文档库 最新最全的文档下载
当前位置:文档库 › 高炉矿槽炉顶上料系统的工艺流程

高炉矿槽炉顶上料系统的工艺流程

高炉矿槽炉顶上料系统的工艺流程
高炉矿槽炉顶上料系统的工艺流程

本文介绍了莱钢1#1000m3高炉矿槽炉顶上料系统的工艺流程,施耐德公司昆腾系列PLC控制系统的特点、硬件组态及软件功能,并详细介绍了该PLC控制系统的主要控制功能。

Abstract:This paper mainly discuss the process control system of feeding syste m for blast furnace based on Schneider TSX Quantum series PLC. Configuration so ftware Concept2.6 are adopted to monitor and manage process data. The whole sys tem well satisfies the technical requiments for control.

关键词:PLC;自动控制;上料系统;昆腾

Key words:PLC;automation;feeding system;Quantum

1、概述

莱钢1#1000m3高炉2005年投产,矿槽炉顶上料系统设计采用施耐德公司昆腾系列PLC,该控制系统实现了对矿石、球团、烧结、焦碳等原料的自动称量,并完成称量误差的自动补偿;实现了炉顶各阀门的顺序自动开关,α、β、γ的角度自动设定以及其他相关辅助设备的自动控制;实现了对高炉矿槽炉顶上料系统的数据采集、数据显示与数据控制。该系统投运以来,运行稳定,效果良好。

2、高炉矿槽炉顶上料系统工艺流程简述

2.1 槽上控制工艺流程:

高炉槽上设计13个料仓,4个烧结矿仓(3#、4#、5#、6#),2个焦炭仓(7#,8#),3个球团仓(9#、10#、11#),2个杂矿仓(1#、2#),1个焦丁仓。

槽上有3条打料皮带机,每条皮带机对应一辆卸料小车,采用卸料小车可以将胶带机输送的原料卸至不同的料仓,当采用卸料小车进行卸料时,卸料小车先开至所选择的料仓上方,然后启动胶带机,原料就经卸料小车卸到小车下方的料仓内。

2.2 槽下控制工艺流程:

高炉槽下设两个大烧结矿仓,两个小烧结矿仓,两个杂矿仓,三个球团仓,一个备用仓。每个矿仓下都有振动筛,筛除小于5mm的碎矿,大烧结矿仓的矿经过筛分后分别进入料坑的左右中间称量斗,小烧结矿仓的矿经筛分后分别进入各自配套的称量斗,然后经矿石皮带机集中运送,经料坑上方的翻板进入料坑中的矿石中间斗,经筛分后的5mm烧结矿经返矿皮带机运到碎矿仓。

焦炭设左右两个焦仓,仓下装有振动筛和振动给料机,焦炭经筛分后,大于20mm的块焦,分别直接进入料坑内的左右焦炭称量斗,筛下小于20mm的碎焦经SJ1、SJ2胶带机倒运

到SJ3碎焦胶带机上,送至碎焦仓上振动筛,将碎焦分级成8mm以上和8mm以下两种产品,大于8mm的焦丁由SJ4胶带机运至焦丁仓,再经焦丁给料机到焦丁称量斗,然后到供料胶带机与烧结矿一起进入料坑中间斗。小于8mm的碎焦落入焦粉仓等待汽车外运。当料车到底后,相应的矿石中间斗或焦炭斗向料车装料。

2.3 炉顶控制工艺流程:

莱钢1#1000m3高炉炉顶采用无料钟串罐式炉顶,分为受料斗、料罐、气密箱等组成部分。在上料过程中,炉料先投进受料斗里,随后放入料罐中,在这个过程中,由于高炉不能和大气相通,通过控制炉顶放散阀、均压阀、上密阀、柱塞阀、下密阀的顺序开关来实现高炉的正常下料,通过控制α、β、γ来实现高炉布料。料面检测设备采用机械探尺与雷达探尺相配合。

装料流程:焦炭、烧结矿等各种入炉原料由料车运到炉顶,倒入受料斗中,受料斗最多可装4车料。料罐放散完毕后打开上密阀和柱塞阀向料罐装料。装料完成后料罐进行均压。一旦高炉准备接受下一批炉料就进行布料,首先打开下密阀并将料流调节阀打开至设定开度,料罐中的炉料通过料流调节阀流到旋转的布料溜槽上。在布料期间,通过γ射线探测料流,该装置可发出料罐清空信号。一旦料罐清空,关闭料流调节阀和下密封阀,打开放散阀进行放散,准备下一次装料。

布料流程:一批料中,允许焦矿设定两个不同的料线位置。当探尺达到规定的料线位置后,自动提升到位,发出布料信号,下密封阀打开,布料溜槽进行启动。β角旋转到设定速度并且到达布料位置,开启料流调节阀,按照批重及规定的布料程序,调节料流调节阀开度和溜槽倾角,使每圈料流均匀、重量相等和首尾相接的向炉喉任意布料。为了减少料头料尾不均匀现象,每批料布完后,布料角度自动步进60度。

图一高炉上料系统工艺流程图

3、控制系统硬件配置

整个上料系统采用一套PLC系统,两台上位机完成对整个上料系统的监控及数据采集等。自动控制系统采用Schneider TSX Quantum 系列PLC硬件组成基础自动化系统。采用M P7监控软件,编程软件采用Concept2.6,Windows 2000作为系统平台界面,组成计算机化的操作系统,实现人机通讯。

控制器与上位机之间采用环形工业以太网进行通讯。主机控制单元接受由I/O接口收集的信号进行开关量和模拟量的处理后,将信号经I/O接口实现对设备的控制,与监控站及上位机通讯。这个系统配置如图二所示:

其中处理器采用昆腾系列140-CPU-534-14A,电源模块采用140-CPS-114-20,远程通讯模版采用140-NOE-771-01,I/O模板配置如下:数字量输入模板为140-DAI-753-00、140-D DI-353-00;数字量输出模板为140-DDO-353-00;模拟量输入模板为140-ACI-040-00;模拟量输出模板为140-ACO-130-00,远程I/O模版采用140 CRP 931 10、140 CRA 931 00。

4、矿槽炉顶上料系统控制功能

4.1 槽下控制部分

4.1.1 槽下控制范围及内容

(1)实现对矿石、球团、烧结、焦炭等入炉原料的自动称量,并完成称量误差的自动补偿。

(2)实现槽下12个矿仓、12个称量斗、2条成品带、2条碎矿皮带、12台振动筛、4台给料机、1个翻板及碎焦系统的自动控制,实现自动备料和放料。

(3)可使用监控画面对上料系统设备的运行状态进行监视,对设备的运行进行软手/自动切换及手动启停设备,进行料单设定及更改等。

(4)对装料超时、放料超时、超满及设备运行故障等情况在“工艺流程画面”进行报警显示。

图二控制系统硬件配置

4.1.2 矿石称量斗的称量控制

当排料程序发出后,矿石称量斗闸门开,料排出。当称量值为控制值(初始时为设定值的95%)的5%时,发出料空信号并关闭闸门,当闸门关好并称空好后,振动筛或给料机开始启动。称量值到控制值(经补正)时,振动筛或给料机停机,进行满称量。若达110%控制值(经补正)时发出声光报警信号。振动筛或给料机启动Ts后,还未发出斗“满”信号,就发出上卡料报警信号。

4.1.3 矿石称量斗的排料顺序

根据预先选定的装料程序,矿石中间称量斗一“空”且闸门关好,槽下翻板翻到位,矿石皮带机启动后,开始排料。

排料顺序:球团、杂矿单装时按料单内所填仓号的先后顺序进行排料(矿石称量斗排料最多不同时超过三个)。混装时先排一斗的球团或杂矿(排料单内球团或杂矿对应仓号的第

一个斗),再排小烧或振大烧。当前一个称量斗闸门开启,发出空信号后,发出下一个斗排料指令。排料斗的闸门开到位延时Ts后,还未发出斗“空”信号,则发出下卡料报警信号。

4.1.4 矿石中间称量斗称量控制

矿石中间称量斗称量控制分三种情况:

①大烧结矿振动筛供料:

当矿石中间称量斗“空”,闸门关好,设定好则发出同侧烧结筛运转指令,称量值达到控制值(初始时为设定值的95%)时,烧结筛停机,称量结束。称量值达110%控制值时发出音响报警信号。振筛启动延时Ts后,还未发出斗“满”信号,则发出“上卡料”信号。

②矿石皮带机供料:

当矿石中间斗料一“空”,并且闸门关好,槽下翻板翻好,便发出矿石皮带机运转指令,当排料斗均放过料后,发出矿石中间斗装好信号,并发出皮带机停机指令。

③矿石皮带机和大烧结振动筛完成混装

当矿石中间斗料一“空”,并且闸门关好,槽下翻板翻好,便发出矿石皮带机运转指令,当相应的一个矿石排料斗放过料后,发出大烧结振筛启动指令,同时发出皮带机停机指令。当称量发出“满”信号时,发出矿石中间斗装好信号。

4.1.5 焦炭称量控制

当焦炭称量斗一“空”,闸门关好并设定好后,发出焦炭振动筛运转指令,开始称量,称量值达到控制值时(初始时为设定值的95%),发出振动筛停机指令,称量结束,若达110%控制值时,发出报警信号。振筛启动延时Ts后,还未发出斗“满”信号,则发出“上卡料”信号。

4.2 炉顶控制部分

4.2.1 炉顶控制范围及内容

(1)炉顶上至料罐下至探尺各设备的顺序控制。

(2)无料钟串罐式炉顶的装料及均压、放散控制。

(3)料流调节阀开度(γ角)、布料溜槽倾动角(α角)、布料溜槽旋转角(β角)的控制。

4.2.2 炉顶装料控制

上次布料结束且下密阀关到位后,程序发出申请装料信号,料车开始装料,受料斗满且料罐空,放散阀打开,在放散过程中,一旦打开放散阀并料罐内压力等于大气压力,则认为放散OK。放散OK后开上密阀,上密阀开到位后开柱塞阀,料车开始下料。延时一定时间后柱塞阀关闭,关放散阀,关上密阀,炉料装入料罐中后开均压阀开始均压。这时受料罐发允许料车上行信号。

4.2.3 炉顶布料控制

料罐满且上密关到位后,程序发出申请布料信号,此时探尺探测到设定料线后提探尺至零位。均压好后关均压阀。探尺提到零位后开始转动α、β。布料溜槽倾动的正常工作角度范围是13-53度。就地操作可以使溜槽倾角达到70度以便于拆卸溜槽。当溜槽倾角小于12度或大于54度时,溜槽停止移动和转动并发出报警,只有在报警清除后才可以继续移动。一旦降下探尺或探尺在高炉中时,溜槽倾角如果大于45度,必须锁定溜槽。为了使溜槽的定位精度达到±0.2度的要求,在程序中对溜槽的倾动速度进行处理,溜槽开始以最大速度倾动,当与目标位置只相差2度时,以最大速度的三分之一倾动,这样可以精确的定位到目标位置。溜槽的旋转由变频器驱动的交流电机驱动。正常情况下溜槽不停的旋转,如果溜槽的倾角位置达到了上限或下限,或者探尺在炉内时溜槽倾角大于45度,溜槽要立即停止旋转并报警。溜槽每4小时改变一次旋转方向,这样可以确保溜槽磨损平衡。PLC根据炉顶料单和槽下传送来的布料代号给出料流调节阀γ的设定开度,控制料流调节阀打开到设定开度开始布料,当接受到料罐清空信号,料流调节阀首先完全打开才能关闭。清空信号由射线检测和PLC的定时器共同完成,如果在料流阀打开后规定的时间后发出清空信号,则认为料罐已经清空,如果在规定的时间之前发出清空信号则认为是料罐堵塞,PLC将发出报警信号,该信号一直保持,只有料流阀完全打开并且确保料罐完全排空后才能解除。料流阀关闭后关下密阀,降下探尺检测料面,布料结束。

5、结论

本文讨论了基于施耐德昆腾系列PLC的高炉矿槽炉顶上料系统的控制系统的控制情况,本控制系统已经在高炉生产得到了实际应用,满足了现场的生产工艺要求。操作画面简单方便,通过对料单设定画面的修改可以实现对矿石、焦碳配料参数及布料参数的设置与修改,并显示工艺所需要的数据。操作方式灵活,操作方式有自动、画面手动和现场就地操作。在该系统中,PLC充分发挥了其配置灵活、控制可靠、编程方便和可现场调试的优点,给整个系统的稳定给整个高炉生产带来了较大的作用。

吴连成高炉上料

内蒙古科技大学 过程控制课程设计说明书 题目:高炉上料控制系统 学生姓名:吴连成 学号:0867112209 专业:测控技术与仪器 班级:2 指导教师:李刚

第一章课程设计的要求和目的 1 综述 工业高炉是工业生产的重要设备。高炉上料是炼铁高炉系统中最重要的一环,及时、准确的配料、上料是保证高炉产量和产品质量的前提。根据现代化高炉的要求,上料控制系统需要实现自动上料及上料数据的报表打印,体现系统稳定性、先进性和经济实用性,因此从设计的初级阶段到完成应用阶段,需要一直采用先进的控制方案和硬件控制系统,才能最终完成了这一重要的系统。 上料控制系统需要实现自动上料及上料数据的报表打印,体现系统稳定性、先进性和经济实用性。配料是高炉优质、高产、低耗的先决条件,所谓配料就是根据高炉对原燃料的产品质量要求及原料的化学性质,将各种原料、溶剂、燃料、代用品及时返矿等按一定比例进行配加的工序。配料的目的是根据炼铁过程的要求,将各种不同的含铁原料、溶剂和燃料进行准确的配料,以获得较高的生产率和性能稳定的优质铁水,符合高炉冶炼生产的要求。 1.1设计要求 (1)能够满足高炉上料控制系统要求的自动,手动的控制能力。 (2)能够根据实际情况进行自动的校正。 1.2设计的目的意义 高炉是钢铁行业的核心生产流程,而配料是高炉优质、高产、低耗的先决条件。 我们将从高炉的配料系统开始,陆续探讨钢铁行业的整个流程中各生产环节的监控原理及实施细节。高炉上料是炼铁高炉系统中最重要的一环,及时、准确的配料、上料是保证高炉产量和产品质量的前提。 第二章高炉上料系统的结构与工作原理 一、配料:

配料是高炉优质、高产、低耗的先决条件,所谓配料就是根据高炉对原燃料的产品质量要求及原料的化学性质,将各种原料、溶剂、燃料、代用品及时返矿等按一定比例进行配加的工序。配料的目的是根据炼铁过程的要求,将各种不同的含铁原料、溶剂和燃料进行准确的配料,以获得较高的生产率和性能稳定的优质铁水,符合高炉冶炼生产的要求。 容积配料法是利用物料的堆比重,通过给料设备对物料容积进行控制,达到配加料所要求的添加比例的一种方法。此法优点是设备简单,操作方便。其缺点是物料的堆比重受物料水分、成分、粒度等影响。所以,尽管闸门开口大小不变,若上述性质改变时,其给料量往往不同,造成配料误差。 ,化学成分配料是一种目前最为理想的配料方法,它采用先进的在线检测技术,随时测出原料混合料成分并输入微机进行分析、判断、调整,获得最理想的原料配比。 二、上料设备 高炉上料主要有上料小车和上料皮带两种方式;由于小车的上料能力有限,大型高炉一般使用上料皮带的方式上料。下面简单谈一下上料小车和上料皮带的优缺点: 上料小车: 优点:适合料仓与高炉距离较近,占地面积小,节省厂区面积,适于中小型高炉; 缺点:上料能力有限, 上料大皮带: 优点:适合料仓与高炉距离较远,能连续供料,适于大型高炉; 缺点:占地面积较大, 第三章高炉上料调节系统

高炉上料自动控制系统

高炉上料自动控制系统 【摘要】本文主要论述了罗克韦尔控制系统在包钢万腾钢铁1#高炉中的应用。对自动控制系统的组成、硬件配置、控制过程及控制功能的实现进行了详细阐述。 【关键词】罗克韦尔控制系统;装料控制;布料控制 0 概述 高炉上料装置是生产中的重要环节,提高其自动化水平,可以大大减轻工人劳动强度,提高生产效率,同时通过原料的精确配比,又可提升产品的品质和质量。高炉上料自动控制系统采用PLC完成所有的顺序控制过程、数据采集、自动调节、事故处理及报警等工作。计算机负责监控和人机对话,PLC和计算机通过光纤进行通讯,进行动态数据交换,实现点对点通讯,控制与监控分开,可靠性高。 1 上料系统的控制方案 万腾钢铁1#高炉上料控制系统分为槽下配料和小车上料及炉顶布料三部分构成,采用的是卷扬小车自动上料,炉顶是单罐式无料钟炉顶,槽下矿槽为单列左右对称布置,高炉料车卷扬采用的是两套变频传动,互为备用。溜槽布料倾角和节流调节采用比例阀控制,炉顶探测料面采用2根变频调速垂直探尺。炉顶其它设备采用的是液压传动。溜槽、料溜调节阀的位置检测装置采用的是三个增量型编码器。在上料过程中,炉料先投进受料斗里,随后放入料罐中,在这个过程中,由于高炉不能和大气相通,通过控制炉顶放散阀、均压阀、上密阀、料斗翻板、下密阀、料流阀的顺序开关来实现高炉的正常下料,通过控制α、β、γ来实现高炉布料。 根据高炉上料系统的工艺要求,综合考虑控制的可靠性及实用性,其设计方案如下。 高炉上料自动控制系统由一套冗余PLC及三个远程I/O站组成。CPU机头及高炉炉顶I/O位于高炉主控楼PLC室,CPU、电源模块及通讯模块采用冗余方式。炉顶远程I/O主要控制炉顶设备及布料器、探尺等炉顶设备。槽下设备远程I/O站位于矿槽主控楼,主要控制槽下配料设备以及槽下液压站设备。卷扬远程I/O站位于卷扬液压站,主要控制炉顶液压站及与卷扬西门子300PLC的硬连接控制。矿槽除尘远程I/O站,主要控制矿槽除尘风机、仓壁振动器及刮板机等除尘系统设备。 2 控制系统的硬件配置 整个上料系统包括一套冗余PLC系统和三个远程I/O站。冗余PLC包括CPU

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉上料流程

1. 1#振筛启动自动 1.1#振筛选自动 2.1#振筛软自动 3.1#仓有料空信号 4.1#称量斗关到位且无开关双信号 5.1#仓没有振满《振满后自动停止》 6.1#---10#振筛控制相似 2. 南(北)提升机自动运行 1.南提升机选自动 2.南提升机没有现场控制信号 3.南提升机软自动 4.焦筛起动信号 5.碎焦提升机无电机保护 6.碎焦提升机无现场保护《拉绳,跑偏》 7. 南北提升机自动控制相似 3. 碎矿(焦)皮带自动运行 1.碎矿选自动 2.碎矿皮带软自动 3.矿振筛运行信号 4.碎矿无现场控制信号 5.碎矿电机无保护 6.碎矿拉绳无保护 7.碎矿与碎焦运行相似 4. 仓斗门开条件 1.1#仓选自动 2.1#仓软自动 3.1#有允开信号 4.1#仓显示仓满信号 5.1#仓称满好《无空满双信号》 6.坑斗准备好 7.主矿皮带运行 8.1#振筛未启动运行 9.1#仓斗门开限位 10.1#称量斗未禁用 11.与1#称量斗关动作联锁 5. 仓斗门关条件 1.1#仓选自动 2.1#仓软自动 3.1#仓画面显示空信号

4.1#振筛无启动运行信号 5.1#称量斗未禁用 6.1#称量斗关限位 7.与1#称量斗开动作联锁 8.1-11号称量斗自动开关斗门相似 6. 主矿皮带自动运行 1.主矿选自动 2.主矿软自动 3.左坑准备好,翻板置右到位信号时,无翻板置左到位信号 或者右坑斗准备好,翻板置左到位信号时,无翻板置右到位信号 4.矿仓有允开信号 5.主矿电机无故障保护 6.主矿无现场拉绳等保护 7.主矿与主焦运行相似 7.左坑准备好的条件 1.备左斗信号《右车到底脉冲信号,右车在底或按初始化按钮,右车在底》 2.左坑斗关到位 3.翻板居右到位2秒后 4.左坑斗没有开位信号 5.左坑空或左坑没有空信号但选仓没有放完料 6.左坑未禁用 7.左车没有空信号, 8.左坑准备好与右坑准备好相似 8. 翻板自动置左 1.翻板选自动 2.翻板软自动 3.备右斗《料单初始化后,左车到底信号或者左车到底脉冲后左车到底信号》 4.左坑没有禁用 5.左车没有空 6.主焦没运行 7.主矿没运行 8.翻板居左限位 9.与翻板置右动作联锁 10.翻板居右与置左条件相似 9. 坑斗自动开阀 1.左闸门选自动 2.左闸门软自动 3.翻板居左《准备向右坑放料》 4.左车在底信号 5.左坑没有空信号

热风炉烘炉规程

1号高炉热风炉烘炉操作规程 热风炉烘炉是高炉开炉准备的重点工作之一。烘炉工作顺利与否,即关系到整个工程项目顺利实现,也关系到热风炉的使用寿命。热风炉烘炉是一项技术性比较强的工作,操作人员必须严格按照操作规程进行操作,确保烘炉工作的顺利进行并为高炉烘炉创造条件。 1 烘炉的目的 1.1 缓慢地除去热风炉耐火砌体中的水分,避免水分急剧大量蒸发时产生爆裂而损坏砌体; 1.2 使耐火砌体均匀、缓慢而又充分地膨胀,避免砌体因热应力集中或晶体转变而造成损坏,以提高其使用寿命; 1.3 使热风炉内逐渐积累热量,保证高炉烘炉和开炉所需要的风温。 2 烘炉基本要求 2.1 升温速度必须和砖体的膨胀率相适应,膨胀率大时(如硅砖)升温速度需缓慢,使其线膨胀稳定在一个适当的范围; 2.2在350℃前是水分大量蒸发阶段,升温需谨慎并在300℃保持5个班的恒温,在600℃时再保持一定时间的恒温,并避免火焰直接与砖体接触; 2.3 按烘炉曲线升温,温度偏差尽量控制在±10℃范围内; 2.4 要时刻注意废气温度的控制。 3烘炉必须具备的基本条件

3.1三座热风炉及热风管道施工完毕,达到质量要求标准; 3.2热风炉系统(包括本体、热风管道)的冷态强度试验及严密性试验完毕,达到设计要求。 3.3热风炉煤气管道严密性试验合格,煤气引到热风炉,水封注满水,达到设计要求具备烧炉条件; 3.4冷却系统软水闭路循环投入正常使用,监测装置调试完毕,工作可靠,达到设计要求; 3.5两台助燃风机及燃烧炉小助燃风机试车结束,达到设计要求; 3.6各计器仪表和指示信号运行正常,特别是拱顶温度、点火孔温度、煤气压力、煤气及助燃空气流量保证准确可靠; 3.7热风炉系统各阀门动作灵活可靠、极限正确,单机试车达到标准,微机控制及液压系统必须联动、联锁试车完毕,达到设计要求标准,具备正常生产条件; 3.8 双预热装置施工结束,冷态气密性试验、试漏合格并把煤气引到燃烧炉(如果施工未完毕,旁通管施工必需完成,堵盲板将双预热器彻底隔断,助燃空气、高炉煤气可以不经预热装置进入热风炉); 3.9在高炉风口弯头处堵胶板,将热风系统与高炉彻底隔断; 3.10 通讯和照明设施完备; 3.11 热风炉系统所有人孔封闭(点火人孔、煤燃阀前人孔除外,拱顶排汽人孔打开并安装上胀标尺)。封人孔前热风炉、管道,特别是空气、煤气管道内杂物必须确认清扫干净,检查确定各蝶阀位置及设档。

自动上料配料系统方案

物料输送自动上料及配料系统方案 一、项目概述 锂电池负极材料生产线的前端DCS自动上料及配料系统。该系统用于以石油炼解后的附产品石焦油为主要原料,通过物理及化学反应生产人工石墨生产线的自动上料、输送,自动配料,自动投放的系统控制,实现系统在线实时监测,信息、故障提醒、生成生产记录、统计报表等。为业主提供准确可靠的数据报表、产出量报表等。 历史气候情况:该地区属于中亚温湿气候,年平均气温为17.3℃。其中,一月份最冷,平均气温4.7℃,历史上极端最低气温为零下15.1℃,七月份最热,平均气温29℃,极端最高温曾在8月初出现达40.4℃。全年平均降雨量为1612毫米,最多年份达2264毫米,最少年份只有1237毫米,降雨量集中在4—6月份,占全年的54%,7—9月雨量减少,不到全年的28%。年相对湿度平均为79%,无霜期年平均为260天左右,年日照时数达1803小时。 石焦油参数:颗粒度(D50)8~10um,常规散装堆积密度为:0.3~0.45,最低为:0.22,挤压后最大密度为:1.1 含水率:小于0.2%,物料安息角:,硬度:1-2. 工艺流程要求连贯、可靠、严禁出现跑漏冒等恶性事故的发生,确保系统全年正常生产。生产线按年度需定期检查,提起排除故障隐患。 1、用户需求分析 (1)、产品规模生产要求系统具有更大的产能、更高的稳定性; (2)、降低人工上料劳动强度、改善员工工作环境、提高计量精度; (3)、粉体及液体物料均应自动上料、自动计量; (4)、每次生产的不同配方(原料配比)均可在电脑上进行操作; (5)、生产过程实现自动化控制及远程监控,同时可根据操作级别设置就地操作和急停。 (6)、对储料罐设置上限和下限报警,超限停机。 2、项目设计、制造、安装、检验标准 DCS自动上料及配料系统在设计、制造和验收过程中应符合国家相关技术规范和标准,并以最新版为准。包括但不限于下列标准:

热风炉操作说明书

山东寿光巨能特钢12503 M高炉热风炉操作说明书 莱芜钢铁集团电子有限公司 2011.04

1、系统概述 热风炉控制室设有PLC一套,PLC采用西门子S7-400系列CPU 和ET200M远程站及图尔克现场总线远程站,上位机与PLC间通过以太网进行通讯,CPU与远程站通过PROFIBUS DP进行通讯,完成对三座热风炉的所有参数检测、控制及事故诊断。 2、工艺介绍 本控制系统主要完成本系统上各种开关、模拟量的检测与控制;利用热风炉烟气,设置热风炉助燃空气和高炉煤气双预热系统,以节省能源。并设助燃风机两台,以及各种切断阀和调节阀,以实现热风炉焖炉及燃烧、送风的控制要求。本控制系统设有微机两台及各阀现场操作箱,正常状况下三座热风炉的操作都通过微机实现,微机操作有单机和联锁两种操作模式,现场操作箱主要用于现场调试。微机操作和操作箱操作受联锁关系限制。 热风炉的工作状态有燃烧、焖炉、送风三种状态,状态的转换靠控制各阀门的动作,热风炉各阀门按照:燃烧→焖炉→送风→焖炉循环的工作过程,自动或手动进行换炉切换工作。其受控阀门及三种状态对应的阀门状态如下图所示:受控阀门内容及状态表(K=开,G=关)

3、监控功能 根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。具体的监控画面包括:热风炉主工艺画面、助燃风机监控画面、煤气空气调节画面、历史趋势画面。 在画面上可显示热风炉各部分的温度、压力、流量分布状况,采集的数据,历史趋势、报警闪烁画面,完成各阀门、设备的开启及操作,完成煤气、助燃空气的调节阀的操作及调节,各系统的自动调节与软手动调节、硬手动调节的无扰自动切换,各调节阀的操作及调节和保持各数据的动态显示。 主要画面及其功能如下: 热风炉主工艺画面:可显示热风炉的整个工艺生产流程及相关的主要参数值,报警闪烁,切入其他画面的功能按钮,热风炉的单机/联锁切换,单机模式下实现对每个阀的单独开关控制,联锁模式下实现焖炉、燃烧、送风三个状态的自动转换。 分画面:各调节系统的画面,包括参数设定的功能键、控制流程图、报警纪录,相关信息;历史趋势,相关的PID参数设定等等。切

自动上料配料系统方案设计

自动配料灌装生产线计量系统方案 一、企业现有生产过程情况概述 目前企业的生产过程基本为:粉料采用人工称料用行车或叉车人工运料、手工填料的方式,液料采用称重计量,人工泵送料,反应釜一般采用手动变频启动方式、水计量采用就地显示流量计,需要人工看数手动控制开关,从以上看出企业目前基本没有自动计量及传输控制设备。 1、现存问题 (1)、人工上料,劳动强度大,速度慢; (2)、液体原料采用桶装称重计量或流量计显示,桶内残留和流量计显示误差,造成计量精度差。 (3)、整个产品生产过程采用人工手动控制,劳动强度大,差错率高,废品率高,致使产品质量控制困难大、生产效率低。 (4)、为了适应产品规模化、高质量生产的需要,系统的布局、控制模式、管理软件系统均需要有重新设计、实施。 2、用户需求分析 (1)、产品规模生产要求系统具有更大的产能、更高的稳定性; (2)、降低人工上料劳动强度、提高计量精度; (3)、固体及液体物料均应自动上料、自动计量; (4)、每次生产的不同配方(原料配比)均可在电脑上进行操作; (5)、生产过程实现自动化控制。 二、本方案自动上料配料系统组成 生产线配料主要完成水和4中液料的配料混合。计量罐单独设置,液体原料分开计量加料,现场3排搅拌釜分别为1排3个搅拌罐、2 排3个搅拌罐、3排5个搅拌罐。 1、原料罐四个,分别盛放四种不同的液体原料;水料罐1个,用于暂存水,预留用水 量。现场分别在3排搅拌罐的上部设置5T原料计量罐1台,15T水计量罐1台; 2、每个原料罐底部都安装有送料管道(管道口径DN65),分别由自动阀门和手动阀门 控制开关,每种液料的自动阀门安装在靠近管道出口位置,由送料泵负责将料通过

纸箱厂工艺流程

纸箱厂工艺流程 一(公司简介 联营纸箱厂前身是一间国有企业,现在是私企,拥有员工80多人。公司的经营范围:瓦楞纸板、纸箱、纸盒。 二(工艺流程 去到联营纸箱厂,先是纸板车间主任向我介绍制造纸板的工艺流程。其实,以前我对纸板一无所知的。当车间主任向我介绍的时候,我是认真的听着,做着笔记。可是,在我的脑海里还是没有一点概念。什么“大坑”,“小坑”,“电脑横切刀”,我通通都不懂,就是觉得很陌生、复杂。当车间主任领着我去生产车间,再一次向我讲解的时候,我才对整个生产流程有一个总体的概念。这间企业的纸板生产线只有一条,是流水线生产的。瓦楞纸板机由多种机台组成的。其设备大体如下:1.单体机部分(制造单面瓦楞纸板的设备)包括退纸装置,预热器,预处理器,单面机,输送架;2.双面机部分(成型三层、五层瓦楞纸板的设备)包括退纸装置,制动器,三联预热器,上胶器,烘干装置和冷却装置,帆布输送带;3.切断部分(按要求将瓦楞纸板加工成一定规格的设备)包括电脑横切刀,输送及堆叠机。卷筒纸经过压楞、涂胶、粘合、加压、烘干、连续生产并切成需要的瓦楞纸板。 这个纸箱厂主要是生产单面瓦楞纸板,三层瓦楞纸板,五层瓦楞纸板。制造瓦楞芯纸,采用瓦楞原纸。制造面、芯、里纸采用牛皮箱板纸。瓦楞纸板是由面纸和瓦楞芯纸多层粘合而结成的。单面瓦楞纸板是由一张面纸和一张瓦楞芯纸粘合而成。三层瓦楞纸板是在一张瓦楞芯纸两面各粘一张箱板而合成的。而五层瓦楞纸板由面、里、芯三张和两张瓦楞芯纸粘合而成。我觉得制造生产五层瓦楞纸板比较有代表性,下面就介绍五层瓦楞纸板的生产过程。下面是对生产五层瓦楞纸板所画的工艺流程图

首先将五个卷筒原纸按一定方向放在退纸架上,各纸幅分别经预热器预热,使其表面受热,以利于粘合。瓦楞原纸在送入单面机之前先经预处理器预热,调节纸的含水量和熨平纸幅。随后,瓦楞原纸便进入单面机进行压楞,涂粘合剂并与面纸粘合成单面瓦楞纸板。单面瓦楞纸板制成后被提升输送器分别送上天桥输送架,经制动器进入三联预热器。接着两种单面瓦楞纸板分别送入上胶机进入上胶机进行涂胶,里纸则再一次预热,然后三者一起进入双面机组的烘干设备进行粘合烘干。纸板经热粘合再冷却,使其所含水分蒸发出来。纸板在输送带上冷却后,经电脑横切刀按一定规格对纸板作横向切断,最后经输送带送到堆叠机并将其堆积整齐。 其实,制造瓦楞纸板是一个很复杂的,有很多学问。在制造的过程中,有很多因素要考虑。生产时要求瓦楞原纸、温度、粘合剂、速度等同步进行。若有一个环节失控,将不可避免会发生质量问题。如果粘合剂配比不当,楞辊、压力辊和热辊温度不够会造成瓦楞纸板起泡、 胶脱或粘合不良。因为我只实践了几天,所以对制造纸板的了解比较肤浅,只是有一个总体的认识。 介绍完瓦楞纸板,下面介绍纸箱的工艺流程图。

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉矿槽炉顶上料系统的工艺流程

本文介绍了莱钢1#1000m高炉矿槽炉顶上料系统的工艺流程,施耐德公司昆腾系列PLC控制系统的特点、硬件组态及软件功能,并详细介绍了该PLC控制系统的主要控制功能。Abstract:This paper mainly discuss the process control system of feeding system for blast furnace based on Schneider TSX Quantum series PLC. Configuration software Concept2.6 are adopted to monitor and manage process data. The whole system well satisfies the technical requiments for control. 关键词:PLC;自动控制;上料系统;昆腾 Key words:PLC;automation;feeding system;Quantum 1、概述 莱钢1#1000m高炉2005年投产,矿槽炉顶上料系统设计采用施耐德公司昆腾系列PLC,该控制系统实现了对矿石、球团、烧结、焦碳等原料的自动称量,并完成称量误差的自动补偿;实现了炉顶各阀门的顺序自动开关,α、β、γ的角度自动设定以及其他相关辅助设备的自动控制;实现了对高炉矿槽炉顶上料系统的数据采集、数据显示与数据控制。该系统投运以来,运行稳定,效果良好。 2、高炉矿槽炉顶上料系统工艺流程简述 2.1 槽上控制工艺流程: 高炉槽上设计13个料仓,4个烧结矿仓(3#、4#、5#、6#),2个焦炭仓(7#,8#),3个球团仓(9#、10#、11#),2个杂矿仓(1#、2#),1个焦丁仓。 槽上有3条打料皮带机,每条皮带机对应一辆卸料小车,采用卸料小车可以将胶带机输送的原料卸至不同的料仓,当采用卸料小车进行卸料时,卸料小车先开至所选择的料仓上方,然后启动胶带机,原料就经卸料小车卸到小车下方的料仓。 2.2 槽下控制工艺流程: 高炉槽下设两个大烧结矿仓,两个小烧结矿仓,两个杂矿仓,三个球团仓,一个备用仓。每个矿仓下都有振动筛,筛除小于5mm的碎矿,大烧结矿仓的矿经过筛分后分别进入料坑的左右中间称量斗,小烧结矿仓的矿经筛分后分别进入各自配套的称量斗,然后经矿石皮带机集中运送,经料坑上方的翻板进入料坑中的矿石中间斗,经筛分后的5mm烧结矿经返矿皮带机运到碎矿仓。 焦炭设左右两个焦仓,仓下装有振动筛和振动给料机,焦炭经筛分后,大于20mm的块焦,分别直接进入料坑的左右焦炭称量斗,筛下小于20mm的碎焦经SJ1、SJ2胶带机倒运33 到SJ3碎焦胶带机上,送至碎焦仓上振动筛,将碎焦分级成8mm以上和8mm以下两种产品,大于8mm的焦丁由SJ4胶带机运至焦丁仓,再经焦丁给料机到焦丁称量斗,然后到供料胶带机与烧结矿一起进入料坑中间斗。小于8mm的碎焦落入焦粉仓等待汽车外运。当料车到底后,相应的矿石中间斗或焦炭斗向料车装料。

热风炉工艺流程图

高炉热风炉技术操作规程 2009-09-21 13:26:12 来源: 作者: 【大中小】浏览:6207次评论:1条 一、热风炉技术操作规程 (一)烧炉和送风制度 1 烧炉制度 (1) 炉顶温度1250℃~1300℃ (2) 烟道温度350℃~380℃ (3) 高炉煤气压力8℃~9℃ 2 烧炉原则: (1) 以煤气流量和烟道残氧仪显示值(应在0.3~0.8%)为参考调节助燃空气,在烧炉初期使炉顶温度尽快达到规定值,以后控制炉顶温度,提高烟道温度,提高热量储备,满足高炉的需要. (2) 烧炉初期应尽量加大煤气量和空气量,实现快速烧炉. (3) 炉顶温度达到规定值时应加大空气量来保持炉顶温不在上升,使炉子中、下部温度上升,扩大蓄热量. (1) 烟道温度达到规定值时,应减小煤气量和空气量,保持烟道温度不在上升,顶温和烟道温度都达到规定值则转入闷炉. (2) 高炉使用风温低,时间在4小时以上时,可采取小烧或者适当增加并联送风时间. (3) 烧炉要注意煤气压力,发现煤气压力低时要和净化室联系提高压力,当煤气压力低于3Kpa时,要停止烧炉. (4) 热风炉顶温度低于700℃时,烧炉要用焦炉煤气引火. 3送风制度: (1)正常情况:四座热风炉同时工作,采用交叉并联送风运行方式,风温使用较低或一座热风炉因故障停用时,可临时采用两烧一送的运行方式,运行方式的改变需工长批准。长期改变运行方式要经工段长批准。 (2) 一个炉子的换炉周期为1.5小时,换炉时间按作业表进行,改变换炉周期应经工段批准,一定要先送风后烧炉. (3) 换炉时,风压波动〈5Kpa,波动超过范围,要立即查清原因(如冲压不当、换炉操作失误等). (4) 在送风或换炉中,风压和风量突然下降,可能鼓风机失常,应及时报告值班工长,风压降到20Kpa时,立即关闭冷风大闸. (二)热风炉换炉操作选择 (1)手动操作(一般在正常情况下不使用). (2)机旁操作箱手动操作(特殊情况下使用). (3)操作室手动(遥控手动),自动失常情况下使用. (4)半自动操作(温度控制或特殊情况). (5)全自动操作(定时换炉). (6)单炉自动操作. (7)自动烧炉与停烧. (8)交叉并联送风. 注:操作制度经过同意可以互换,操作方法可根据需要选择. (三)热风炉换炉操作顺序 1.燃烧转送风

基于PLC的MPS上料检测单元控制系统的设计

盟垫丝注查堑垫查兰鱼基于PLC的MPS上料检测单元控制系统的设计 李立君1游凯何1刘华锋2刘志军2 (1邢台职业技术学院,河北邢台054000;2德龙钢铁有限公司,河北邢台054000) 摘要:文中首先分析了上料检测单元的结构与功能、气动控制回路,然后设计出该单元的控制任务,分配了PLC输入输出地址,进而编写流程图和梯形图程序,最后上机调试,验证了基于PLC的HPS上料检测单元控制系统设计的可行性。 关键词:模块化生产培训系统;可编程序控制器;设计 1引言 近年来,各国为达到提高系统的定位精度以适应工业需要,尝试了各种控制方式和控制策略,并对气动伺服系统做了大量工作。当临时需要对各个单,己进行新的分配任务或产品变化时,可以很方便的改动或重新设计其新部件.当佗置改变时.只要重新编程,就能很快地投产,从而降低了安装和转换I:作的费用【”。模块化生产培训系统(MPs,ModularPr()durlion垤iningsystem)是一种模拟自动化生产加r单元,它由德国FEsT0公司结合现代丁业企业的特点开发研制而成。它可以大量代替单调往复或高精度的r作,用以满足前沿产品和自动化设备更新的需要【2】。本文所研究的内容,国际上以德国、H本、韩同等最具代表性,技术七已经趋于成熟.但其产晶价格昂贵,且在技术上对用户封锁,致使用户无法结合自己的需要进行二次开发。 目前,国内已有几家教学设备生产企业开始仿造国外的MPs部分产品,主要有卜海英集斯自动化技术有限公一j生产的“MPs,FMs模块化生产培训系统”;浙江亚龙教仪有限公司生产的“哑龙YL—MPs模块化生产培训系统”。本文将采用上海英集斯自动化技术有限公司生产的MPs教学设备,结合本实验室(国家爪范性中央财政支持重点建设实验室)的实际需求。给出了基于PLC的MPs上料检测单元PLC控制系统设计的完整解决方案。 2上料检测单元的结构、功能与气动控制回路上料检测单元可作为MPS系统中的起始单元,向系统中的其它单元提供原料。 2.1上料检测单元的结构、功能 基于PLC的MPs七料检测 单元控制系统的控制任务设计: 接通设备电源与气源、运行PLC 后,首先执行复位动作.即提升气 缸驱动的工件平台下降到位。料 盘旋转输出工件,当料盘检测到 T件半台中有工件后停止旋转, 提升气缸动作.将—r件平台提升 至输出1:位,检测:【件的颜色并 保存下来。按下“特殊”按钮。表 示丁件被取走。随后.L件平台下图1上料检测单元气动控制回路降到位,料盘继续旋转输出工件,重复以上流程。 下面介绍该方案的关键环节。 3.1分配上料检测单元PLC输入输出地址 PLc的输入输出与执行机构的对应关系如表l所示。 表1上料捡删渔元I】I(’输入输出与抄行圯拘的对应关系 上料检测单元主要由I/0接线端口、料盘模块、气源处理组 ..件、丁件检测组件、提升模块等部件组成H。它的具体功能是:将 ~放置在料盘中的待加,[工件按照需要自动地取出,并检测出_亡 件的黑白颜色,最后将其提升到输出上位,等待下一个工作单元 来取I=IJo 2.2上料检测单元的气动控制回路 卜料检测单J已的执行机构是气动控制系统.其方向控制阀 的控制方式为手动控制或电磁控制。在上料检测单元的气动控 制原理网中。lA为双作用提升气缸;lYl为双作用气缸电磁阀 的控制信号;lBl和lB2为磁感应式接近开关。气动控制回路如 图l所示。 3基于PLc的MPS上料检测单元控制系统的设计 方案 编写程序并调试 上料检测单元的手动控制程序框图如图2所示。l黝嘲I◇ ≤多l擎嗌蕊}般1_1 I嘲,创I件后计日卞l I触熊础I◇ <多l~腓t I~佣l<多 图2上料检测单元的手动控制程序框图 作者简介:李立君(1979一),女,河北衡水人。讲师,河北工业大学电气工程专业硕士,主要从事PLc与MPs应用的研究;刘志军(1975一),男,河北邢台人,工程师。主要从事西门子PLc编程与维护的研究等。 2010年第7期

彩箱生产工艺流程电子教案

彩箱生产工艺流程 用作运输包装的瓦楞纸箱于1907年出现于美国,在第一次世界大战期间,木箱运输包装占80%,瓦楞纸箱仅占20%。到第二次世界大战期间瓦楞纸箱已占80%,成为最重要的运输包装容器。2006年,中国包装工业总值约3500亿元,纸制品占59%。 纸箱可用来包装食品、饮料、家用电器、医药、日用/化妆品、机电等产品。 1、纸箱包装的优点: 重量轻、成本低、容易加工、便于储存和运输、结构合理 2、纸箱包装的不足 强度有局限性、防潮性差 3、纸箱的组成 3.1纸箱由箱纸板和瓦楞纸组成 3.2纸的主要技术指标:定量(克重)、紧度、耐破指数(kPa.m2/g)、环压指数(N.m/g)等,这些指标反映了原纸的物理性能。 3.3瓦楞纸板的楞型 瓦楞高度以及每300mm长度上的瓦楞数称为瓦楞纸板的楞型。楞型实际是对瓦楞尺寸的有关规定。常用的楞型有:A瓦(型)、B瓦(型)、C瓦(型)、E 瓦(型),随着瓦楞辊制作技术及包装业的发展,一些更小的如F、G、N、O等楞型也随之出现。 愣型愣高愣数(个/300mm) A 4.5~5 32±2 C 3.5~4 40±2 B 2.5~3 50±2 E 1.1~2 96±2

单面纸板 (一平一瓦) 4.1瓦楞纸板的制作 现行的瓦楞纸板一般是由瓦楞生产线制作而成,在一些小型生产厂中,对一些质量要求不高的纸板,也有使用单面瓦楞机制作出一平一瓦后,再覆面而成单瓦纸板。瓦楞纸板生产线生产出的经纵向压痕切线、横向切断后的纸板一般已具备了箱坯的基本特征:箱坯的长、宽及在纵向的压线。 4.1.1纸板形成的流程: 4.1.2瓦楞纸板生产线的结构(如下图) 主要包括以下部件:a)预热器;b)单面机;c)多重预热器(二重、三重等);d)双面涂胶机;e)粘合烘干机;f)纵切压痕机;g)横切机;h)制糊机;i)蒸汽加热系统;j)电气控制系统 4.2印刷 4.2.1印刷方式分类 印刷是将所需的文字、图案及其它信息“印”至箱体的表面,印刷的方式按不同的分类原则而不同。在瓦楞纸箱行业中,如按使用的油墨来分有水性(水性油墨)印刷、油性油墨印刷;按使用的印刷版材来分有丝网印刷(对纸箱印刷来说目前基本已淘汰)橡胶版印刷、树脂版印刷、胶版印刷,胶版及树脂版均为凸片印刷(相对的另一类为凹版印刷);按印版所处的位置来分可分为上印式和下印式。 4.2.2印刷机的印刷原理 印刷机是利用橡胶辊(均墨辊)将油墨槽中油墨传递至印刷滚筒上的印版上,从而将所需的文字或图案及其他信息印刷至纸箱或面纸表面。 粘 合 瓦楞原纸 箱板纸(里) 瓦楞辊轧制瓦楞 箱板纸(面) 瓦楞纸板纵切横切纸板(堆码)

热风炉工艺流程图

2009-09-21 13:26:12 来源: 作者: 【大中小】浏览:6207次评论:1条 一、热风炉技术操作规程 (一)烧炉和送风制度 1 烧炉制度 (1) 炉顶温度1250℃~1300℃ (2) 烟道温度350℃~380℃ (3) 高炉煤气压力8℃~9℃ 2 烧炉原则: (1) 以煤气流量和烟道残氧仪显示值(应在~%)为参考调节助燃空气,在烧炉初期使炉顶温度尽快达到规定值,以后控制炉顶温度,提高烟道温度,提高热量储备,满足高炉的需要. (2) 烧炉初期应尽量加大煤气量和空气量,实现快速烧炉. (3) 炉顶温度达到规定值时应加大空气量来保持炉顶温不在上升,使炉子中、下部温度上升,扩大蓄热量. (1) 烟道温度达到规定值时,应减小煤气量和空气量,保持烟道温度不在上升,顶温和烟道温度都达到规定值则转入闷炉. (2) 高炉使用风温低,时间在4小时以上时,可采取小烧或者适当增加并联送风时间. (3) 烧炉要注意煤气压力,发现煤气压力低时要和净化室联系提高压力,当煤气压力低于3Kpa时,要停止烧炉. (4) 热风炉顶温度低于700℃时,烧炉要用焦炉煤气引火. 3送风制度: (1)正常情况:四座热风炉同时工作,采用交叉并联送风运行方式,风温使用较低或一座热风炉因故障停用时,可临时采用两烧一送的运行方式,运行方式的改变需工长批准。长期改变运行方式要经工段长批准。 (2) 一个炉子的换炉周期为小时,换炉时间按作业表进行,改变换炉周期应经工段批准,一定要先送风后烧炉.

(3) 换炉时,风压波动〈5Kpa,波动超过范围,要立即查清原因(如冲压不当、换炉操作失误等). (4) 在送风或换炉中,风压和风量突然下降,可能鼓风机失常,应及时报告值班工长,风压降到20Kpa时,立即关闭冷风大闸. (二)热风炉换炉操作选择 (1)手动操作(一般在正常情况下不使用). (2)机旁操作箱手动操作(特殊情况下使用). (3)操作室手动(遥控手动),自动失常情况下使用. (4)半自动操作(温度控制或特殊情况). (5)全自动操作(定时换炉). (6)单炉自动操作. (7)自动烧炉与停烧. (8)交叉并联送风. 注:操作制度经过同意可以互换,操作方法可根据需要选择. (三)热风炉换炉操作顺序 1.燃烧转送风 (1)关煤气调节阀. (2)关煤气阀. (3)关助燃空气调节阀. (4)关燃烧阀. (5)关助燃阀. (6)开支管放散阀及蒸汽阀. (7)关烟道阀(2个). (8)通知值班工长,同意后. (9)开冷风旁通阀(充压)待炉内压力充满后. (10)开热风阀,开冷风阀. (11)关冷风旁通阀.

高炉矿槽炉顶上料系统的工艺流程

本文介绍了莱钢1#1000m3高炉矿槽炉顶上料系统的工艺流程,施耐德公司昆腾系列PLC控制系统的特点、硬件组态及软件功能,并详细介绍了该PLC控制系统的主要控制功能。 Abstract:This paper mainly discuss the process control system of feeding syste m for blast furnace based on Schneider TSX Quantum series PLC. Configuration so ftware Concept2.6 are adopted to monitor and manage process data. The whole sys tem well satisfies the technical requiments for control. 关键词:PLC;自动控制;上料系统;昆腾 Key words:PLC;automation;feeding system;Quantum 1、概述 莱钢1#1000m3高炉2005年投产,矿槽炉顶上料系统设计采用施耐德公司昆腾系列PLC,该控制系统实现了对矿石、球团、烧结、焦碳等原料的自动称量,并完成称量误差的自动补偿;实现了炉顶各阀门的顺序自动开关,α、β、γ的角度自动设定以及其他相关辅助设备的自动控制;实现了对高炉矿槽炉顶上料系统的数据采集、数据显示与数据控制。该系统投运以来,运行稳定,效果良好。 2、高炉矿槽炉顶上料系统工艺流程简述 2.1 槽上控制工艺流程: 高炉槽上设计13个料仓,4个烧结矿仓(3#、4#、5#、6#),2个焦炭仓(7#,8#),3个球团仓(9#、10#、11#),2个杂矿仓(1#、2#),1个焦丁仓。 槽上有3条打料皮带机,每条皮带机对应一辆卸料小车,采用卸料小车可以将胶带机输送的原料卸至不同的料仓,当采用卸料小车进行卸料时,卸料小车先开至所选择的料仓上方,然后启动胶带机,原料就经卸料小车卸到小车下方的料仓内。 2.2 槽下控制工艺流程: 高炉槽下设两个大烧结矿仓,两个小烧结矿仓,两个杂矿仓,三个球团仓,一个备用仓。每个矿仓下都有振动筛,筛除小于5mm的碎矿,大烧结矿仓的矿经过筛分后分别进入料坑的左右中间称量斗,小烧结矿仓的矿经筛分后分别进入各自配套的称量斗,然后经矿石皮带机集中运送,经料坑上方的翻板进入料坑中的矿石中间斗,经筛分后的5mm烧结矿经返矿皮带机运到碎矿仓。 焦炭设左右两个焦仓,仓下装有振动筛和振动给料机,焦炭经筛分后,大于20mm的块焦,分别直接进入料坑内的左右焦炭称量斗,筛下小于20mm的碎焦经SJ1、SJ2胶带机倒运

高炉上料工艺

工艺流程 系统设计指导思想 炼铁生产过程是在高炉内进行的一系列复杂的还原反应的过程,炉料(矿石、燃料和熔剂)从炉顶装入,从鼓风机来的冷风经热风炉加热后,形成高温热风从高炉风口鼓入,随着焦炭燃烧产生的热煤气流自下而往上运动,而炉料则由上而往下运动互相接触进行热交换,逐步还原,最后在炉子的下部还原成生铁,同时形成炉渣。积聚在炉缸的铁水和炉渣,分别由出铁口和出渣口放出。 高炉自动化过程主要包含高炉本体控制、给料和配料控制、热风炉控制,以及除尘系统控制等。高炉自动化的目的,主要是保证高炉操作的四个主要问题:正确配料并以一定的顺序及时装入炉内;控制炉料均匀下降;调节炉料分布及保持其与热煤气流的良好接触;保持高炉整体有合适的热状态。高炉自动化系统主要包括仪表检测及控制系统、电气控制系统和过程及管理用计算机。仪表控制系统和电气控制系统通常由DCS或PLC完成。 高炉上料系统是指从槽下供料到炉顶的设备将物料(烧结矿、焦炭等)装入炉内的全过程。该系统有4个杂矿仓、4个球团矿仓和6个烧结矿仓,烧结矿仓、球团矿仓经振动筛,杂矿仓经给料机后,按配料料单规定送称量料斗称量以后放料,由相应的皮带送到地坑称量漏斗。1#-4#四个焦炭仓下各有一台振动筛,焦炭没有中间称量漏斗,经振动筛直接送地坑的焦炭称量漏斗。地坑有左焦、左矿、右焦、右矿4个称量斗。料车到料坑后,坑斗把料放入料车,坑斗闸门关到位并且炉顶备好后,料车启动。两台料车按生产要求将槽下各种物料,由料车卷扬机提升到炉顶。经炉顶受料斗阀、上密封阀、节流调节阀、下密封阀,再经布料槽将物料均匀地布到炉内。 称量自动化控制系统

焦炭部分控制过程为:按周期设定自动选仓,在具备上料的条件下(坑斗为空,闸门关到位),自动启动振动筛对焦坑斗受料。达到设定重量的控制值时停止,延时称量完毕等待放料。碎焦则经返1#碎焦皮带运到碎焦仓。 矿石部分则以烧结矿简述其控制过程:选取某烧结矿槽后在具备上料的条件下(漏斗为空,闸门关到位),开动振动筛把烧结矿卸入称量漏斗,当重量达到控制值时,停止振动筛,延时称重完毕。通常除空置和检修某个料槽外,各矿槽都是装满称重完毕的炉料待机卸料的[2]。放料时打开漏斗闸门,矿石落入1#矿皮带或2#矿皮带。当漏斗重量降到料空值时认为放料完毕,关闭闸门。皮带把矿石装入1#矿石坑斗或2#矿石坑斗。烧结矿经振动筛筛分后,筛下碎矿则经返碎矿皮带运到返矿仓。 卷扬及炉顶自动化 主卷扬机由两台电机拖动,根据料批程序自动控制;设备安全联锁控制,料车到料坑底发出到位信号,开始一个中间仓选仓自动过程后,料斗闸门打开,当料空且闸门关好后,发出上行信号;当每批料中第一车料到达上密封阀检查点时,检查上密是否关好,若未关好,料车停止,条件满足后,继续上行,将料装入受料斗;当料满且满足条件后,打开放散阀卸压,通过受料斗闸门及上密封阀向料罐装料,装料完毕,关闭料斗阀、上密封阀及放散阀,探尺探料降至规定料线深度提探尺,提尺同时打开两个均压阀向下罐均压,布料器倾动到位,打开下密封阀,在溜槽到达步进角位置时打开料流调节阀,用其开度大小来控制料流速度,炉料由布料溜槽布入炉内。布料溜槽每布一批料,其起始角均较前批料的起始角步进60°或120°。

相关文档