文档库 最新最全的文档下载
当前位置:文档库 › N型半导体是在本征半导体中加入以下物质后形成的

N型半导体是在本征半导体中加入以下物质后形成的

N型半导体是在本征半导体中加入以下物质后形成的
N型半导体是在本征半导体中加入以下物质后形成的

A B

C D

型半导体是在本征半导体中加入以下物质后形成的(

A B

C D

、下列物质是半导体材料的是(

A B

C D

型半导体中的多数载流子是(

A B

C D

、在温度升高或光照条件下,少数价电子获得足够激发能,产生(

A B

C D

正确错误

、无论是P型还是型半导体,它们整个晶体仍是中性的,对外不显示电性。

正确错误型半导体——掺入五价杂质元素的半导体。

正确错误、在半导体中,有空穴和自由电子两种载流子导电。

正确错误结导电的方向是从

正确错误

PN型半导体的形成及原理

P N型半导体的形成及 原理 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

半导体的导电原理 如图所示,不含杂质的半导体称为本征半导体。半导体硅和锗的最外层电子有四个,故而称它为四价元素,每一个外层电子称为价电子。为了处于稳定状态,单晶硅和单晶锗中的每个原子的四个价电子都要和相邻原子的价电子配对,形成所谓的共价键。但是共价键中的电子并不像绝缘体中的电子结合的那样紧,由于能量激发(如光照、温度变化),一些电子就能挣脱原有的束缚而成为自由电子。与此同时,某处共价键中失去一个电子,相应地就留下一个空位,称为空穴。自由电子和空穴总是成对出现的。 如果在本征半导体两端加以电压,则会有两种数量相等的运载电荷的粒子(称作载流子)产生电流。一种是由自由电子向正极移动,形成的电子电流;另一种是空穴向负极移动形成的空穴电流,如下图所示。空穴电流的形成好像电影场中,前排座位空着,由后排人逐个往前填补人,人向前运动,空位向后运动一样(空穴本身并不会移动,因后面的自由电子与前面的空穴结合,而后面又因缺少了自由电子所以又产生了新的空穴,所以看起来像是空穴也在移动)因此,在半导体中同时存在着电子导电和空穴导电,但由于这两种载流子数量很

少,所以本征半导体导电能力远不如金属中的自由电子。 P型半导体和N型半导体的形成 如果在本征半导体中掺入少量的杂质,半导体的导电性能将会大大的改善。在纯净的半导体硅(Si)中掺入少量的五价磷(P)或三价硼(B)元素,就构成了电子型半导体(简称N型半导体)和空穴型半 导体(简称P型半导体)。 如图所示,在纯净半导体中掺入原子外层有三个电子的硼元素。硼原子与相邻硅原子形成共价键时,因缺少一个电子而多一个空穴。每掺入一个硼原子就有一个空穴,这种半导体称为P型半导体。在P型半导体中,空穴占多数,自由电子占少数,空穴是多数载流子。同理在

P、N型半导体的形成及原理

半导体的导电原理 如图所示,不含杂质的半导体称为本征半导体。半导体硅和锗的最外层电子有四个,故而称它为四价元素,每一个外层电子称为价电子。为了处于稳定状态,单晶硅和单晶锗中的每个原子的四个价电子都要和相邻原子的价电子配对,形成所谓的共价键。但是共价键中的电子并不像绝缘体中的电子结合的那样紧,由于能量激发(如光照、温度变化),一些电子就能挣脱原有的束缚而成为自由电子。与此同时,某处共价键中失去一个电子,相应地就留下一个空位,称为空穴。自由电子和空穴总是成对出现的。 如果在本征半导体两端加以电压,则会有两种数量相等的运载电荷的粒子(称作载流子)产生电流。一种是由自由电子向正极移动,形成的电子电流;另一种是空穴向负极移动形成的空穴电流,如下图所示。空穴电流的形成好像电影场中,前排座位空着,由后排人逐个往前填补人,人向前运动,空位向

后运动一样(空穴本身并不会移动,因后面的自由电子与前面的空穴结合,而后面又因缺少了自由电子所以又产生了新的空穴,所以看起来像是空穴也在移动)因此,在半导体中同时存在着电子导电和空穴导电,但由于这两种载流子数量很少,所以本征半导体导电能力远不如金属中的自由电子。 P型半导体和N型半导体的形成 如果在本征半导体中掺入少量的杂质,半导体的导电性能将会大大的改善。在纯净的半导体硅(Si)中掺入少量的五价磷(P)或三价硼(B)元素,就构成了电子型半导体(简称N型半导体)和空穴型半导体(简称P型半导体)。

如图所示,在纯净半导体中掺入原子外层有三个电子的硼元素。硼原子与相邻硅原子形成共价键时,因缺少一个电子而多一个空穴。每掺入一个硼原子就有一个空穴,这种半导体称为P型半导体。在P型半导体中,空穴占多数,自由电子占少数,空穴是多数载流子。同理在纯净的半导体硅中掺入原子外层有五个电子的磷元素,就形成了N型半导体。

第2章半导体器件习题答案

第2章习题解答 1. 有人说,因为在PN 结中存在内建电场,所以将一个二极管的两端短路,在短路线中 将由于此电场的存在而流过电流。此说是否正确?为什么? 答:此种说法不正确,将一个二极管的两端短路,PN 结外加电压为零,当环境条件稳定 时,多子扩散与少子漂移达到动态平衡,PN 结中扩散电流和漂移电流大小相等,方向相反,流过PN 结的净电流为零。 2. 假设下图中二极管均为理想二极管,试画出v i ~ v o 的转移特性曲线。 +V CC CC v i v o CC CC v v o (a) (b) 解:对图(a )所示电路,定义节点A 、B 如下所示: +V CC CC v i v o 当i v 小于CC V 、大于CC V -时,1D 、2D 都截止。输出o v 等于零; 当i v 大于CC V 时,节点A 的电位开始大于零,2D 导通,1D 截止; 输出3 2/2CC i CC CC i o V v R R R V R R V v v -=+-+= 当i v 小于CC V -时,节点B 的电位开始小于零,1D 导通,2D 截止;

输出3 2/2CC i i i CC o V v R R R v R R v V v +=++-= 图(b )所示电路是一个双向限幅电路,输出正向限幅电压为:L L CC R R R V +,输出负向限幅电压为:L L CC R R R V +- 当L L CC i R R R V v +≤时,输入与输出相同,当L L CC i R R R V v +>时,输出限幅在L L CC R R R V +-和 L L CC R R R V + 两个电平上。 3. 下图是一种二极管整流电路,称为全波整流电路。其中v 1 = v 2。试分析它的工作原理, 画出输出电压的波形并计算输出电压的平均值。 解:在输入信号的正半周,D 1导通、D 2截止,在输入信号的负半周, D 2导通、D 1截止, 输入信号与输出的关系为:

N型与P型半导体

N型与P型半导体 什么是N型半导体,什么是P型半导体? N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。 在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。 P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。 掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。 n型半导体就是在单晶硅中掺入5族元素杂质,多子为电子, p型半导体是掺入3族杂质,多子为空穴。 更深入的理解是通过改变费米能级使得自由电子或空穴的占有率提升,从而改变半导体导电性能。 怎么使N型半导体变成P型半导体?什么条件下可以使N型半导体变成P型半导体? N型半导体就是导电载流子是电子,P型半导体就是导电载流子是空穴。N型半导体中之所以是电子导电是因为其在本征半导体基础上进行了施主掺杂(例如在本征Si中掺入5价的磷元素)而P型半导体中之所以是空穴导电是因为其在本征半导体基础上进行了授主掺杂(例如在本征Si中掺入3价的硼元素)Si为4价所以假设要想把磷掺杂量为X的N 型半导体转为P型当然就是在此N型半导体中掺入大于X量的磷(当然具体掺杂量与工艺及材料有关)半导体的掺杂等工艺要在超净间中进行,掺杂是半导体工艺中的一步,主要的掺杂方法有离子注入和热扩散 半导体材料中形成pn结,是不是一定要先有p型半导体跟n型半导体? P型硅中是怎么形成pn结的?求解 是的。P型半导体是在单晶硅(锗)中参入微量三价元素,如的硼、铟、镓或铝等,就变成以空穴导电为主的半导体,即P型半导体。在P型半导体中,空穴(带正电)叫多数载流子;电子(带负电)叫少数载流子。如果在硅或锗等半导体材料中加入微量的磷、锑、砷等五价元素,就变成以电子导电为主的半导体,即N型半导体。在N型半导体中,电子(带负电)叫多数载流子;空穴(带正电)叫少数载流子。pn结就是把这两种半导体烧结在一起,由电子

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用2T V V i np n e =导出)(n n x p 表达式。给 出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =??? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=-

半导体物理学答案 第二章

第五章 金属-半导体接触 1、 用不同波长的光照射置于真空中的金、银、铜三种金属和施主浓度皆为1×1016cm -3的锗、硅、砷化镓三种半导体的清洁表面,欲使其向真空发射电子,求各自的激发光临界波长。计算时需要的相关参数见表5-1和5-2(下同)。 解:根据能量与波长关系:λ γc h h E ==可得E hc = λ 金、银、铜三种金属的功函数分别为5.20eV 4.42eV 4.59eV 施主浓度皆为1×1016cm -3的锗、硅、砷化镓三种半导体的功函数分别为 4.31eV 4.25eV 4.17eV 对于金:nm E hc 239106.120.51031062.619 8 34=?????==--λ 对于银:nm E hc 281106.142.41031062.6198 34=?????==--λ 对于铜:nm E hc 270106.159.41031062.619 8 34=?????==--λ 对于锗:nm E hc 288106.131.41031062.619 8 34=?????==--λ 对于硅:nm E hc 292106.125.41031062.6198 34=?????==--λ 对于砷化镓:nm E hc 29810 6.11 7.41031062.619 8 34=?????==--λ 2、 计算N D = 5×1016cm -3 的n-Si 室温下的功函数。将其分别与铝、钨、铂三种金属的清洁 表面相接触,若不考虑表面态的影响,形成的是阻挡层还是反阻挡层?分别画出能带图说明之。 解:设室温下杂质全部电离,则其费米能级由n 0=N D =5?1015cm -3求得: 17 C C C 19 C 10ln 0.026ln 0.15 eV 2.810 D F N E E kT E E N =+=+=-? 其功函数即为:C () 4.050.15 4.20V S F W E E e χ=+-=+= 若将其与功函数较小的Al (W Al =4.18eV )接触,则形成反阻挡层,若将其与功函数 较大的Au (W Au =5.2eV )和Mo (W Mo =4.21eV )则形成阻挡层。 3、 用N D = 3×1015cm -3的 n-Si 与金属Cr 形成理想的肖特基势垒接触。求300K 下该接触的肖特基势垒高度及接触电势差,以及在5V 反偏压下的最大电场强度及势垒比电容。 解:室温下杂志强电离,费米能级为)ln( 0c D c F N N T k E E +=

半导体器件物理第二章答案

2-1.P N + 结空间电荷区边界分别为p x -与n x ,利用2T V V i np n e =导出)(n n x p 表达式。给出N 区空穴为小注入与大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =? ?? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=- 所以n n d n n D dx x ψμ?=?,又因为n T n D V μ=(爱因斯坦关系)

型和N型半导体

P型和N型半导体 如果杂质是周期表中第Ⅲ族中的一种元素──受主杂质,例如硼或铟,它们的价电子带都只有三个电子,并且它们传导带的最小能级低于第Ⅳ族元素的传导电子能级。因此电子能够更容易地由锗或硅的价电子带跃迁到硼或铟的传导带。在这个过程中,由于失去了电子而产生了一个正离子,因为这对于其它电子而言是个“空位”,所以通常把它叫做“空穴”,而这种材料被称为“P”型半导体。在这样的材料中传导主要是由带正电的空穴引起的,因而在这种情况下电子是“少数载流子”。如图1所示。 N型半导体 如果掺入的杂质是周期表第V族中的某种元素──施主杂质,例如砷或锑,这些元素的价电子带都有五个电子,然而,杂质元素价电子的最大能级大于锗(或硅)的最大能级,因此电子很容易从这个能级进入第Ⅳ族元素的传导带。这些材料就变成了半导体。因为传导性是由于有多余的负离子引起的,所以称为“N”型。也有些材料的传导性是由于材料中有多余的正离子,但主要还是由于有大量的电子引起的,因而(在N型材料中)电子被称

为“多数载流子”。如图2所示。

P型和N型半导体的应用 由P型半导体或N型半导体单体构成的产品有热敏电阻器、压敏电阻器等电阻体。由P型与N型半导体结合而构成的单结半导体元件,最常见的是二极管;此外,FET也是单结元件。PNP或NPN 以及形成双结的半导体就是晶体管。 (1)用于LED LED在20世纪60年代诞生后就被认定是荧光灯管、灯泡等照明设备的终结者,甚至有人认为LED将会开创一个新的照明时代,最终出现在所有需要照明的场合。LED的工作原理和我们常见的白炽灯、荧光灯完全不同,LED从本质上来说是一种半导体器件。LED的核心部分是由P型半导体和N型半导体组成的晶片,在P 型半导体和N型半导体的交界面就会出现一个具有特殊导电性能的薄层,也就是常说的PN结(PN Junction Transistors)。PN 结可以对P型半导体和N型半导体中多数载流子的扩散运动产生阻力,当对PN结施加正向电压时,电流从LED的阳极流向阴极,

(完整word版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。

2章 常用半导体器件及应用题解

第二章常用半导体器件及应用 一、习题 2.1填空 1. 半导材料有三个特性,它们是、、。 2. 在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。 3. 二极管的主要特性是。 4.在常温下,硅二极管的门限电压约为V,导通后的正向压降约为V;锗二极管的门限电压约为V,导通后的正向压降约为V。 5.在常温下,发光二极管的正向导通电压约为V,考虑发光二极管的发光亮度和寿命,其工作电流一般控制在mA。 6. 晶体管(BJT)是一种控制器件;场效应管是一种控制器件。 7. 晶体管按结构分有和两种类型。 8. 晶体管按材料分有和两种类型。 9. NPN和PNP晶体管的主要区别是电压和电流的不同。 10. 晶体管实现放大作用的外部条件是发射结、集电结。 11. 从晶体管的输出特性曲线来看,它的三个工作区域分别是、、。 12. 晶体管放大电路有三种组态、、。 13. 有两个放大倍数相同,输入电阻和输出电阻不同的放大电路A和B,对同一个具有内阻的信号源电压进行放大。在负载开路的条件下,测得A放大器的输出电压小,这说明A 的输入电阻。 14.三极管的交流等效输入电阻随变化。 15.共集电极放大电路的输入电阻很,输出电阻很。 16.射极跟随器的三个主要特点是、、。 17.放大器的静态工作点由它的决定,而放大器的增益、输入电阻、输出电阻等由它的决定。 18.图解法适合于,而等效电路法则适合于。 19.在单级共射极放大电路中,如果输入为正弦波,用示波器观察u o和u i的波形的相位关系为;当为共集电极电路时,则u o和u i的相位关系为。 20. 在NPN共射极放大电路中,其输出电压的波形底部被削掉,称为失真,原因是Q点(太高或太低),若输出电压的波形顶部被削掉,称为失真,原因是Q 点(太高或太低)。如果其输出电压的波形顶部底都被削掉,原因是。 21.某三极管处于放大状态,三个电极A、B、C的电位分别为9V、2V和1.4V,则该三极管属于型,由半导体材料制成。 22.在题图P2.1电路中,某一元件参数变化时,将U CEQ的变化情况(增加;减小;不变)填入相应的空格内。 (1) R b增加时,U CEQ将。 (2) R c减小时,U CEQ将。 (3) R c增加时,U CEQ将。 (4) R s增加时,U CEQ将。 (5) β增加时(换管子),U CEQ将。

1、P型半导体和N型半导体的形成

P型半导体和N型半导体的形成 半导体是由硅、锗等物质组成的导电性介于导体和绝缘体之间的一类物质,向半导体中掺入杂质或改变光照、温度等可改变其导电能力。 半导体的导电原理 不含杂质的半导体称为本征半导体。半导体硅和锗的最外层电子有四个,故而称它为四价元素,每一个外层电子称为价电子。为了处于稳定状态,单晶硅和单晶锗中的每个原子的四个价电子都要和相邻原子的价电子配对,形成所谓的共价键,如上图所示。 但是共价键中的电子并不像绝缘体中的电子结合的那样紧,由于能量激发(如光照、温度变化),一些电子就能挣脱原有的束缚而成为自由电子。与此同时,某处共价键中失去一个电子,相应地就留下一个空位,称为空穴。自由电子和空穴总是成对出现的。 如果在本征半导体两端加以电压,则会有两种数量相等的运载电荷的粒子(称作载流子)产生电流。一种是由自由电子向正极移动,形成的电子电流;另一种是空穴向负极移动 形成的空穴电流,如左图所示。空穴电流的形成

好像电影场中,前排座位空着,由后排人逐个往前填补人,人向前运动,空位向后运动一样。因此,在半导体中同时存在着电子导电和空穴导电,但由于这两种载流子数量很少,所以本征半导体导电能力远不如金属中的自由电子。 P型半导体和N型半导体的形成 如果在本征半导体中掺入少量的杂质,半导体的导电性能将会大大的改善。在纯净的半导体硅(Si)中掺入少量的五价磷(P)或三价硼(B)元素,就构成了电子型半导体(简称N型半导体)和空穴型半导体(简称P型半导体)。 在纯净半导体中掺入原子外层有三个电子的硼元素。硼原子与相邻硅原子形成共价键时,因缺少一个电子耳多一个空穴。如上图所示每掺入一个硼原子就有一个空穴,这种半导体称为P型半导体。在P型半导体中,空穴占多数,自由电子占少数,空穴是多数载流子。 同理在纯净的半导体硅中掺入原子外层有五个电子的磷元素,就形成了N型半导体。

半导体物理学(刘恩科第七版)课后习题解第二章习题及答案

第二章习题 1. 实际半导体与理想半导体间的主要区别是什么? 答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。 (2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。 (3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。 2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n 型半导体。 As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。这个过程叫做施主杂质的电离过程。能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。 3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p 型半导体。 Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果

是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。 4. 以Si在GaAs中的行为为例,说明IV族杂质在III-V族化合物中可能 出现的双性行为。 Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到一定程度时趋于饱和。硅先取代Ga原子起施主作用,随着硅浓度的增加,硅取代As原子起受主作用。 5. 举例说明杂质补偿作用。 当半导体中同时存在施主和受主杂质时, 若(1) N D>>N A 因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A个受主能级上,还有N D-N A个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= N D-N A。即则有效受主浓度为N Aeff≈ N D-N A (2)N A>>N D 施主能级上的全部电子跃迁到受主能级上,受主能级上还有N A-N D 个空穴,它们可接受价带上的N A-N D个电子,在价带中形成的空穴浓度p= N A-N D. 即有效受主浓度为N Aeff≈ N A-N D (3)N A N D时,

《半导体器件》习题及参考答案模板

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm ,求零偏压下的总耗尽层宽度、内建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp =τn =10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 + = I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性

习题与答案(第2章 半导体器件)(修改)

习题 2-1.填空 (1)N型半导体是在本征半导体中掺入;P型半导体是在本征半导体中掺入。 (2)当温度升高时,二极管的反向饱和电流会。 (3)PN结的结电容包括和。 (4)晶体管的三个工作区分别是、和。在放大电路中,晶体管通常工作在区。 (5)结型场效应管工作在恒流区时,其栅-源间所加电压应该。(正偏、反偏) 答案:(1)五价元素;三价元素;(2)增大;(3)势垒电容和扩散电容;(4)放大区、截止区和饱和区;放大区;(5)反偏。 2-2.判断下列说法正确与否。 (1)本征半导体温度升高后,两种载流子浓度仍然相等。() (2)P型半导体带正电,N型半导体带负电。() (3)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。() (4)只要在稳压管两端加反向电压就能起稳压作用。() (5)晶体管工作在饱和状态时发射极没有电流流过。() (6)在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。()(7)PN结在无光照、无外加电压时,结电流为零。() (8)若耗尽型N沟道MOS场效应管的U GS大于零,则其输入电阻会明显减小。()答案:(1)对;温度升高后,载流子浓度会增加,但是对于本征半导体来讲,电子和空穴的数量始终是相等的。 (2)错;对于P型半导体或N型半导体在没有形成PN结时,处于电中性的状态。 (3)对;结型场效应管在栅源之间没有绝缘层,所以外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。 (4)错;稳压管要进入稳压工作状态两端加反向电压必须达到稳压值。 (5)错;晶体管工作在饱和状态和放大状态时发射极有电流流过,只有在截止状态时没有电流流过。 (6)对;N型半导体中掺入足够量的三价元素,不但可复合原先掺入的五价元素,而且可使空穴成为多数载流子,从而形成P型半导体。 (7)对;PN结在无光照、无外加电压时,处于动态平衡状态,扩散电流和漂移电流相等。 (8)错。绝缘栅场效应管因为栅源间和栅漏之间有SiO2绝缘层而使栅源间电阻非常大。因此耗尽型N沟道MOS场效应管的U GS大于零,有绝缘层故而不影响输入电阻。 2-3.为什么说在使用二极管时,应特别注意不要超过最大整流电流和最高反向工作电压? 答:当正向电流超过最大整流电流会使二极管结温过高,性能变坏,甚至会烧毁二极管;当反向工作电压超过最高反向工作电压时,会发生击穿。 2-4.当直流电源电压波动或外接负载电阻R L变动时,稳压管稳压电路的输出电压能

N型与P型半导体教程文件

N型与P型半导体

N型与P型半导体 什么是N型半导体,什么是P型半导体? N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。 在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。 P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。 掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。 n型半导体就是在单晶硅中掺入5族元素杂质,多子为电子, p型半导体是掺入3族杂质,多子为空穴。

更深入的理解是通过改变费米能级使得自由电子或空穴的占有率提升,从而改变半导体导电性能。 怎么使N型半导体变成P型半导体?什么条件下可以使N型半导体变成P型半导体? N型半导体就是导电载流子是电子,P型半导体就是导电载流子是空穴。 N型半导体中之所以是电子导电是因为其在本征半导体基础上进行了施主掺杂(例如在本征Si中掺入5价的磷元素)而P型半导体中之所以是空穴导电是因为其在本征半导体基础上进行了授主掺杂(例如在本征Si中掺入3价的硼元素) Si 为4价所以假设要想把磷掺杂量为X的N型半导体转为P型当然就是在此N 型半导体中掺入大于X量的磷(当然具体掺杂量与工艺及材料有关)半导体的掺杂等工艺要在超净间中进行,掺杂是半导体工艺中的一步,主要的掺杂方法有离子注入和热扩散 半导体材料中形成pn结,是不是一定要先有p型半导体跟n型半导体? P型硅中是怎么形成pn结的?求解 是的。 P型半导体是在单晶硅(锗)中参入微量三价元素,如的硼、铟、镓或铝等,就变成以空穴导电为主的半导体,即P型半导体。在P型半导体中,空穴(带正电)叫多数载流子;电子(带负电)叫少数载流子。如果在硅或锗等半导体材料中加入微量的磷、锑、砷等五价元素,就变成以电子导电为主的半导体,即N型半导体。在N型半导体中,电子(带负电)叫多数载流子;空穴(带正电)叫少数载流子。 pn结就是把这两种半导体烧结在一起,由电子和空穴运动

n型和p型半导体

N型和P型半导体 半导体 分类P型半导体N型半导体无杂质半导体含杂质半导体 种类氮化物半导体氧化物半导体非晶半导体电界型半导体磁性半导体 半导体器件 集成电路微处理器内存晶体管-晶体管逻辑电路互补式金属氧化物半导体 固体物理学 能带结构能带计算第一原理计算导带价带能隙费米能不纯物准位电子空穴施主受主 物性物理学 晶体管双极性晶体管场效应管MOSFET闸流体薄膜晶体管 关连二极管太阳能电池发光二极管 其他 PN结耗尽层欧姆接触肖特基接触MOS接合电子学电路半导体器件制造金属绝缘体 1、特点 半导体中有两种载流子,即价带中的空穴和导带中的电子,以电子导电为主的半导体称之为N型半导体,与之相对的,以空穴导电为主的半导体称为P型半导体。“N”表示负电的意思,取自英文Negative的第一个字母。在这类半导体中,参与导电的(即导电载体) 主要是带负电的电子,这些电子来自半导体中的施主。凡掺有施主杂质或施主数量多于受主的半导体都是N型半导体。例如,含有适量五价元素砷、磷、锑等的锗或硅等半导体。由于N 型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。 2、形成原理 掺杂和缺陷均可造成导带中电子浓度的增高。对于锗、硅类半导体材料,掺杂Ⅴ族元素(磷、砷、锑等),当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主。Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素。某些氧化物半导体,如ZnO、Ta2O5等,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度,这表现为更强的电子导电性。

半导体器件物理(第二版)第二章答案

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用 2T V V i np n e =导出)(n n x p 表达式。给出N 区空穴为 小注入和大注入两种情况下的)(n n x p 表达式。 解:在 n x x =处 ()()??? ??? ???? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =? ?? ? ??-= 而 ()()()000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 202 0=?+?=?+ 200 1T V V n i n n n p n p e n n ???+= ??? T V V 22n n0n i p +n p -n e =0 T V V 2 2n0n0i n -n +n +4n e p = (此为一般结果) 小注入:(0 n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零, 用此方法推导方程

第2章半导体器件习题解答

第二章习题参考答案 2-1 N 型半导体中的多数载流子是电子,P 型半导体中的多数载流子是空穴,能否 说N 型半导体带负电,P 型半导体带正电?为什么? 答 不能。因为不论是N 型半导体还是P 型半导体,虽然它们都有一种载流子占多数,整个晶体仍然不带电。因原子核外层电子和空穴的总带电量总是与原子核电量相等,极性相反,所以不能这样说。 2-2 扩散电流是由什么载流子运动而形成的?漂移电流又是由什么载流子在何种作用下而形成的? 答 扩散电流是由多数载流子运动而形成的;漂移电流是由少数载流子运动形成的。 2-3 把一个PN 结接成图2-42所示的电路,试说明这三种情况下电流表的读数有什 么不同?为什么? a) b) c) 图2-42 题2-3图 答 a )电流表无读数。因为电路中无电源,PN 结本身不导电。 b )电流表读数 R E 。因为PN 结正向导通,结压降近似为零。。 c )电流表读数很小或为零。因为PN 结反向截止,电路不通。 2-4 图2-43a 是输入电压I u 的波形。试画出对应于I u 的输出电压O u ,电 阻R 上电压R u 和二极管V 上电压V u 的波形,并用基尔霍夫电压定律检验各电压之间的关系。二极管的正向压降可忽略不计。 a) b) 图2-43 题2-4图

2 解 题2-4解图 2-5 在图2-44的各电路图中,V 5=E ,V sin 10t u i ω=,二极管的正向 压降可忽略不计,试分别画出输出电压O u 的波形。 a) b) c) d) 图2-44 题2-5图

3 解 a) b) c) d) 题1-5解图 2-6 在图2-45所示的两个电路中,已知V sin 30t u i ω=,二极管的正向压 降可忽略不计,试分别画出输出电压o u 的波形。 a ) b) 图2-45 题2-6图

n型与p型半导体

n -型和p -型半导体 半导体的电子性质是由价带和导带之间的带隙大小决定的(见第2章副篇)。有些物质的带隙具有固定的大小, 这些物质叫本征半导体(intrinsic semiconductor), 许多半导体是所谓的非本征半导体(extrinsic semiconductor, 或外赋半导体), 其带隙的大小是通过小心地加入杂质控制的。加入杂质的过程叫掺杂(doping)。让我们以硅半导体为例, 对掺杂的结果做说明(图 )。 Si 是第IV 族元素, 当用第V 族元素P 掺 杂时, 杂质P 原子的能级恰好处于Si 的导带 的下方。每个P 原子使用其5个价电子中的4 个与相邻的4个Si 原子形成化学键, 热能就 足以将那个“额外”的价电子激发至导带, 留 下一个不能移动的P +正离子。这里的P 原子 叫给体原子(donor atom), 这类半导体的导电 性主要依赖给体原子的电子在导带中的运 动。它们被称作n -型半导体, n 是negative 的 首字母, 指载流子带负电荷。 当用第III 族元素Al 掺杂时, 杂质Al 原子的能级恰好处于Si 的价带的上方。由于每个Al 原子只有3个价电子, 与相邻的3个Si 原子形成电子对键, 与第4个Si 原子只能形成单电子键。然而, 此时的价带电子容易激发至受体能级的一个Al 原子, 形成一个不能移动的Al -负离子, 这里的Al 原子叫受体原子(acceptor atom)。在这种情况下, 价带产生了一个带正电荷的空穴。这类半导体的导电性主要依赖带正电荷的空穴的迁移, 它们被叫作p -型半导体, p 是positive 的首字母。

第二章半导体光子材料

第二章半导体光子材料 .名词解释 固溶体:两种或两种以上的固体材料互溶在一起构成的新型晶体结构,晶体结构中一种位置被两种或两种以上的不同元素(或基团)占据,形成组分完全互溶的新型晶体。在一定结构位置上,其组成的元素的离子或原子互相置换,但不改变整个晶体的结构及对称性。 固溶体分为三种:替代式固溶体,填隙式固溶体和缺陷式固溶体。固溶体的晶格常数也随着固溶体的组分大小而改变。 晶格匹配:两种半导体材料在形成异质结时,由于晶格常数相同,失配度为零,而使界面处晶格完美的结合在一起而不形成悬键,这种状态就是晶格匹配。 晶格失配:两种半导体材料在形成异质结时,由于晶格常数不同,界面处结合的原子会受到因此而产生的应力,也会产生未匹配对的悬键,这种状态就是晶格失配。 应变:晶格常数不同的两种半导体形成的异质结界面会产生应力,晶格常数大的材料的原子受到压缩应力,晶格常数小的材料原子受到拉伸应力,这就使得界面附近的晶格常数不同于各自体材料的晶格常数,从而产生应变。 临界厚度:外延层中刚刚要出现位错时的外延层厚度,小于临界厚度时,外延层不会出现新的位错;大于临界厚度时,外延层肯定出现新的位错。

界面态:两种半导体材料晶格常数的不同在异质结界面处出现悬键,这些悬键会引起界面态。 .试求试求出、 、 、 的带隙宽度和发射波长。 解析: 室温下,分析带隙宽度同组分的关系,可看出禁带宽度g E 随着的变化而变化,且Γ带的带隙随着增大而增大的速率较快。 已知,室温下: 的带隙宽度 :V E e 424.1g =Γ V E L e 708.1g = V E X e 900.1g = 而的带隙宽度: ()()V E e o.45x 0 x 247.1424.1x g <<+=Γ ()()()V E e 1x 0.45 o.45-x 1.147x 247.1424.1x 2 g <<++=Γ() eV x 642.0708.1x g +=L E () eV 0.143x x 125.0900.1x 2g ++=X E 故可知: 对于而言,带隙宽度为: ()eV 1.6110.15247.1424.10.15g =?+=ΓE

相关文档
相关文档 最新文档