文档库 最新最全的文档下载
当前位置:文档库 › 实验四 固体乾燥

实验四 固体乾燥

实验四 固体乾燥
实验四 固体乾燥

固體乾燥

(Dried of Solid)

一、實驗目的:

1. 學習測定固體乾燥在乾燥器之乾燥操作。

2. 了解固體之乾燥機構:起始期、恆速期及減速期。

二、實驗原理:

為了解固體粒之乾燥機構及奠定乾燥裝置之設計基礎,吾人須熟悉下列各要點:

(1)乾燥條件

固體與液體在一定溫度下會產生一定之蒸氣壓,故底部之乾燥同時受外在及內在因素之影響。外在因素為與固

體接觸之空氣溫度、溼度、風速、風量級風向等,內在因

素為固體本身之大小、形狀、所含成分、固體內部的結構

水分含量、固體之物理性質、化學性質以及乾燥程度等。

由於內在因素係因物質而異,而外在因素與物質之種類無

關,故通常皆以外在因素為乾燥條件。

(2)自由水分含量與平衡水分含量

將充份濕潤之試料,在一定溫度、溼度、風速、風量

級風向等乾燥條件下進行乾燥之,秤取試料之重量隨乾燥 時間的變化,到最後固體內保有一定量的水分,無人稱為 平衡水分含量X e (Equilibrium Moisture Content )。式(8.1) 表之。

00

e e w w X w -= (8.1)

此處

w e = 試料乾燥,平衡狀態之重量(kg )。 w 0 = 試料完全乾燥,無含水之重量(kg )。

在一定的外在乾燥條件下所能去除之水分,為固體試 料之原有水分與平衡水分含量之差值,稱為自由含水率 X i (free moisture content )。式﹙8.2﹚表之。

i e i w w X w -=

(8.2)

此處

w i = 固體放入乾燥室內,每經一定時間所測定之重量 (kg )。﹙其中 i = 3,6,9…n ﹚

圖一乾燥曲線

圖二乾燥曲線

圖二乾燥速率曲線

(3)固體乾燥機構

以固定溫度、濕度的氣體﹙空氣﹚乾燥潮濕固體物的

過程中,如以固體之自由含水率與時間做圖,即可得如圖一之乾燥曲線。又以固體之乾燥速率對自由含水率作圖,即可得如圖二之乾燥速率曲線,在圖一及圖二之AB 線段代表濕潤固體物和用以乾燥空氣接觸時,固體物的溫度開始變化,當達到溫度不再變化且穩定狀態的情形時,此期間稱材料之預熱期。BC線段是在乾燥期中穩定狀態的情形,測定期溫度時,可發現固體表面的溫度等於用於乾燥的空氣濕球溫度,此時固體物內部的溫度亦接近氣體濕球的溫度,但因受質傳和熱傳之落後延遲,亦會有少許偏差。但當此系統達到氣體的濕球溫度且不再變化時,其乾燥速率也保持一定,此速率稱為恆速乾燥期(constant-rate drying period)。在此BC 線段,其整個固體的暴露表面被水份所飽和,就好比液體進行蒸發,而固體內在因素不影響到乾燥速率(因為固體表面水份雖然在乾燥中損失,但固體內部水份能補充其損失),所以乾燥速率為外在因素所決定。

C 點代表固體含水量達到臨界值,當低於C 點時則無法再充份供應整個表面的水份蒸發,此點稱為臨界含水率(critical moisture content),亦是恆速乾燥期終點。

乾燥進行超過C 點之後,乾燥速率急速下降,如 AB 與 CD 線段,在此期間稱為減速乾燥期(falling-rate period ) ,水分在固體內部即蒸發,水蒸汽在固體中移動而達表面。 減速乾燥期分為第一減速期(first falling-rate period )和第 二減速期(second failing- rate period ) 1. 第一減速期:

由於固體表面蒸發的速率大於由固體內部供給至表面 的速率,所以蒸發速率降低。同時熱的供給仍未減少, 因此表面溫度升高,致使水分的蒸發移至表面以下。 2. 第二減速期:

經過第一減速乾燥期後,水份於固體表面以下蒸發, 直至物料達到平衡含水率為止,此時固體表面溫度等 於空氣的乾球溫度。

(4)乾燥速率及其熱傳係數

1. 恆速乾燥期

今考慮依立方體的恆速乾燥速率 Rc ,自定義:

0W dX dW

Rc Adt Adt

=-

=- (8.3) 因Rc ,W 0為常數,且乾燥面積 A 亦為一常數,則

c

W dt dX AR -= (8.4)

積分式(8.4)得

0(/)()c c c t W AR X X =- (8.5)

其中A :乾燥面積(m 2)

t c :乾燥至臨界含水率所需時間(h ) R c :恆速乾燥速率(kg/hm 2) X c :臨界含水率(kg/kg )

在恆速乾燥過程中就熱傳方式而言,固體接受空氣傳 入的熱能不斷自表面蒸發水分,所以熱傳係數 h y 可由 下式求得。

熱傳作用方式()y W W h T T A

dX dt λ-= (8.5

h y :熱傳係數(kJ/hm 2K ) A :水分蒸發面積即固體乾燥面積 T :空氣的乾球溫度(K ) T W :空氣的濕球溫度(K )

W λ: 於空氣濕球溫度下水的潛熱(kJ/kg )

將式(8.6)代入式(8.3)可求得熱傳係數h y 。

0()()y W W

h T T A W Rc A λ-= (8.7)

0()

W

y W Rc h W T T λ=- (8.8)

2. 減速乾燥期

由定義,減速乾燥期速率R f 為

0f W dX R Adt = (8.9)

將式﹙ 8.9 ﹚積分得

1

2

Xc f f Xc W dX

t A

R =? (8.10) 因f R 與X 為線性關係,假設其關係為

R f = aX+b (8.11) a,b 為常數,則可得 f dR dX a

=

(8.12)

將式﹙8.11﹚代入﹙8.12﹚中,得

1

210

02ln f f R f f f f f R dR R W W t aA R aA R ==? (8.13)

式﹙ 8.13 ﹚中,R f1及R f2分別為減速乾燥期中,最初 含水率及最後含水率相對的縱軸座標,如圖 8.2 中的

R c 及R d 。而斜率 a 又可以下式表示之

1212

f f c c R R a X X -=- (8.14)

其中

R f1:在第一臨界點的乾燥速率 R f2:在第二臨界點的乾燥速率 X cl : 第一臨界點的自由含水率 X c2: 第二臨界點的自由含水率 將式 (8.14)代入式(8.13),得

1

0121122

()ln ()f c c f f f f R W X X t A R R R -=- (8.15)

三、裝置設備

四、注意事項

1. 實驗前請check乾燥劑是粉紅色

2.. 裝溼球溫度計所用的瓶子,在實驗前需裝水8 分滿。

五、問題與討論

1. 試從自作的乾燥速率曲線,討論固體的乾燥機制,並找出臨

界含水率及平衡含水率。

2. 請求出恆速期之乾燥時間。

六、產業應用

1. 廂式乾燥器(盤架式乾燥器)

小型的稱為烘箱,大型的稱為烘房,可同時處理多種物料。通常在常壓或真空下間歇操作。廂內設有支架,濕物料放

在矩形淺盤內,或懸掛在支架上(板狀物料),空氣經加熱器預

熱並均勻分配後,平行掠過物料表面,離開物料表面的濕廢氣

體,部分排空,部分循環,與新鮮空氣混合後用作乾燥介質。

?優點:結構簡單,裝卸靈活、方便,適應性強,適用於小批

量、多品種物料的干燥。

?缺點:分散差,勞動強度大,乾燥時間長,設備體積大。

2. 轉筒式乾燥器

沿軸向裝抄板圓筒,略傾斜,齒輪機構驅動作旋轉運動;

物料由轉筒較高一端送,由較低端出,熱風由轉筒低端入,由高端出,氣固兩相呈逆流接觸;隨著圓筒旋轉,物料被炒板抄起然後灑下,改善傳熱傳質,提高乾燥速率;物料濕含量較低,產品能承受高溫,宜採用逆流乾燥。物料濕含量較高、產品濕含量不是很低的場合宜採用並流乾燥。國內現有轉筒乾燥器的直徑一般為0.5-3m,長度為2-27 m,長徑比為4-10,物料在轉筒內的裝填量約為筒體容積的8-13%,物料沿轉筒軸向前進的速度為0.01-0.08m/s,其停留時間一般為1h左右。

特點:

1 .機械化程度較高,生產能力較大

2 .乾燥介質通過轉筒的阻力較小

3 .對物料的適應性較強,操作穩定方便,運行費用較低

4 .裝置比較笨重,金屬耗材多,傳動機構複雜,維修量較大

5 .設備投資高,佔地面積大。

3. 單層流化床乾燥器

加料口加入,熱氣體穿過流化床底部多孔分佈板,形成許多小氣流射入物料層。氣速控制,形成沸騰狀流化床。產品經床側出料管卸出,濕廢氣體由引風機從床層頂部抽出排空,旋風分離器分離所夾帶少量細微粉。

4. 氣流式霧化器

壓縮空氣在噴嘴處達到音速並形成很低的壓力,抽送料液由噴嘴成霧狀噴出。可製備粒徑小於5m 的微細顆粒,能處理粘度較大的料液,但動力消耗較大,裝置的生產能力較小。

5. 多層流化床乾燥器

固體在每一層完全混合,但層與層之間不相混。改善了物料停留時間的分佈,層數越多,產品濕含量愈均勻。國內使用五層流化床乾燥滌綸切片,效果很好。氣固兩相逆流流動,有利於降低產品的濕含量,且可使熱量的利用更加充分。多層流化床特別適合於產品濕含量較低、冷物料不能承受強烈乾燥而乾物料可以耐高溫的場合。多層床其結構複雜,氣體的流動阻力也較大,因而限制了多層流化床的應用。

6. 臥式多室流化床乾燥器

床為矩形截面,用擋板將床分為多個室,擋板與氣體分佈板間有間隙使物料逐室通過。最後一室通入冷空氣。

特點:

(1)產品含水量均勻:各室氣溫和流量可調節,熱量利用充分;物料和氣體錯流,流動阻力小,動力消耗少;最後

一室冷卻便於包裝。乾燥速度快,兩傳熱傳質面積。熱

氣體速度高, 相對速度很大,體積小。

(2)並流:使用高溫氣體作為乾燥介質不會燒壞物料。

(3)時間短:氣流乾燥又稱為快速乾燥或閃蒸乾燥,特別適合於熱敏性物料乾燥。

(4)物料呈活塞流流動,乾燥產品濕含量均勻。

(5)結構簡單,投資少,佔地面積小,操作方便,性能穩定,維修量小。

7. 離心式霧化器

料液送入一高速旋轉的裝有放射形葉片的圓盤中央,在離心力作用下加速從周邊呈霧狀灑出。操作簡單,適應能力強,彈性大,粒徑均勻。特別適合於固相含量較高液體。乾燥器直徑較大,霧化器加工難度大,製造價格高。

8. 壓力式霧化器

用泵將料液加壓至30-200atm 並通入噴嘴,噴嘴內有螺旋

八、參考資料

1. 國立台灣工業技術學院化學工程技術系編輯小組編製,"化學

工程實習手冊",高立圖書,76 年。

2. 鄧禮堂續著,"單元操作實驗",協志工業叢書,72 年六版。

3. Mc Cabe Jalian C .Smith, and Peter Harriott, "Unit Operations of

Chemical Engineering ", 5th Mc Graw-Hill, Inc, 1994.

實驗步驟:

1. 啟動電源開關。

2.先將托盤重歸零

3.使用升降台將欲裝乾燥劑之秤盤取出(注意吊秤盤鋼絲細小勿拉斷,故務必秤盤與鋼絲掛勾間一定鬆落才可取出)

4. 量取欲裝乾燥劑之秤盤尺寸;加蒸餾水至濕球溫度計的錐形瓶中

約八分滿 乾燥劑之秤盤

掛勾與秤盤須鬆落

5.準備濕潤後乾燥劑(粉紅色)約60g,放置秤盤內,鋪平於盤中。

6. 開啟天平開關,同時打開烘箱及風扇馬達開關,烘箱溫度設定為

80 ℃,並保持定值。

7.打開電腦執行【a7017.exe】軟體,開啟【多功能資料擷取系統】

8.點選【通訊設定】按下【機器確認】確認出現三個【OK】畫面,並按下【連線】鍵,使機器連線使用

9.按下【即時資料】check目前天平重量、乾球溫度及濕球溫度

10.點選【曲線圖】,【記錄數據】設定檔名(並確認在XLS狀況),開

始記錄數據,待整個實驗結束(約3hr)。

11.實驗3hr後,開啟【我的文件夾】,即可觀看3hr之記錄結果。

12.下載檔案後關閉電腦,戴上防熱手套將秤盤取出、清空並放回烘

箱,關閉烘箱、風扇馬達和天秤,關閉電源開關。

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

大学物理实验之声光效应

声光效应电子教案 一、实验目的 ①了解声光效应原理 ②了解布拉格衍射现象的实验条件和特点 ③通过对声光器件衍射效率、中心频率和带宽的测量加深对其概念的理解 ④测量声光偏转和声光调制曲线 二、实验原理简述 声光效应就是研究光通过声波扰动的介质时发生散射或衍射的现象。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播,当激光通过此介质时,就会发生光的衍射,即声光衍射。衍射光的强度、频率、方向等都随着超声波场而变化。其中衍射光偏转角随超声波频率的变化现象称为声光偏转;衍射光强度随超声波功率而变化的现象称为声光调制。主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 声光衍射可以分为拉曼-拉斯(Ranman-Nath)衍射和布拉格(Bragg)衍射两种情况。本实验室主要研究钼酸铅晶体介质中的布拉格衍射现象。 布拉格方程:θB=sinθB=λfs/2nvs ,其中θB 为布拉格角,λ为激光波长,n为介质折射率,vs 为超声波在介质中的速率。由此知不同的频率对应不同的偏转角φ=2θB,所以可以通过改变超声波频率实现声光偏转。 布拉格一级衍射效率为:η1=I1/Ii=sin2((π/λ).(LM2Ps/2H)1/2) ,其中Ps为超声波功率,M2为声光材料的品质因素,L、H分别表示换能器的长和宽。由此知当超声功率改变时,η1也随之改变,因而可实现声光调制。 三、实验仪器的结构或原理简图及仪器简介 主要实验仪器如图1所示:有半导体激光器、声光器件及转角平台(图2)、超声波功率信号源、频率计、光强仪、示波器、光具座、支架、导线等附件。各仪器原理、具体型号及参数见声光效应实验讲义。 图1 声光效应主要实验仪器 图2 转角平台和声光器件

实验一 声光效应实验

实验 声光效应实验 【学史背景】 声光效应就是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象就是光波与介质中声波相互作用的结果。早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论与应用研究的迅速发展。声光效应为控制激光束的频率、方向与强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器、与可调谐滤光器等,在激光技术、光信号处理与集成光通讯技术等方面有着重要的应用。 【实验目的】 1.掌握声光效应的原理与实验规律; 2.了解喇曼-纳斯衍射与布喇格衍射的实验条件与特点; 3.测量不同激光(红光、蓝光、绿光)与红外线通过声光晶体发生布拉格衍射后的衍射角。 【实验原理】 当超声波在介质中传播时,将引起介质的弹性应变作时间与空间上的周期性的变化,并且导致介质的折射率也发生相应变化。当光束通过有超 声波的介质后就会产生衍射现象,这就就是声光效应。有 超声波传播的介质如同一个相位光栅。 声光效应有正常声光效应与反常声光效应之分。在 各项同性介质中,声-光相互作用不导致入射光偏振状 态的变化,产生正常声光效应。在各项异性介质中,声- 光相互作用可能导致入射光偏振状态的变化,产生反常 声光效应。反常声光效应就是制造高性能声光偏转器与 可调滤波器的基础。正常声光效应可用喇曼-纳斯的光 栅假设作出解释,而反常声光效应不能用光栅假设作出 说明。在非线性光学中,利用参量相互作用理论,可建立 起声-光相互作用的统一理论,并且运用动量匹配与失配等概念对正常与反常声光效应都可作出解释。本实验只涉及到各项同性介质中的正常声光效应。 图1 声光衍射

固体物理作业

固体物理作业 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 2.简单阐述下列概念: I.晶格、晶胞、晶列、晶向、晶面、晶系。 II.固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞)。 III.正格子、倒格子、布喇菲格子和复式格子。 3.晶体的重要结合类型有哪些,他们的基本特征为何? 4.为什么晶体的稳定结合需要引力外还需要排斥力?排斥力的来源是什么? 5.何谓声子?试将声子的性质与光子作一个比较。 6.何谓夫伦克耳缺陷和肖脱基缺陷? 7.自由电子气体的模型的基本假设是什么? 8.绝缘体中的镜带或能隙的起因是什么? 9.试简述重要的半导体材料的晶格结构、特征。 10.超导体的基本电磁性质是什么? 作业解答: 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 解答: I. 取一个阵点做顶点,以不同方向上的平移周期a、b、c为棱长,做一个平 行六面体,这样的平行六面体叫做晶胞。由很多个晶胞结合在一起构成晶 体。 II. 在空间点阵各个点上配置一些粒子,就构成了晶格。晶格是晶体矩阵所形成的空间网状结构。在网状结构的点上配置一些结构就构成了晶体。 III. 在空间无限排列最小的结构称为原胞,原胞是构成了晶体的最小结构。2.简单阐述下列概念: 解答: I . 晶格、晶胞、晶列、晶向、晶面、晶系。 晶格:又称晶架,是指的晶体矩阵所形成的空间网状结构——说白了就是晶胞的 排列方式。把每一个晶胞抽象成一个点,连接这些点就构成了晶格。 晶胞:顾名思义,则是衡量晶体结构的最小单元。众所周知,晶体具有平移对称 性。在一个无限延伸的晶体网络中取出一个最小的结构,使其能够在空间内密铺 构成整个晶体,那么这个立体就叫做晶胞。简而言之,晶胞就是晶体平移对称的 最小单位。 晶列:沿晶格的不同方向晶体性质不同。布喇菲格子的格点可以看成分裂在一系列相 互平行的直线系上,这些直线系称为晶列。 晶向:布喇菲格子可以形成方向不同的晶列,每一个晶列定义了一个反向,称为晶向。 晶面:在晶体学中,通过晶体中原子中心的平面叫作晶面。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可 划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。 II 固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞。

实验一 声光调制实验

实验一 声光调制实验 早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。声光效应已广泛应用于声学、光学和光电子学。近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。 一、实验目的 1、掌握声光调制的基本原理。 2、了解声光器件的工作原理。 3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。 4、观察布拉格声光衍射现象。 二、实验原理 (一)声光调制的物理基础 1、弹光效应 若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。这种由于外力作用而引起折射率变化的现象称为弹光效应。弹光效应存在于一切物质。 2、声光栅 当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。这部分受扰动的介质等效为一个“相位光栅”。其光栅常数就是声波波长λs ,这种光栅称为超声光栅。声波在介质中传播时,有行波和驻波两种形式。特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。 当超声波传播到声光晶体时,它由一端传向另一端。到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。由于机械波的压缩和伸长作用,则在声光晶体中形成行波式的疏密相间的构造,也就是行波形式的光栅。 当超声波传播到声光晶体时,它由一端传向另一端。如果遇见反声物质,超声波将被反声物质反射,在返回途中和入射波叠加而在声光晶体中形成驻波。由于机械波压缩伸长作用,在声光晶体中形成驻波形式的疏密相同的构造,也就是驻波形式的光栅。 首先考虑行波的情况,设平面纵声波在介质中沿x 方向传播,声波扰动介质中的质点位移可写成 ()x k t u u s s -=ωcos 01 (1) μ0是质点振动的振幅,ωs 是声波频率,k s 是声波波矢量的模。相应的应变场是 ()x k t k u x u S s s s -=??-=ωsin 01 (2) 对各向同性介质,折射率分布为

非常有用的固体物理实验方法课第4章_透射电子显微镜

第4章透射电子显微镜 同学们好!今天我们学习的内容是第4章透射电子显微镜,(transmission electron microscopy)简称TEM。下图就是我们今天要介绍的仪器。 那么透射电子显微镜在什么情况下产生的?又有什么功能和作用呢?下面我们就简单介绍一下它的历史背景和其功能和作用。 在光学显微镜下有的细微结构也无法看清,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska等发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 透射电子显微镜(Transmission Electron Microscopy,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,适于观察超微结构。透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力

低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。 那么我们总结以上内容可以给透射电子显微镜下一个简单的定义: 用透过样品的电子束使其成像的电子显微镜。在一个高真空系统中,由电子枪发射电子束,穿过被研究的样品,经电子透镜聚焦放大,在荧光屏上显示出高度放大的物像,还可作摄片记录的一类最常见的电子显微镜。 那么本章主要分为5个部分组成。 4.1 电子光学基础 4.2 电子与固体物质的相互作用 4.3 透射电子显微镜 4.4 电子衍射 4.5 透射电子显微分析样品制备 下面我们就来讲第一节,4.1 电子光学基础。本节内容有三部分组成 4.1.1 电子波与电磁透镜 4.1.2 电磁透镜的分辨率 4.1.3 电磁透镜的景深和焦长 那么我们再回顾一下以前所学的内容。

非常有用的固体物理实验方法课第2章__固体X射线学

第二章固体X-射线学 固体X-射线学是通过测定X-射线与凝聚态物质相互作用产生的效应来研究物质本性和结构的学科。在X-射线被吸收时产生吸收谱,通过对吸收谱的研究可以决定原子的能级结构,通过对吸收限高能测微弱的扩展吸收谱的研究可以获得吸收原子周围的结构信息;原子吸收了X-光子后发射标识辐射和俄歇电子,通过对这两中谱的测定可识别物质中的原子种类并测定其含量;X-射线被凝聚态物质散射时,通过对弹性散射线束强度和方向的测定可求得晶体和非晶体的结构、组织和缺陷,通过对非弹性散射线束这些量的测定可求出物质中晶格振动谱和原子外层电子的动量分布。 在这一章里,我们将固体X-射线学中的一些试验技术分成三部分来介绍:①晶体的衍射强度公式和衍射仪的使用方法,②常用的一些晶体结构分析法,③固体物理发展前沿的一些结构分析技术。 §2.1 散射理论与强度公式 在原理上,凝聚态物质对X-射线相干散射强度的计算是:将全部相干波叠加,求出合振幅,这合振幅的平方就是所求的强度。计算出来的强度是与散射体的结构状态密切相关的;进行叠加的振幅和位相因子决定于散射体内的原子及其分布,因而散射强度及其分布代表散射体的结构信息。这就是衍射法结构分析的依据。 按照结构来分类,凝聚态物质可分成晶体、准晶态和非晶态固体与液体。晶体又可分成大块完整晶体和嵌镶结构晶体。衍射理论中使用于大块完整晶体的理论叫做衍射动力学理论,适于嵌镶晶体的理论叫做衍射运动学理论,而适用于非晶态固体和液体的理论叫做非晶态衍射理论。准晶态固体是近几年才发现的含有5次度转对称类型机构但非周期性(有准周期性)的物质,其结构介乎晶态与非晶态之间,它的衍射理论正在迅速发展中。 X-射线在完整晶体中传播时,它首先被点阵第一次衍射,这些衍射线又被点阵再次衍射,衍射线与透射线相互作用,发生干涉效应。动力学理论是考虑这种再衍射效应的理论。X-射线在嵌镶晶体中传播时,由于嵌镶警惕是由许多位略有差别的完整小晶块嵌镶而成的,这样,一方面完整小晶块足够小以致其内部再衍射引起的效应可以忽略,另一方面各晶块之间的取向差又足以使它们的衍射线之间没有相干性,因而运动学理论是不考虑再衍射效应的理论。由于动力学理论和运动学理论有这样根本的差别,导出的衍射强度公式及衍射线束张角也就大不相同:动力学理论导出的衍射强度正比于结构因数F(hkl)的一次方,张角只有数弧秒,而运动学理论导出的衍射强度正比于F(hkl)的平方,平常见到的衍射强度,张角却有数分弧(由嵌镶晶体的位向分布决定)。 实际晶体绝大多数是嵌镶晶体,平常见到的衍射强度公式是根据运动学理论导出的。在这一节里准备对运动学强度公式做一扼要介绍。此外还将对小角散射及两种重要的不相干散射作一个简单说明。非晶态衍射理论则放在下面有关章节中叙述。

声光效应实验

时间:2014年7月7日 ——声光效应实验 大学物理实验报告

课题解析: 声光效应:超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称为声光效应。 实验目的: 1、观察超声驻波场中光的衍射现象 2、观察超声驻波场的像,测量声波在晶体中的速度 实验器材: 仪器与用具光学实验导轨(1m)、633nm半导体激光器、声光晶体、光信号放大器、声光效应实验电源(驻波声光调制器)、OPT-1A功率指示计以及白屏、光拦探头、一维位移架、MP3及数据线、小孔屏、光电探头、透镜(f=100mm)、光具座、传输线、电源线 主机箱面板功能: 主机箱“声光效应试验电源”主要功能为声光晶体驱动电压的输出与输出电压的指示,频率调节,被调制信号的接受与放大和还原,各面板元器件作用于功能如下: 1.表头:3位半数字表头,用于指示声光晶体驱动电压的大小,该显示数值可通过电压旋钮进行调节。 2.电压旋钮:调整范围0-12V,实验一般调到最大。 3.频率旋钮:调整范围9-11MHz,调整至适当频率使衍射效果最佳,频率值可在示波器或频率上读出(均需自备)。 4.驱动输出:Q9插座,与声光晶体相连接。 5.波形插座:Q9插座,为输出驱动波形,一般与示波器1通道连接

6.音频插座:3.5mm耳机插座,用于输入音频信号。 实验原理: 1.声波是一种弹性波(纵向应力波),在介质中传播时,它使介质产生相应的弹性形变,从而激起介质中各介质点沿声波的传播方向振动,引起介质的密度呈疏密相间的交替变化,因此,介质的折射率也随着发生相应的周期性变化。超声场作用的这部分如同一个光学的“相位光栅”,该光栅间距(光栅常数)等于声波波长λ。当光波通过此介质时,就会产生光的衍射。其衍射光的强度、频率、方向等都随着超声场的变化而变化。声波在介质中传播分为行波和驻波两种形式。图1所示为某一瞬间超声行波的情况,其中深色部分表示介质受到压缩、密度增大,相应的折射率也增大,而白色部分表示介质密度减少,对应的折射率也减少。在行波声场作用下,介质折射率的增大或减小交替变化,并以声速v(一般为10^3m/s量级)向前推进。由于声速仅为光速的数十万分之一,所以对光波来说,运动的“声光栅”可以看作是静止的。 2.晶体声光效应实验:利用石英晶体/ZF6驻波声光调制器,它由两部分构成,一是声光晶体:声光晶体由压电换能器(XO0切石英晶体)和声光互作用介质(ZF6)组成。为了在声光介质中形成驻波,沿声传播方向上声光介质的两个面要严格平行,平行度要优于λ/5。压电换能器与声光介质焊接成一体。二是驱动源:驱动源是一个正弦波高频功率信号发生器。驱动源提供的正弦高频功率信号(见图3a),通过匹配网络加到压电换能器上,换能器发出的超声波沿x正方向传播,到达对面后,被全反射,反射波沿x负方向传播,声光介质中如同存在两列频率相同、振幅相等且沿相反方向传播的超声波。 图3b所示就是这种波在十个彼此相等的瞬时间隔时的情况。沿正x方向传播的发射波用虚线表示;沿负x方向传播的反射波用实线表示;它们的叠加点划线表示。不难看出,叠加波具有相同的波长,只是在空间不产生位移。这种由两个彼此相对的行波组成的振动称为驻波。在驻波中,彼此相距λ/2的各点完全不振动,这些点称为波节。位于两波节中间的点是波腹,这些点上的振动最大。另外,显而易见的是每隔1/2T秒,振动即完全消失(图1b中从上往下数3,5,7,9行的瞬时),驻波的最大值也位于这些瞬时间隔的中间(2,4,6,8,10),而且每经过这个时间间隔,在波腹处的振动的相位相反。

声光效应实验

声光效应实验 一、 实验目的 1.理解声光效应的原理,了解Ramam -Nath 衍射和Bragg 衍射的分别。 2.测量声光器件的衍射效率和带宽等参数,加深对概念的理解。 3.测量声光偏转的声光调制曲线。 4.模拟激光通讯。 二、 实验原理 (一) 声光效应的物理本质——光弹效应 介质的光学性质通常用折射率椭球方程描述 1ij j j x y η= Pockels 效应:介质中存在声场,介质内部就受到应力,发生声应变,从而引起介质光学性质发生变化,这种变化反映在介质光折射率的或者折射率椭球方程系数的变化上。在一级近似下,有 ij ijkl kl P S η?= 各向同性介质中声纵波的情况,折射率n 和光弹系数P 都可以看作常量,得 2 1( )PS n η?=?= 其中应变 0sin()S S kx t =-Ω 表示在x 方向传播的声应变波,S 0是应变的幅值,/s k v =Ω是介质中的声波数,2f πΩ=为角频率,v s 为介质中声速,/s v f Λ=为声波长。P 表示单位应变所应起的2 (1/)n 的变化,为光弹系数。又得 301sin()sin()2 n n PS kx t kx t μ?=-Ω=-Ω ()sin()n x n n n kx t μ=+?=+-Ω 其中3012 n PS μ=是“声致折射率变化”的幅值。考虑如图1的情况,压电换能器将驱动信号U(t)转换成声信号,入射平面波与声波在介质中(共面)相遇,当光通过线度为l 的声

光互作用介质时,其相位改变为: 000()()sin() x n x k l k l kx t φφμ?==?+-Ω 其中002/k πλ=为真空中光波数,0λ是真空中的光波长, 00nk l ?Φ=为光通过不存在超声波的介质后的位相滞后,项 ()0sin k l kx t μ-Ω为由于介质中存在超声 波而引起的光的附加位相延迟。它在x 方向 周期性的变化,犹如光栅一般,故称为位相 光栅。这就是得广播阵面由原先的平面变为 周期性的位相绉折,这就改变了光的传播方 向,也就产生了所谓的衍射。与此同时,光 强分布在时间和空间上又做重新分配,也就 是衍射光强受到了声调制。 (二) 声光光偏转和光平移 从量子力学的观点考虑光偏转和光频移 问题十分方便。把入射单色平面光波近似看作光子和声子。声光相互作用可以归结为光子和声子的弹性碰撞,这种碰撞应当遵守动量守恒和能量守恒定律,前者导致光偏转,后者导致光频移。这种碰撞存在着两种可能的情况——即声子的吸收过程和声子的受激发射过程,在声子吸收的情况下,每产生一个衍射光子,需要吸收一个声子。在声子受激发射的情况下,一个入射声子激发一个散射光子和另一个与之具有相同动量和能量的声子的发射。 d i k k k ±=± d i ωω±=±Ω 声光效应可划分为正常声光效应和反常声光效应两种。 1、入射光和衍射光处于相同的偏振状态,相应的折射率相同,成为正常声光效应。

固体物理实验方法课程作业及答案(仅供参考)

《固体物理实验方法》课程作业 所在院系: 年级专业: 姓 名: 学 号: 完成日期:2012年6月8日 一、X 射线衍射分析 1.原子比为1:1的MgO 晶体,其X 射线衍射谱(XRD )能否观察到以下衍射峰:(111)、(110)、 (001)和(002)。给出推导证明过程。 解:MgO 晶体是面心立方结构,及面心立方晶格结构。而面心立方结构的基元在(0,0,0),(0,1/2,1/2), (1/2,0, 1/2), (1/2,1/2,0)的位置具有全同的原子。其面心立方晶格的结构因子如下: 如果所有的指数123(,,)v v v 都是偶数,则s=4ρ(ρ为原子的形状因子);如果所有的指数123(,,)v v v 都是奇数,则 仍然得到s=4ρ;但是,如果123(,,)v v v 中只有一个整数为偶数,那么上式中将有两个指数项中的指数银子是-i π的 奇数倍,从而s=0。如果在123(,,)v v v 中只有一个整数为奇数,同理可知s=0。因此,对于面心立方晶格,如果整 数123(,,)v v v 不能同时取偶数或奇数,则不能发生反射。所以(111)、(002)可观测到衍射峰。而(110)、(001)不能观测到衍射峰。 2.L10相AuCu 合金点阵为四方晶格(a=b ≠c ,α=β=γ=90°)。下表为L10相AuCu 合金X 射线衍射峰位置。计算L10 相AuCu 合金的晶格参数。 解:从表格可以看出(111)峰的位置40.489θ=?,(110)峰的位置31.935θ=? 由布拉格定律:2sin d n θλ= 则有2sin31.935 1.54056d A ??= 得21.4562246, 2.0594126d A a b T d A ??===?= ,2sin 40.489 1.54056d A ? ?= 得 1.18632d A ?= 从而得出 2.0455678c A ?= 二、成分及形貌分析 1.电子与物质发生相互作用能产生哪些物理信号?解释各种物理信号产生的机理;基于这些 物理信号能发展出一系列分析方法,请论述这些分析方法的原理和应用。 电子束通过物质时发生的散射、电离、轫致辐射和吸收等过程。β射线同物质的相互作用 作为特例也属于这个范畴。具体原理及应用如下: (1)散射 电子和物质的原子核发生弹性散射时电子的运动方向受到偏折,根据所穿过物质

大学物理声光效应讲义

声光效应实验 早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。声光效应已广泛应用于声学、光学和光电子学。近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。 一.实验目的 1、了解声光相互作用原理。 2、观察布拉格衍射现象。 3、研究声光调制和声光偏转的特性。 二.实验仪器 声光晶体、功率信号源、频率计、半导体激光器、示波器、CCD。 三.实验原理 若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。这种由于外力作用而引起折射率变化的现象称为弹光效应。弹光效应存在于一切物态。如上所述,当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化。这部分受扰动的介质等效为一个“相位光栅”。其光栅常数就是声波波长λs,这种光栅称为超声光栅。声波在介质中传播时,有行波和驻波两种形式。特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅的栅面是驻立不动的。 当超声波传播到声光晶体时,它由一端传向另一端。到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。由于机械波的压缩和伸长作用,则在声光晶体中形成行波式的疏密相间的构造,也就是行波形式的光栅。 当超声波传播到声光晶体时,它由一端传向另一端。如果遇见反声物质,超声波将被反声物质反射,在返回途中和入射波叠加而在声光晶体中形成驻波。由于机械波压缩伸长作用,在声光晶体中形成驻波形式的疏密相同的构造,也就是驻波形式的光栅。声光效应是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象是光波与介质中声波相互作用的结果。 1、布拉格声光调制 我们设计的这套实验系统主要是用来完成利用布拉格衍射进行声光调制的各项实验,所以下面着重讲一下布拉格声光调制。 如果声波频率较高,且声光作用长度较大,此时的声扰动介质也不再等效于平面位相光栅,而形成了立体位相光栅。这时,相对声波方向以一定角度入射的光波,其衍射光在介质内相互干涉,使高级衍射光相互抵消,只出现0级和 1级的衍射光,这就是布拉格声光衍射,如图1所示,这种衍射形式效率较高,有利于制成各种实用器件。

实验四 晶体声光效应实验

实验四 晶体声光效应实验 一、引言 当光波通过受到超声波扰动的介质时会发生衍射现象,这种现象被称为声光效应,它是光波与介质中声波相互作用的结果。声光效应可以用于控制激光束的频率、方向和强度,利用声光效应制成的各种声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信息处理和集成光通信技术等方面有着重要的应用。 二、实验目的 1. 掌握声光效应的原理和实验规律; 2. 观察喇曼-奈斯(Ranman —Nath )衍射的实验条件和特点; 3. 利用声光效应测量声波在介质中的传播速度; 4. 测量声光器件的衍射效率和带宽; 5. 了解声光效应在新技术中的应用; 三、实验原理 当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,并且导致介质的折射率也发生相应的变化。当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播的介质如同一个相位光栅。根据超声波频率的高低或声光相互作用长度的长短,可以将光与弹性声波作用产生的衍射分为两种类型,即喇曼—奈斯型衍射和布拉格型衍射。 喇曼-奈斯衍射 当超声波频率较低、声光相互作用距离较小时,即 02 2λλs l ≤ 平面光波沿z 轴入射,就相当于通过一个相位光栅, 将产生喇曼-奈斯衍射,如图2所示。 根据相关理论可以证明以下结论: (1)各级衍射角θ满足下列关系: 0sin s m λθλ=? (1) 其中,λ0为入射激光波长,λs 为超声波波长,m=0, ±1,±2,±3,…。 (2)各级衍射光强与入射光强之比为:

2()m m I J I ν=入 (2) 其中,()m J ν为m 阶贝塞尔函数,0 2L πνμλ=。因为22()()m m J J νν-=,所以零级极值两侧的光强是对称分布的。 (3)各级衍射光的频率由于产生了多普勒频移而各不相同,各级衍射光的频率为0s m ωω±。 2.布拉格衍射 当超声波频率较高,声光相互作用距离较大,满足 2 02s l λλ≥ 并且光束与声波波面间保持一定的角度入 射时,将产生布拉格衍射。这种衍射与晶体对X 光的布喇格衍射很类似,故称为布喇格衍射。 能产生这种衍射的光束入射角称为布喇格角。 此时有超声波存在的介质起体积光栅的作用。 布拉格衍射的特点是: (1)理想情况下,只出现零级和+1级衍射或-1级衍射。 (2)若参数合适、超声功率足够大,入射光功率几乎可以全部转换到+1级或-1级上。 (3)产生布拉格衍射的入射角θB 满足关系: 0sin 2B s λθλ= (3) (4)1级衍射光强与入射光强之比为: 2112sin [()]2I nL I λπλ =? (4) 3.声光调制:无论是喇曼-奈斯衍射还是布拉格衍射,都可以通过改变超声波的强度而改变衍射光的强度。所以可以把调制信号加在超声波功率放大级,以达到光强调制的目的。 4.声光偏转:无论是喇曼-奈斯衍射还是布拉格衍射,都可以通过改变超声波的频率而改变衍射光的偏转方向。若对超声频率固定的超声发生器实现“开关”功能,在“开”时由于产生衍射,+1级或-1级衍射光存在,在“关”时,衍射光不存在,就可实现“声光开关”功能。一般“声光开关”运用的是布拉格衍射。 四、实验仪器 LOSG-Ⅱ型晶体声光效应实验系统的组成如图1所示,主要包括光路部分和声光效应实验仪两部分。光路部分包括He-Ne 激光器,激光器电源, 声光器件,

声光效应的研究

实验9 声光效应的研究 声光效应是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象是光波与介质中声波相互作用的结果。声光效应就是研究光通过声波扰动的介质时发生散射或衍射的现象。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播,当激光通过此介质时,就会发生光的衍射,即声光衍射。衍射光的强度、频率、方向等都随着超声波场而变化。其中衍射光偏转角随超声波频率的变化现象称为声光偏转;衍射光强度随超声波功率而变化的现象称为声光调制。 早在本世纪30年代就开始了声光衍射的实验研究。60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论和应用研究的迅速发展。声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。 实验目的 1.了解声光相互作用的原理。 2.了解喇曼-纳斯衍射和布喇格衍射的实验条件和特点。 3.通过对声光器件衍射效率、中心频率和带宽的测量加深对其概念的理解 4.测量声光偏转和声光调制曲线。 实验原理 当超声波在介质中传播时,将引起介质的弹性应变作时间和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。当光束通过有 超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播的介质如同一个相位光栅。 声光效应有正常声光效应和反常声光效应之分。在各项同性介质中,声-光相互作用不导致入射光偏振状态的变化,产生正常声光效应。在各项异性介质中,声-光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。反常声光效应是制造高性能声光偏转器和可调滤波器的基础。正常声光效应可用喇曼-纳斯的光 栅假设作出解释,而反常声光效应不能用光栅假设作出说明。在非线性光学中,利用参量相互作用理论,可建立起声-光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。本实验只涉及到各项同性介质中的正常声光效应。 设声光介质中的超声行波是沿y 方向传播的平面纵波,其角频率为 s w ,波长为s λ波矢为s k 。入射光为沿x 方向传播的平面波,其角频率为w ,在介质中的波长为λ,波矢为k 。 图6-9-1 声光衍射

固体物理:VSM实验报告

固体物理实验报告:振动样品磁强计 一、VSM 原理 1.简介 振动样品磁强计(Vibrating Sample Magnetometer )是基于电磁感应原理制成的仪器。采用尺寸较小的样品,它在磁场中被磁化后可近似看作一个磁矩为m 的磁偶极子,使样品在某一方向做小幅振动,用一组互相串联反接的探测线圈在样品周围感应这磁偶极子场的变化,可以得到探测线圈的感应电动势直接正比于样品的磁化强度。 2.基本原理 由于测量线圈中的感应信号来源于被磁化的振动样品在周围产生的周期性变化磁场,那么位于坐标原点O 的磁偶极子在空间任意一点P 产生的磁场可表示为: 式中矢量→ → → → ++=k z j y i x r ,其中→ i 、→j 、→ k 分别为x 、y 、z 的单位矢量。若在距偶极子 处的P 点放置一匝面积为S 的小测量线圈,则通过线圈的磁通量为: 若偶极子沿着z 轴做简谐振动t j ae ω时,(a 是振幅,ω为振动角频率),有: 则偶极子磁场在N 匝线圈中激起的感应电动势为: 因样品沿着x 方向磁化,且线圈截面较小时,可用线圈中间的性质代表每匝线圈的平均性质,若线圈尺寸和位置固定不变,上式中积分式的数值是常数,故: 振幅E m 与样品磁矩成正比。因而线圈输出电压的有效值V x 正比于样品的磁矩测量方程: ))(3( 41)(53 → → →→→ → ???=r r r M r M r H m m π→ →→→?=?=∫∫S d r H S d B S S )(0μ φ→ → →→ +++=k ae z j y i x r t j )( ω∑∫=→ → ????=??? =N i S S d t t r H t t e 1 0),()(μ φt E t e m ωcos )( =

固体物理实验报告

固体物理实验报告 院系:电光院 班级:09042402 组员:阴盼强(0916120146) 胡雨彤(0904240220) 侯世磊(0904240219)

实验一激光测定硅单晶晶轴 1、实验目的 1.1、掌握激光测定硅单晶晶轴的原理 1.2、学会使用激光定向仪测定硅单晶<111>、<110>、<100>晶轴 1.3、学会标定观察到的反射光斑所对应的晶面 2、实验原理 选用适当的预处理工艺其主要有腐蚀法和解理法两种,使预测单晶断面上暴露出某种与结晶学结构有关的表面结构(腐蚀坑或解理面),当一细的平行光束投射在此端面上时,其反射光即按照面上与结晶学构造有关的表面结构,在光屏上显示出特征光图。由于立方晶系的低指数晶轴均有严格的轴对称性,因而围绕这些晶轴的腐蚀坑或解理面及其反射出来的特征光图也具有严格的轴对称性。 下面分别叙述用腐蚀法和解理法在单晶端面上获得的表面结构与特征光图的情况。 2.1、腐蚀法 在进行腐蚀之前应先将晶体端面用 80#金刚沙或用氧化铝粉在平板玻璃上湿磨,湿端面均匀打毛,洗净后按指定的工艺条件进行腐蚀。 经过腐蚀后的硅单晶,{111}或{100}、{110}截面上会出现许多腐蚀坑,腐蚀坑底面平行于这些截面,而其侧面则湿另一些具有特定结晶学指数的晶面族,按轴对称的规律微绕着腐蚀坑的底面,构成各种具有特殊对称性的构造。腐蚀坑的限度约为 10um 的数量级,而激光束的直径约为 1mm,因而同一束激光可以照射到许多腐蚀坑。腐蚀坑的形状不尽完整,在表面上的分布也不规则,但光反射到相同的方向。图 1.5 是{111}面的典型腐蚀坑,有三个{221}侧面和一个{111}底面构成。当一束平行激光束照射在该腐蚀坑上时,即发生四个方向的反射。如将该晶体置于图 1.6 所示的测量系统中,调整其方位,使被测晶轴的方向与入 - 1 -

晶体声光调制实验报告

竭诚为您提供优质文档/双击可除晶体声光调制实验报告 篇一:实验十三晶体声光效应与声光调制实验 实验十三晶体声光效应与声光调制实验 当光波通过受到超声波扰动的介质时会发生衍射现象,这种现象被称为声光效应,它是光波与介质中声波相互作用的结果。声光效应可以用于控制激光束的频率、方向和强度,利用声光效应制成的各种声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信息处理和集成光通信技术等方面有着重要的应用。 一、实验目的 1.掌握声光效应的原理和实验规律; 2.观察喇曼-奈斯(Ranman—nath)衍射的实验条件和特点; 3.利用声光效应测量声波在介质中的传播速度; 4.测量声光器件的衍射效率和带宽; 5.了解声光效应在新技术中的应用; 二、实验原理

当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,并且导致介质的折射率也发生相应的变化。当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播的介质如同一个相位光栅。根据超声波频率的高低或声光相互作用长度的长短,可以将光与弹性声波作用产生的衍射分为两种类型,即喇曼—奈斯型衍射和布拉格型衍射。 1.喇曼-奈斯衍射 当超声波频率较低、声光相互作用距离较小时,即 ?2 l?s20 平面光波沿z轴入射,就相当于通过一个相位光 栅,将产生喇曼-奈斯衍射,如图2所示。 根据相关理论可以证明以下结论: (1)各级衍射角θ满足下列关系: sin??m??0(1) s 其中,λ0为入射激光波长,λs为超声波波长,m=0,±1,±2,±3,?。 (2)各级衍射光强与入射光强之比为: Im2?Jm(?)(2)I入 其中,Jm(?)为m阶贝塞尔函数,??

固体物理概念答案

固体物理概念答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数;

配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ= 几何结构因子:对于一定的入射方向,晶胞所有原子或离子沿某一方向的散射波动幅度与一个电子的散射波的幅度之比 6. 晶体的结合能,内聚能,内能,弹性模量。 内聚能:与分离成各个孤立原子的情况相比,各个原子聚合起来形成晶体后,系统的能量将下降c U ,常把c U 称为晶体的内聚能 结合能:是把一个粒子从粒子系统中分离出来或者是将粒子系统全部分离开来所需要的能量 内能:是晶体内部一切微观粒子的一切运动形式所具有的能量总和

声光效应的研究

声光效应的研究 光通过某一受到超声波扰动的介质时,会发生衍射现象,这种现象称为声光效应。利用声光效应可以制成的声光器件,如声光调制器、声光偏转器和谐调滤光器等。声光效应还可用于控制激光束的频率、方向和强度等方面。在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。 一、 实验目的 1. 了解声光效应的原理; 2. 测量声光器件的衍射效率和带宽及对光偏转的研究; 3. 利用声光效应测量声波在介质中的传播速度。 二、 实验仪器 He-Ne 激光电源,声光器件,CCD 光强分布测量仪,高频功率信号源,示波器,频率 计。 三、实验原理 当超声波在介质中传播时,将引起介质的弹性应变,这种应变在时间上和空间上是周期性的变化,并且导致介质的折射率也发生相应的变化。当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播的介质如同一个相位光栅。 光被弹性声波衍射有二种类型,当超声波频率较高时,产生布拉格(Bragg )型衍射;当超声波频率较低时,产生喇曼―奈斯(Raman-Nath )型衍射。 Bragg 衍射相当于体光栅情况,而Raman-Nath 衍射相当于薄光栅情况。两种光栅情况如图1所示。由于光波速度远大于声波速度约105倍,所以在光波通过介质的时间内,介质 在空间上的周期变化可看成是固定的。对于Bragg 衍射,当声光的距离满足λλ22s L >, 而且入射光束相对于超声波波面以θ角斜入射时,入射光满足Bragg 条件 )1(sin 2n s λ θλ= 式中λ为光波的波长,s λ为声波的波长,固体介质的折射率为n 。Bragg 衍射只存在1级的衍射光。当声波为声行波时,只有+1级或-1级衍射光,如图2所示。当声波为声驻波时,±1级衍射光同时存在,而且衍射效率极高。只要超声功率足够高,Bragg 衍射效率可达到100%。所以实用的声光器件一般都采用Bragg 衍射。而对于Raman-Nath 衍射,满足条件 )2(sin s m λλ θ±= 时出现衍射极大。式中m 为衍射级数。 Raman-Nath 衍射效率低于Bragg 衍射效率。其中1级衍射光的衍射效率01I I 最大不超过35%,但这种衍射没有Bragg 条件的限制,所以对入射角要求不严格,调整方便。

相关文档