文档库 最新最全的文档下载
当前位置:文档库 › 关于速度控制

关于速度控制

关于速度控制
关于速度控制

关于伺服轴速度控制

在机床使用中,我们用到的速度有很多种

1401#6 对快速运行指令,空运行

0:无效,

1:有效。

1410 空运行速度

1420 各轴快速运行速度

1421 各轴快速运行倍率的F0速度

1423 各轴手动连续进给(JOG进给)时的进给速度

1424 各轴的手动快速运行速度

1425 各轴返回参考点的FL速度

关于二进制数的处理:

在数字电路中,机器数表示方法有原码、反码和补码三种。

1、原码

原码表示方法是将带符号位用0表示正号,用1表示负号,对数值位不做任何改变,仍采用原来的二进制数表示。

例如: N1= +1001101 N2= —1001101

原码表示为:[N1]原=01001101 [N2]原=11001101

2、反码

对于正数,反码和原码相同,对于负数,反码表示,就是将原码符号位右边的二进制数值按位取反,符号位仍为1。

3、补码

在补码表示法中,正数的表示跟原码和反码的表示相同。负数的补码,可从原码转换而来。规则为:符号位仍为1,数值部分按位取反,并在最低有效位加1。

例如:N1 = +1001101 N2= —1001101

N1和N2的补码表示为:

[N1]补=01001101 [N2]补=10110011

掌握了二进制的表示方法,下面来看倍率的处理。

切削倍率

切削进给速度倍率信号

*FV0~ *FV7

[类别] 输入信号

[功能] 切削进给速度倍率信号共有8个二进制编码信号与以下倍率值相对应:

所有的信号都为“0”和所有的信号都为“1”时,倍率都被认为是0%。

因此,倍率可在0~254%的范围内以1%为单位进行选择。

[动作] 自动运行中切削进给指定的速度与由这些信号所选的倍率值相乘得到实际进给速度。

信号地址

#7 #6 #5 #4 #3 #2 #1 #0 G012 *FV7 *FV6 *FV5 *FV4 *FV3 *FV2 *FV1 *FV0

我们用标准操作面板上的倍率开关控制倍率时,由于此信号是低电平有效,所以对二进制数据要做取反处理。数据表中的填入的数值为十进制数,作如下处理:

例:要实现10% 倍率的时候,

用1字节二进制数表示为 00001010,

其反码表示为 11110101,

此二进制数输入倍率信号G12可实现10%。此二进制数化为十进制数,因为是负数,化为十进制数:所有位取反加1,然后加负号。

取反00001010,加1后为:00001011,化为十进制数取负值为—11

简便计算公式:

切削倍率:设定值=-(倍率值* +1)

梯形图如下:

另一种编程方法见B-10141,P390

手动进给速度倍率信号

*JV0 ~ *JV15

[类别] 输入信号

[功能] 选择JOG进给或增量进给方式的速率。这些信号是16位的二进制编码信号。当所有的信号(*JV0— *JV15)全部为“1”或“0”时,倍率值为0,在这种情况下,进给停止。倍率可以0.01%的单位在0% ~ 655.34%的范围内定义。下表是一些例子,供参考。

*JV0—*JV15

12 8 4 0 倍率值(%)

1111 1111 1111 1111 0

1111 1111 1111 1110 0.01

1111 1111 1111 0101 0.10

1111 1111 1001 1011 1.00

1111 1100 0001 0111 10.00

1101 1000 1110 1111 100.00

0110 0011 1011 1111 400.00

0000 0000 0000 0001 655.34

0000 0000 0000 0000 0

手动进给倍率

以1% 为例:因为手动倍率是字节型,16位二进制数表示,单位为0.01%,实现1% 即把十进制数100输入到G10—G11中。根据上表:

1% 0000 0000 0110 0100

取反 1111 1111 1001 1011

转换为十进制—101

简便计算公式:

手动倍率:设定值= -(倍率值*100+1)

1)1420定义为各轴的快速移动速度,也就是我们在程序中运行G00的速度。

2)1410空运行速度。空运行通常是用来确认机床运动的正确性。在空运行期间,机床以

与编程速度不同的空运行速度运动。空运行速度由参数1410来确定。一般情况下,空运行速度比编程进给速度高。

3)1401#6=1时,运行程序时G00的速度按照1410设定的速度运行。

1401#6=0时,运行程序时G00的速度按照1420设定的速度运行。

4) 1421各轴快速运行的F0速度。地址为G14.0和G14.1

快速移动倍率

ROV1 ROV2

倍率值

0 0 100%

0 1 50%

1 0 25%

1 1 F0

其中F0 速度由参数1421确定,如果不用时设定为0。

电机锁相控制系统的分析与设计_赵毅

伺服技术 SERVO TECHNIQUE 电机锁相控制系统的分析与设计 赵 毅 李彦生 赵万华 卢秉恒 (西安交通大学 710049) 【摘 要】 在需要电机作高精度稳速运行的应用场合中,越来越多地采用锁相伺服控制系统。文中介绍在锁相伺服控制环中采用PI 控制,并且提出了按典型三阶期望最佳开环模型进行设计的一套系统的设计方法,较好地解决了锁相控制系统设计中存在的问题。 【叙 词】电机 锁相环控制 PI 调节器 参数 整定 ANALYSES AND DESIGN FOR MOTOR PHASE LOCK CONTROL SYSTEM 【Abstract 】In the fields o f high accur acy and speed stabilizing o per atio n fo r mot or ,phase lo ck ser vo contr ol system is mo re and mor e used.T he thesis intro duces using PI co ntro l in phase lo ck ser vo contr ol lo op and puts for th a systemat ic desig n method acco r ding to typical 3stag e ex -pected ut ility o ptimum o pen loo p model ,w hich solves the exist ing pro blem w ell in phase lock con-tro l sy stem design . 【Keywords 】electrical machine ,phase lock co ntro l PI adjuster ,param et er ,set 1 控制系统框图与数学模型 电机锁相控制系统的原理框图如图1所示。系统的输入信号为一定频率的方波信号,频率与电机的给定转速相对应,系统输出为电机的实际转速,反馈部件的作用是把转速 信号变成频率与转速成正比的方波信号,采用的方式多种多样,一般是采用光电器件,假设电机的转速为n ,电机匀速转一周时,光电器件输出N 个等距的脉冲,则反馈部件输出的方波角频率: f =2 nN / 60 图1 电机锁相控制系统的原理框图 因此系统给定信号的角频率 r 与期望 转速的关系是: r =2 nN /60(1)1.1 频率、相位转换 r 与 f 送到鉴频鉴相器内进行频率、相位比较,频率差与相位差存在如下内在关系: (t )= ∫ t t (t )d t =∫t t [ r (t )- f (t )]d t (2) 把式(2)进行拉氏变换,得: (S )=1 S [ r (S )- f (S )](3) 设积分时间是从 r 首次与 f 相等时开始,且初始相位差 0 <2 ,,则在t 0以后的时间,当 r 等于 f 时,有 (t ) <2 。1.2 M C 4046的特性与数学模型[1] 鉴频鉴相器一般采用M C4046(九门比 — 20—

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图 2

2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩 3

薄膜分切机放卷至卷取的张力控制(上)讲解

薄膜分切机放卷至卷取的张力控制 (上) 1.分切机的重要选定要素2.放卷至卷取的张力3.接触辊及接触压力4.卷取张力的自由选择及设定5.在薄膜主要物性条件下所设定的卷取条件1.分切机的重要选定要素在分切机的选定方面最受关注的应该是分切卷取后的产品如何?也就是产品内部品质。从外观上来看,无皱褶、无划痕、端面整齐、卷取表面硬度适当等,这些都应该是基本的。但是,我们认为仅关注这些还不够。因为分切卷取后的产品其内部残留着很大的应力(内部张力),这将会对 1.分切机的重要选定要素 2.放卷至卷取的张力 3.接触辊及接触压力 4.卷取张力的自由选择及设定 5.在薄膜主要物性条件下所设定的卷取条件 1.分切机的重要选定要素 在分切机的选定方面最受关注的应该是分切卷取后的产品如何?也就是产品内部品质。从外观上来看,无皱褶、无划痕、端面整齐、卷取表面硬度适当等,这些都应该是基本的。但是,我们认为仅关注这些还不够。因为分切卷取后的产品其内部残留着很大的应力(内部张力),这将会对后道工序带来各种不利影响,比如说印刷的套印不准等。 这种内部品质的状况如何,将会很大程度地影响到用户的订购量、产品韵价格及用户对制膜厂家的信赖和评价。 而这种选定要素却无法用肉眼看到,因此,对薄膜的张力控制及接触压力的控制是最重要的选定要素。 2。放卷至卷取的张力

分切机的放卷至卷取张力可分为以上3大部分。 2—2放卷张力 2—2—1内部张力 前道工序卷取下来的原膜母卷的内部含有残留应力,这残留应力的大小同生产线的设备性能有关,特别同卷取机的性能有很大的关系。如卷取机的张力过大且张力的变动量也大时,会对分切机的放卷张力的控制带来不利影响。另外,原膜母卷由于熟化的缘故几乎多少都存有偏芯,这就是放卷速度的变化而造成放卷张力变化的原因所在。放卷张力发生变化会使薄膜内部产生应力,将存有内部应力的薄膜从牵引部传送至卷取部,最终肯定会对卷取张力的变动带来影响。 为使放卷张力的变动量降低,放卷部采用浮动辊方式来控制放卷张力。该方式可使原膜母卷的内部应力减少,可吸收放卷速度的变化,实现放卷张力保持稳定。 为使浮动辊的效果更佳,本公司研制开发了2根串联在一起浮动辊方式(已取得专利权),该方式可使放卷张力的变动量降低到最低限度。 2—2—2为实现放卷张力变动量最小而采取的对策 串联浮动辊的控制 偏芯原膜母卷回转时,靠浮动辊的摆动来吸收,但是,浮动辊的质量成为惯性抵抗使薄膜产生松弛,并使张力也增加。由于此惯性抵抗会给每一时间上的变动量及浮动辊的质量本身带来很大的影响。现在,本公司研发开发了把2根浮动辊组合在一起的串联浮动方式,可实现低张力条件下的高速运转。 串联浮动辊的方式相对于1根浮动辊来说,偏芯原膜母卷每回转1次,薄膜偏芯量的1/2通过浮动辊的位置变化来吸收,同时,由于浮动辊及惯性力的变动所产生的作用于薄膜的张力,因每一根浮动辊的质量是原来1根的1/2,可使得总体上放卷张力的变动量减少到原来1根浮动辊张力变量的1/4。

锁相技术名词解释、简答题和计算公式

名词解释和简答题整理 第一章锁相环路的基本工作原理: 1.锁相环(PLL)---锁相环是一个能够跟踪输入信号相位的闭环自动控制系统。 2.捕获带:环路能通过捕获过程而进入同步状态所允许的最大固有频差|Δωo|max。 3.同步带:锁相环路能够保持锁定状态所允许的最大固有频差|Δωo|max。 4.快捕带:保证环路只有相位捕获一个过程的最大固有频差值|Δωo|max。 5.输入信号频率与环路自由振荡频率之差,称为环路的固有频率 环路固有角频差:输入信号角频率ωi与环路自由振荡角频率ωo之差。 瞬时角频差:输入信号频率ωi与受控压控振荡器的频率ωv之差。 控制角频差:受控压控振荡器的频率ωv与自由振荡频率ωo之差。 三者之间的关系:瞬时频差=固有频差-控制频差。 6.鉴相器是一个相位比较装置,用来检测输入信号相位θ1(t)与反馈信号相位θ2(t)之间 的相位差θe(t)。输出的误差信号u d(t)是相差θe(t)的函数。 7.锁相环路由鉴相器、环路滤波器和压控振荡器三个主要部件构成;其独特的性能有载波 跟踪特性、调制跟踪特性和低门限特性。 8.环路滤波器---即低通滤波器,滤除鉴相器输出电压中的高频分量,起平滑滤波的作用, 提高环路的稳定性。 9.压控振荡器---压控振荡器是一个电压-频率变换装置,它的振荡频率应随输入控制电压 u c(t)线性地变化。 10.环路的动态方程:pθe(t)= pθ1(t)-K o U d F(p)sin θ1(t) 11.相平面:将瞬时频差与瞬时相差的关系在平面直角坐标系中所做的图。相点:是相平面 上相轨迹上的一个点,表示环路在某一时刻的状态。 12.如果锁相环路的起始状态处于不稳定平衡点时,环路自身没有能力摆脱这种状态,只有 依靠外力(噪声或人为扰动)才能使环路偏离这个状态而进行捕获;所以一旦遇到这种情况就可能出现在不稳定平衡状态的滞留,致使捕获过程延长。这种现象称为锁相环路的延滞现象。 13.环路固有频差Δωo大于环路增益K,锁相环路处于失锁差拍状态,被控振荡器未被输 入信号锁定;但是由于锁相环路的控制作用,使锁相环路的平均频率向输入信号频率方向牵引。这种现象称为锁相环路的频率牵引现象 第二章环路跟踪性能: 1.对于输入相位阶跃而言,因为锁相环路在暂态过程中误差电压u d(t)≠0,压控振荡器的 相位已得到调整,最终并不再要求压控振荡器的频率得到调整,可以允许控制电压等于零。所以稳态时,鉴相器输出的误差电压u d(t)=0,环路的跟踪状态是可以维持的。

张力控制变频收卷的控制原理(汇编)

张力控制变频收卷的控制原理本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。

锁相技术复习重点汇总

第一章 锁相环的概念:当其输出信号频率与输入信号频率相同时,输出信号与输入信号之间的相位差同步(相位差为0,或为常数)。故称为锁相环路。简称为锁相环 一.锁相环组成 基本锁相环的组成: ⑴ 鉴相器(Phase Detector )---PD ⑵ 环路滤波器(Loop Filter )---LF ⑶ 压控振荡器(Voltage Controlled Oscillator )---VCO ()t 1θ为输入量()t u i 的瞬时相位。 ()t 2θ为输入量()t u o 的瞬时相位。 各部分分析: 1.鉴相器 是一个相位比较器,用于比较()t 1θ与()t 2θ之间的相位差 )]()(sin[2 1 )]()(2sin[21)] (cos[)](sin[)()(212121t t U U K t t t U U K t t U t t U K t u t u K o i m o o i m o o o i m o i m θθθθωθωθω-+++= ++= 再经过低通滤波器(LPF )滤除o ω2成分之后,得到误差电压 )]()(sin[2 1 )(21t t U U K t u o i m d θθ-=

令 o i m d U U K U 2 1 = 为鉴相器的最大输出电压,得到)](sin[)(t U t u e d d θ= 2.环路滤波器及其传输函数 环路滤波器是一个线性电路,在时域分析中可用一个传输算子)(p F 来表示,其中)(dt d p ≡是微分算子;在频域分析中可用传递函数)(s F 表示,其中 )(Ω+=j s α是复频率;若用Ω=j s 代入就得到它的频率响应)(Ωj F ,故环路滤 波器模型可表示为图 定义控制电压 ()()()p F t u t u d c = (1)RC 积分滤波器这是结构最简单的低通滤波器, 传输算子:1 11 )(τp p F += , RC =1τ是时间常数,这是这种滤波器唯一可调的参数。 令p=j Ω,并代入(1-18)式,即可得滤波器的频率特性:1 11 )(τΩ+= Ωj j F

什么是张力控制

什么是张力控制? 最佳答案 1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且

商业轮转机的张力控制详解

商业轮转机的张力控制详解 前言:随着商业印刷市场的扩展,商业轮转机在商业印刷中表现出来了越来越重要的作用,但也给商业轮转机印刷质量和精度提出了更高的要求。轮转印刷过程中通常由于张力的影响使印刷品套印和折页不准,给印刷带来很多不良品,从而影响生产成本和市场的信誉。下文以桑拿C800为例分析商业轮转印刷张力控。 C800商业轮转印刷的显著特点是纸带从开卷到进入折页滚筒都是在绷紧状态下完成的,套准、烘干、冷却、加湿及裁切等前后纸带长度上百米,因此纸带张力稳定是保证正常印刷的首要条件现从五个方面分析纸带的张力控制。 送纸部分:送纸部分从纸的入口到印刷单元包括了一次张力和二次张力,一次张力采用的是轴制动方式,在纸卷芯部轴端设置刹车片和刹车盘,通过气压方式加载制动力,即气动式张力控制系统。保证纸卷以平稳的速度放纸,并通过浮动机构及张力检测电路,消除或减轻由于纸卷不圆、偏心、一头松、一头紧等本身原因造成的张力波动,并可在印刷过程中对纸卷不断变小引起的张力变化进行自动调整。如(图一) 图一:1纸筒也是张力控制器所在、2和4导纸棍、3浮动机构 电器控制原理图如(图二)

分析:供纸部的张力控制部分由刹车片、制动器、浮动辊等组成,为了使纸带张力保持恒定,纸卷制动器必须能够根据纸带张力的波动情况自动进行调整以保证纸带匀速、平稳地进入印刷装置。在机器平稳运行过程中,应保证纸带张力稳定在给定值上,在启动和刹车时防止纸带过载和随意松卷。在印刷过程中,随着纸卷直径不断减小,为保持纸带张力的恒定,需要对制动力矩进行相应的调整。在印刷过程中,纸带的线速度保持不变,而纸卷的角速度却随着纸卷直径的减小不断增大。在不考虑由角加速度产生的惯性力矩和阻力矩的前提下,为保证纸带稳定运行,应该满足下面的条件:F X R= T X r F为纸带张力,R为纸卷半径,T为纸卷轴芯的制动力,r为纸卷轴芯制动力半径。可以看出,随着纸卷半径的减小,如果不改变制动力的大小,纸带所受到的张力会越来越大,最终会使纸带被拉断。因此,在保持纸带张力稳定的前提下,随着纸卷半径的减小,制动力必须按照一定的规律随之减小。简而言之,就是刹车片与刹车盘接触后产生一定的摩擦力,从而使纸带具有一定的张力,浮动辊在张力的作用下产生摆动,通过一个电子检测元件将张力的变化转化为电信号,控制刹车盘电压,从而达到控制摩擦力大小的目的,实现纸带张力的自动控制。刹车片与刹车盘的间距应在1?2mm之间。 二次张力为无级变速控制:无级变速控制是通过电机的转速来控制张力的大小其控制原理图如(图三) 图三中:1铬棍、2电机传动的胶棍(又叫送纸棍)、3和4导纸棍、5浮动

智能小车速度控制程序

/************************************************************************** ** 简单寻迹程序:接法 EN1 EN2 PWM输入端,本程序不输入PWM,直接使插上跳线帽,使能输出,这样就能全速运行 接上测速模块 测速模块电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口 把测速模块输出OUT1 OUT2 接入单片机P3。2 P3。3 P1_0 P1_1 接IN1 IN2 当P1_0=1,P1_1=0; 时左上电机正转左上电机接驱动板子输出端(蓝色端子OUT1 OUT2) P1_0 P1_1 接IN1 IN2 当P1_0=0,P1_1=1; 时左上电机反转 P1_0 P1_1 接IN1 IN2 当P1_0=0,P1_1=0; 时左上电机停转 P1_2 P1_3 接IN3 IN4 当P1_2=1,P1_3=0; 时左下电机正转左下电机接驱动板子输出端(蓝色端子OUT3 OUT4) P1_2 P1_3 接IN3 IN4 当P1_2=0,P1_3=1; 时左下电机反转 P1_2 P1_3 接IN3 IN4 当P1_2=0,P1_3=0; 时左下电机停转 P1_4 P1_5 接IN5 IN6 当P1_4=1,P1_5=0; 时右上电机正转右上电机接驱动板子输出端(蓝色端子OUT5 OUT6) P1_4 P1_5 接IN5 IN6 当P1_4=0,P1_5=1; 时右上电机反转

P1_4 P1_5 接IN5 IN6 当P1_4=0,P1_5=0; 时右上电机停转 P1_6 P1_7 接IN7 IN8 当P1_6=1,P1_7=0; 时右下电机正转右下电机接驱动板子输出端(蓝色端子OUT7 OUT8) P1_6 P1_7 接IN7 IN8 当P1_6=0,P1_7=1; 时右下电机反转 P1_6 P1_7 接IN7 IN8 当P1_6=0,P1_7=0; 时右下电机停转 P3_2接四路寻迹模块接口第一路输出信号即中控板上面标记为OUT1 P3_3接四路寻迹模块接口第二路输出信号即中控板上面标记为OUT2 P3_4接四路寻迹模块接口第三路输出信号即中控板上面标记为OUT3 P3_5接四路寻迹模块接口第四路输出信号即中控板上面标记为OUT4 四路寻迹传感器有信号(白线)为0 没有信号(黑线)为1 四路寻迹传感器电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口 关于单片机电源:本店驱动模块内带LDO稳压芯片,当电池输入6V时时候可以输出稳定的5V 分别在针脚标+5 与GND 。这个输出电源可以作为单片机系统的供电电源。 ****************************************************************************/ #include

锁相环技术

PLL(Phase Locked Loop)锁相环 锁相环的基本组成 PLL(Phase Locked Loop):为锁相回路或锁相环,用来统一整合时脉讯号,使内存能正确的存取资料。PLL用于振荡器中的反馈技术。 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PL L,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。锁相环通常由鉴相器(PD,Phas e Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Control led Oscillator)三部分组成,锁相环组成的原理框图如图所示。 PLL原理框图 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 锁相环的工作原理 锁相环是一种反馈电路,其作用是使得电路上的时钟和某一外部时钟的相位同步。P LL通过比较外部信号的相位和由压控晶振(VCXO)的相位来实现同步的,在比较的过程中,锁相环电路会不断根据外部信号的相位来调整本地晶振的时钟相位,直到两个信号的相位同步。在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。 通过锁相环同步多块板卡的采样时钟所需要的编程技术会根据您所使用的硬件 板卡的不同而不同。对于基于PCI总线的产品(M系列数据采集卡,PCI数字化仪等),所有的同步都是通过RTSI总线上的时钟和触发线来实现的;这时,其中一块版板卡会作为主卡并且输出其内部时钟,通过RTSI线,其他从板卡就可以获得这个用于同

西门子张力控制(基于速度)

12TCON2: Tension Control, Type 2 (3) 12.1Introduction (3) 12.2Principle of TCON2 (4) 12.2.1Theoretical overview (6) 12.3Overview (block diagram) (8) 12.4Functions (9) 12.4.1Control and status words, data transfer (10) 12.4.1.1Control words TCON2 (10) 12.4.1.1.1Control words LCO (10) 12.4.1.1.2Control words MRG (13) 12.4.1.2Status words TCON2 (17) 12.4.1.2.1Status words LCO (17) 12.4.1.2.2Status word MRG (19) 12.4.1.3Data transfer (21) 12.4.1.3.1Data reception (21) 12.4.1.3.2Data transmission (22) 12.4.2Tension setpoint: absolute or relative (23) 12.4.3Tension ramp generator (24) 12.4.4Actual tension (25) 12.4.5Tension setpoint of the nearby tension zone (28) 12.4.6Tension regulator (28) 12.4.7Precontrol of the tension regulator (29) 12.4.8Tension cascade (30) 12.4.9Speed-dependent tension correction (31) 12.4.10Automatic speed correction (32) 12.4.11V_Tech_start: applying tension (34) 12.4.12Determining the sign of V_tech (35) 12.4.13VT_Feed (35) 12.4.14T_Tech: Precontrol (36) 12.5Simulation TCON2 (37) 12.6Block diagram (38) 12.7Description of variables (40) 12.8Program structure (41) 12.9Program layout (43) 12.9.1FC1344: Data reception (43) 12.9.2FB286 – FB300: Calling in the regulator (43) 12.9.3FC1345: Sending data to LCO (44)

VSWR详解

反射电压的计算见下图: (原文件名:匹配.jpg) 因为电压都是以同一个地作为参考的,叠加在一起就是相加了;电流是按某一个正方向来定义的,反射电流和入射电流方向是相反的,就是减了。 应该很容易理解的。

小谈驻波比VSWR的意义 电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1,如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。 如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 VSWR不是1时,比较VSWR的值没有意义 天线VSWR=1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效地输送到天线上,匹配的情况只有这一种。 而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,天线容性失谐,天线谐振但是馈电点不对,等等。在阻抗园图上,每一个VSWR数值都是一个园,拥有无穷多个点。也就是说,VSWR数值相同时,天线系统的状态有很多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意义。 正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。 VSWR都=1不等于都是好天线 一些国外杂志文章在介绍天线时经常给出VSWR的曲线。有时会因此产生一种错觉,只要VSWR=1,总会是好天线。其实,VSWR=1只能说明发射机的能量可以有效地传输到天线系统。但是这些能量是否能有效地辐射到空间,那是另一个问题。一副按理论长度作制作的偶极天线,和一副长度只有1/20的缩短型天线,只要采取适当措施,它们都可能做到VSWR=1,但发射效果肯定大相径庭,不能同日而语。做为极端例子,一个50欧姆的电阻,它的VSWR十分理想地等于1,但是它的发射效率是0。 影响天线效果的最重要因素:谐振 天线系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就不是纯电阻);第二,选择适当的馈电点。

纵向控制增稳飞行控制律

纵向控制增稳飞行控制系统实验指导书 1. 实验目的 (1)理解并掌握飞行控制系统纵向控制增稳的工作原理、控制方法、主要控制参数设计等; (2)掌握机械操纵系统、增稳系统、控制增稳系统的相关飞控知识; (3)熟练使用Matlab 仿真软件、FlightGear 仿真环境、网络数据通讯等基本工具进行数值仿真。 2. 实验内容 (1)数值仿真模型搭建 (2)模型认知与参数设置 (3)纵向控制增稳控制仿真 3、实验原理 (1)控制增稳控制律构型的设计 控制增稳控制律构型采用法向过载与经由高通滤波的俯仰角速率综合而实现。控制律如下: ,,e c z z c q s k n n k q s b δ??=-+ ?+? ? (2)放宽静稳定性控制律设计 静稳定性补偿采用经低通滤波器输出的迎角反馈进行纵向静稳定性补偿,以保证系统静稳定性的同时,不影响动态响应性能。控制律如下: ,e c c k s c α δα=-+

(3)中性速度稳定性控制律设计 中性速度稳定性控制律通过在前向支路过载指令与反馈信号综合处的下游加入比例积分控制律来实现。 综上得到最终的纵向控制增稳飞行控制律如下: ,,1e c z z c q a s c k n n k q k s s b s c αδα??? ? =+-+- ???++??? ? (4)基于FlightGear 的飞行仿真环境搭建 本文借鉴飞行模拟器的结构框架,设计的基于FlightGear 的飞行仿真系统的 总体结构如图所示。该系统主要由操纵输入设备、飞行仿真及虚拟仪表系统、通信网络和视景显示系统四部分组成,其硬件均采用常规商业产品,具有成本低廉,结构简单,构建方便,移植性强等优点,最重要的是它突出了飞行控制研究最关心的高效的飞行仿真和逼真的视景显示。 视景 飞行视景 力学仿真 操纵设备 构建的基于FlightGear 的飞行仿真系统实物如图所示。其中,视景显示采用液晶显示器,根据需要可扩展为投影显示系统。

智能车控制算法

智能车转角与速度控制算法 1.检测黑线中点Center:设黑、白点两个计数数组black、white,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加1,并且白点计数器停止,以此类推扫描每一行;黑线中点=白点个数+(黑点的个数/2) 2.判断弯直道: 找出黑线的平均位置avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和) 然后用Curve的大小来确定是否弯直道(Curve的阀值待定)。 3.控制速度: 根据弯度的大小控制速度大小。 //*****************************弯度检测函数*******************************// Curvecontrol () { int black[N]; //黑点计数器 int white[N]; //白点计数器 int center[N]; //黑线中点位置 int avg; //黑线中点平均位置 int curve;//N行的相对位移之和 if(白点) ++white[N]; //判断黑白点的个数 else ++black[N]; center[N]=white[N]+black[N]/2; //每一行的黑线中点avg=(center[1]+center[2]+...+center[N])/N; //求出黑线中点的平均位置 curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N //求出N行的相对位移之和 return curve; //返回弯度大小

速度控制与张力控制

速度控制与张力控制 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

张力控制 1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电 机轴即能控制电机的输出转距。 2. 3. 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力 的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 4. 5.用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变 化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 6. 7.二.张力控制变频收卷在纺织行业的应用及工艺要求 8. 9.1.传统收卷装置的弊端 10.纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为 机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 11. 12.2.张力控制变频收卷的工艺要求 13.* 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 14.* 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 15.* 在加速、减速、停止的状态下也不能有上述情况出现。 16.* 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 17. 18.3.张力控制变频收卷的优点 19.* 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. 20.* 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 21.张力锥度计算公式的应用;转矩补偿的动态调整等等. 22.* 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 23.在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 24.* 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 25.减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 26.而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 27.定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 28.使得收卷的性能更好。 29.* 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本 30.上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 31.* 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。 32.

商业轮转机的张力控制详细讲解

商业轮转机的力控制详解 前言:随着商业印刷市场的扩展,商业轮转机在商业印刷中表现出来了越来越重要的作用,但也给商业轮转机印刷质量和精度提出了更高的要求。轮转印刷过程常由于力的影响使印刷品套印和折页不准,给印刷带来很多不良品,从而影响生产成本和市场的信誉。下文以桑拿C800为例分析商业轮转印刷力控。 C800商业轮转印刷的显著特点是纸带从开卷到进入折页滚筒都是在绷紧状态下完成的,套准、烘干、冷却、加湿及裁切等前后纸带长度上百米,因此纸带力稳定是保证正常印刷的首要条件现从五个方面分析纸带的力控制。 送纸部分:送纸部分从纸的入口到印刷单元包括了一次力和二次力,一次力采用的是轴制动方式,在纸卷芯部轴端设置刹车片和刹车盘,通过气压方式加载制动力,即气动式力控制系统。保证纸卷以平稳的速度放纸,并通过浮动机构及力检测电路,消除或减轻由于纸卷不圆、偏心、一头松、一头紧等本身原因造成的力波动,并可在印刷过程中对纸卷不断变小引起的力变化进行自动调整。如(图一) 图一:1纸筒也是力控制器所在、2和4导纸棍、3浮动机构。

电器控制原理图如(图二) 分析:供纸部的力控制部分由刹车片、制动器、浮动辊等组成,为了使纸带力保持恒定,纸卷制动器必须能够根据纸带力的波动情况自动进行调整以保证纸带匀速、平稳地进入印刷装置。在机器平稳运行过程中,应保证纸带力稳定在给定值上,在启动和刹车时防止纸带过载和随意松卷。在印刷过程中,随着纸卷直径不断减小,为保持纸带力的恒定,需要对制动力矩进行相应的调整。在印刷过程中,纸带的线速度保持不变,而纸卷的角速度却随着纸卷直径的减小不断增大。在不考虑由角加速度产生的惯性力矩和阻力矩的前提下,为保证纸带稳定运行,应该满足下面的条件:F×R=T×r F为纸带力,R为纸卷半径,T为纸卷轴芯的制动力,r为纸卷轴芯制动力半径。可以看出,随着纸卷半径的减小,如果不改变制动力的大小,纸带所受到的力会越来越大,最终会使纸带被拉断。因此,在保持纸带力稳定的前提下,随着纸卷半径的减小,制动力必须按照一定的规律随之减小。简而言之,就是刹车片与刹车盘接触后产生一定的摩擦力,从而使纸带具有一定的力,浮动辊在力的作用下产生摆动,通过一个电子检测元件将力的变化转化为电信号,控制刹车盘电压,从而达到控制摩擦力大小的目的,实现纸带力的自动控制。刹车片与刹车盘的间距应在1~2mm之间。 二次力为无级变速控制:无级变速控制是通过电机的转速来控制力的大小其控制原理图如(图三)

心电图机走纸控制电路原理

心电图机走纸控制电路原理 ECG-651l型心电图机是目前国内各级医院使用量最多的一款机型。发现该机走纸控制电路是最易发生故障的部分之一,现将本机型的走纸控制电路原理的详细分析呈给同行。该电路由纸速转换电路马达转速控制脉冲产生电路和锁相环稳速控制电路组成。 l 纸速转换电路 走纸速度转换电路由转换开关SW213、SW214和RS触发器IC208A、IC208B以及控制门IC205B、IC205D组成。当整机通电后,初始化电路送出一个正脉冲首先加在IC208的输入端第8脚上,将触发器IC208A的输出端第9脚触发置零。此时IC205B或非门的第8脚也为低电平,使IC209第6脚送来的脉冲信号能顺利通过这个或非门,然后和IC209的4脚送出的脉冲相与后由IC205第11脚输出作为纸速25mm/s的马达转速控制脉冲,脉冲频率为256Hz。由于初始化电路将IC208第9脚置零,第6脚输出必然为高电平,通过非门IC21le 的反相启动发光二极管LED224工作,使纸速显示在25mm/s的状态。当将50mm/s的纸速开关按下后,RS触发器被触发翻转;IC208第9脚输出高电平,此时将IC205B或非门封闭使其输出端第10脚输出IC205D门的第12脚为低电平控制由IC209第4脚送来的脉冲信号通过IC205D的反相,由第11脚输出作为纸速50mm/s的基准控制脉冲,脉冲频率为512Hz IC208第6脚输出的高电平还通过反向门IC211A驱动IED223点亮使纸速显示在50mm/s的状态。 走纸马达的走或停是由Q203基极电平决定的,故IC202在驱动LED214灯亮时,同时对Q203基极输送一个高电平使其截止马达即按设定的速度旋转反之则停止转动。Q203与R238和R239还起到了过流保护作用,防止因卡纸使马达损坏,在正常情况下保护电路不起作用,只有负载过重使马达电流过大时,在电阻R239上的压降足以导致Q203的导道,保护电路才起作用,走纸马达因失去驱动信号而停止工作。 2 马达转速控制脉冲产生电路 ZD201、R233、X20l、Q204和IC209组成控制脉冲产生电路,晶振器X20l产生上限频率32.768kHz的振荡信号,由稳压二极管ZD20和R233组成的稳压电路是为X201提供一个恒定的电压,以稳定振荡频率,这个振荡信号经Q204放大整形后送到分频器IC209 10脚作128或64分频后得到一个频率为256Hz或512Hz的基准频率方波脉冲由IC209第6脚输出,作为走纸速度为25mm/s或50mm/s的控制脉冲。 3 锁相环稳速控制电路 由于临床对心电图诊断的特殊要求,心电图机在记录信号时要求走纸速度十分精确,这

相关文档
相关文档 最新文档