调制

Abstract Solar photovoltaic power generation has become an important part of new energy and renewable energy, it is considered the current world's most promising new energy technologies. At present solar photovoltaic device has been widely used in communications, transport, electricity and other aspects, the core part is the charge controller. Under the guidance of the overall program, the design uses low-power, high performance, super anti-jamming STC89C52 microcontroller as a core device to control the entire circuit. Hardware circuit consists of a solar battery charging and discharging circuit, voltage acquisition and display circuit, the MCU control circuit and RS232 serial communication circuit, the main achievement of the acquisition and display battery voltage. Software is based in part on PWM (Pulse Width Modulation) pulse width modulation control strategy, programming the microcontroller output PWM control signal, by controlling the photocoupler on-off the control MOSFET opening and closing, to control battery charging and discharging purposes, and in accordance with the functional requirements implemented the battery over charge, over discharge protection and short circuit protection. Experiments show that the controller performance, high reliability, can always monitor the state of solar panels and batteries to achieve optimal control of battery charge and discharge, to prolong battery life. Keywords:charge controller, solar photovoltaic, PWM pulse width modulation

基于单片机太阳能充电器设计

山东交通学院 课程设计报告 课题名称基于单片机的太阳能充电器的设计学生姓名傅传银唐飞翔 学号140818108 140818110 专业电子信息工程(信职141) 指导教师张波 2016年06月26日

1 绪论 1.1 本课题研究背景及现状 当代社会随着一些不可再生资源如煤炭,石油等日益减少,使得各国社会经济越来越受能源问题的约制,因此许多国家开始逐渐的实行“阳光计划”,开发洁净的能源如太阳能,用以成为本国经济发展的新动力。 首先让我们想到的是太阳能电池,因为它不会消耗水,燃料等物质,并且不会释放任何对环境有污染的气体,是直接通过太阳光与材料的相互作用释放出电能,这种无污染资源对环境的保护有着相当重要的意义[1]。由于无公害的作用,目前世界太阳能电池产业已经出具规模,1995年到2004年的十年内平均年增长率达到30%以上。随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势[2]。世界各国对光伏发电也越来越重视,目前全世界已超过一百个国家使用光伏发电系统,其中以欧洲为代表的发达国家为主,占总市场的80.1%,早在09年的时候,世界各国总的光伏新加装机容量接近800万千瓦,截至当年低,世界光伏装机容量总共接近2700万千瓦[3]。随着并网光伏发电市场的迅速发展,让它受到了世界各地的关注。 目前,太阳能电池的应用已经逐渐广泛得到推广,众所周知,沙漠地区由于气温特别高,因此最具有大规模开发太阳能的潜力,这使得沙漠等偏远地区对其的使用更加方便,并且能减低甚至节省昂贵的输电线路,从长远发展状况来看,随着改善太阳能电池制造技术和新的光 - 电转换装置发明,国家环保和清洁能源,光伏发电系统和太阳能发电的巨大需求恢复将继续利用太阳辐射能比较实用方法,这可以为人类以后能使用太阳能提供了广阔的开辟前景[4]。 当代社会太阳能手机充电器得到了一定的使用,它具有运用方便,环保,节能,格外使用于应急场合,高效率充电,性价比较高,让大家无论身处何处,都不会受到手机没电的困扰[5]。借此太阳能手机充电器的众多优点,因此提出本课题。 1.2 课题设计思想 基于单片机的太阳能充电器的设计是本次探导的课题。首先,由于太阳能电池板的电压会随太阳光的强度波动,强烈的太阳光的太阳能电池板的电压是高的数,当太阳光弱的强度,所述太阳能电池板的输出电压低时,从太阳能电池板的输出到稳定的

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件的设计 锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。 本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并经过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。 设计过程 1 充电原理 电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的<锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶

段: ● 低电流调节阶段 ● 恒流阶段 ● 恒压阶段/充电终止 所有电池都是经过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量也能够用1/50C(20mA>或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。 现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流一般使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电一般见在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,一般充电时间的绝大部分都是消耗在这一阶段,能够经过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电

太阳能充电宝构成与选用方法

太阳能充电宝构成与选用方法 太阳能充电宝构成与选用方法: 太阳能充电宝主要由LM2575ADJ 和LM3420等构成的充电电路,LM3420监视充电电器的电压,其输入加至开关集成稳压器LM2575ADJ 的反馈端(FB )。当检测到用电器满充电电压时,电路停止对电池充电,另外,(LM358)放大器用于增强LM3420的检测能力。 随着通信技术的迅猛发展,化石能源被日益消耗甚至即将面临枯竭,全球能源问题日益严重。另外人们的环境保护意识越来越强烈,寻找各种清洁能的源来代替化石能源变得尤为重要。太阳能作为一种可再生资源有取之不尽用之不竭的有点,并且清洁安全。因此太阳能有着广泛的应用前景。 所以移动电源顺应时代的发展,本文主要介绍自制的简易移动电源,主要利用tp4056充电控制芯片来控制整个电路的运作,电路中还有多种贴片电阻,贴片电容,贴片二极管MDDSS14,和电感,接上5V 电源后,会发现LED 灯会亮,接不同的电压,灯亮的个数会不一样。通过这次实训,有了很大的收获。 电源稳压器选用的是TP4056芯片,TP4056充电控制芯片是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的 SOP8 封装与较少的外部元件数目使得 TP4056充电控制芯片成为便携式应用的理想选择。TP4056充电控制芯片 可以适合 USB 电源和适配器电源工作。 由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于 4.2V,而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,TP4056充电控制芯片将自动终止充电循环。比如尚信光伏就是这样的产品,主要供应苹果等一线品牌手机的充电器,太阳能与普通款式均有供消费者选择,普通款式的国产产品可按照尺寸通用,提高了产品与手机的匹配度。 当输入电压(交流适配器或 USB 电源)被拿掉时,TP4056充电控制芯片自动进入一个低电流状态,将电池漏电流降至 2uA 以下。TP4056充电控制芯片在有电源时也可置于停机模式,以而将供电电流降至 55uA。TP4056充电控制芯片的其他特点包括电池温度检测、欠压闭锁、自动再充电和两个用于指示充电、结束的 LED 状态引脚。

基于51单片机的多用太阳能手机充电器毕业设计论文

摘要 化石能源的日益枯竭、人们对环境保护问题的重视程度也在不断提高,寻找洁净的替代能源问题变得越来越迫切。太阳能作为一种可再生能源它具有取之不尽、用之不竭和清洁安全等特点,因此有着广阔的应用前景,光伏发电技术也越来越受到人们的关注,随着光伏组件价格的不断降低和光伏技术的发展,太阳能光伏发电系统将逐渐由现在的补充能源向替代能源过渡。使用手机的人都有过这样的经历,外出或旅游时电池突然没电了,因不能及时找到或没有 220V 市电而无法给手机充电,影响了手机的正常使用。为了解决这一问题,本课程设计介绍一种多用太阳能手机充电器,利用单片机控制,将太阳能经过电路变换为稳定直流电给手机充电,并能在电池充电完成后自动停止充电,还可作为一般直流电源使用,从而摆脱对市电的依赖而获得通信的自由。与常规的充电器相比,太阳能充电器有着明显的优势。 关键词:太阳能,电池,单片机,智能,BUCK 变换器 1 绪论 1.1 本课题的研究背景 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。太阳能电池是利用太阳光和材料相互作用直接产生电能,不需要消耗燃料和水等物质,使用中不释放包括二氧化碳在内的任何气体,是对环境无污染的可再生能源。这对改善生态环境、缓解温室气体的有害 hk 作用具有重大意义。目前,太阳能电池的应用已从军事领域、航天领域进入工业、商业、农业、通信、家用电器以及公用设施等部门,尤其可以分散地在边远地区、高山、沙漠、海岛和农村使用,以节省造价很贵的输电线路。但是,从长远来看,随着太阳能电池制造技术的改进以及新的光—电转换装置的发明,各国对环境的保护和对再生清洁能源的巨大需求,太阳能电池仍将是利用太阳辐射能比较切实可行的方法,可为人类未来大规模地利用太阳能开辟广阔的前景。 1.2 硅太阳能电池及参数 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为 24.7%,规模生产时的效率为 15%。多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为 18%,工业规模生产的转换效率为 10%。非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。硅太阳能电池片常用的为单晶 125 大倒角,其尺寸为125mm*125mm,对角线 150mm,功率 Pmax2.60W,工作电压 Vm0.523V,工作电流Im4.934A,开路电压 Voc0.629V,短路电流 Isc5.285A。太阳能电池可根据电压大小需要,由不同数量的太阳能电池片组成,其转换效率受光照、温度、太阳电池晶体类型及制造工艺等影响,2010 年中国平均效率为 17.2%。常见的太阳能电池电压有 3V、6V、9V、12V、18V、32V、48V 等,更大的用于太阳能电厂发电项目。 1.3 本课题研究的主要内容 本充电器通过太阳能电池板将太阳能转化为电能,经过 DC/DC 变换电路处理后,由充电电路为负载供电。锂电池一般不宜采用全过程恒流充电方式,而是采取开始恒流快速充电,待电池电压上升到设定值时,自动转入恒压充电的方式,

相关文档
相关文档 最新文档