文档库 最新最全的文档下载
当前位置:文档库 › 晶闸管的主要参数

晶闸管的主要参数

晶闸管的主要参数
晶闸管的主要参数

晶闸管的主要参数

(1) 断态不重复峰值电压U

DSM

门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值

UDSM 。

它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM值应小于转

折电压U

b0

(2) 断态重复峰值电压U

DRM

晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。

每秒50次每次持续时间不大于10ms,

规定U

DRM 为U

DSM

的90%。

(3) 反向不重复峰值电压U

RSM

门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向峰值电压值

U

RSM

它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰值电压U

RSM 应小于反向击穿电压。

(4) 反向重复峰值电压U

RRM

晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。

每秒50次每次持续时间不大于10ms。

规定U

RRM 为U

RSM

的90%。

(5) 额定电压UR

断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U

R

在选用晶闸管时,应该使其额定电压为正常工作电压峰值U

M

的2~3倍,以作为安全裕量。

(6)通态峰值电压U

TM

规定为额定电流时的管子导通的管压降峰值。

一般为1.5~2.5V,且随阳极电流的增加而略为增加。

额定电流时的通态平均电压降一般为1V左右。

(7) 通态平均电流I

T (AV)

在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。

——允许流过的最大工频正弦半波电流的平均值。

选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。

设单相工频正弦半波电流峰值为Im 时通态平均电流为:

正弦半波电流有效值为:

有效值与通态平均电流比值为:

则有效值为:

根据有效值相等原则来计算晶闸管的额定电流。

若电路中实际流过晶闸管的电流有效值为I ,平均值I d ,

定义 波形系数: 则

由于晶闸管的热容量小,过载能力低,因此在实际选择时,一般取1.5~2倍的安全系数,

(8) 维持电流I H (针对关断过程)

——是指晶闸管维持导通所必需的最小电流。一般为几十到几百毫安。维持电流与结温有关,结温越高,维持电流越小,晶闸管越难关断。

(9) 断态电压临界上升率du/dt

——电压上升率过大,就会使晶闸管误导通。

——指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。

(10) 通态电流临界上升率di/dt

——如果电流上升太快,可能造成局部过热而使晶闸管损坏 m T (A V )m 0I 1I I sin td (t )2πωωππ

==

?m I 2I ==T (A V )

I 1.57I 2π==T (A V )1.57I

I =f d

I K I =T (AV )T (AV )I 1.57I 1.57I f d K I ≤?≤T(AV )T(AV ) 1.57I (1.5~2.0) 1.57I (1.5~2.0) f d d f K I I K ≤?≤

几种特殊的晶闸管

特殊的晶闸管 双向晶闸管TRIAC:TRIode AC semiconductor switch 双向可控硅为什么称为“TRIAC”? 三端:TRIode(取前三个字母) 交流半导体开关:ACsemiconductor switch (取前两个字母)

以上两组名词组合成“TRIAC” 中文译意“三端双向可控硅开关”。 由此可见“TRIAC”是双向可控硅的统称。 双向:Bi-directional(取第一个字母) 控制:Controlled(取第一个字母) 整流器:Rectifier(取第一个字母) 再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。 双向:Bi-directional(取第一个字母) 三端:Triode(取第一个字母) 由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅。 代表型号如:PHILIPS的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、等等。这些都是四象限/非绝缘型/双向可控硅; Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。 而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如: 三象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等; 四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等; ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。如“BW”、“CW”、“SW”、“TW”;代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。 至于型号后缀字母的触发电流,各个厂家的代表含义如下:PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA, 型号没有后缀字母之触发电流,通常为25-35mA; PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。 意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA,注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明 一般分为最小值/典型值/最大值,而非“=”一个参数值

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0 。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向 峰值电压值U RSM 。 它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰 值电压U RSM 应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R 。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为~,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。 选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。 设单相工频正弦半波电流峰值为Im时通态平均电流为: 正弦半波电流有效值为: 有效值与通态平均电流比值为: 则有效值为: 根据有效值相等原则来计算晶闸管的额定电流。 若电路中实际流过晶闸管的电流有效值为I,平均值I d ,

双向可控硅选型表要点

双向可控硅为什么称为“TRIAC”? 三端:TRIode(取前三个字母) 交流半导体开关:AC-semiconductor switch(取前两个字母) 以上两组名词组合成“TRIAC”,或“TRIACs”中文译意“三端双向可控硅开关”。 由此可见“TRIAC”是双向可控硅的统称。 另: 双向:Bi-directional(取第一个字母) 控制:Controlled (取第一个字母) 整流器:Rectifier (取第一个字母) 再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向可控硅。 以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM 等等。 -------------- 双向:Bi-directional (取第一个字母) 三端:Triode (取第一个字母) 由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅. 代表型号如:PHILIPS 的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、、等。这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指 三象限的双向可控硅。三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬间浪涌电流高。 ------------------- 而意法ST公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。组成:“BTA”、“BTB”系列的双向可控硅型号,如: 四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、BTA16-600B、BTA41-600、、、等等; 四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、BTB16-600B、BTB41-600、、、等等; ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。如“BW”、“CW”、“SW”、“TW”; 代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。 至于型号后缀字母的触发电流,各个厂家的代表含义如下: PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA; PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。 意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA, 注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明,一般分为最小值/典型值/最大值,而非“=”一个参数值。 对于产品类别、品种系列的名词国际上通用的命名有:

晶闸管及其应用讲解

晶闸管及其应用 课程目标 1 了解晶闸管结构,掌握晶闸管导通、关断条件 2 掌握可控整流电路的工作原理及分析 3 理解晶闸管的过压、过流保护 4 掌握晶闸管的测量、可控整流电路的调试和测量 课程内容 1 晶闸管的结构及特性 2 单相半波可控整流电路 3 单相半控桥式整流电路 4 晶闸管的保护 5 晶闸管的应用实例 6 晶闸管的测量、可控整流电路的调试和测量 学习方法 从了解晶闸管的结构、特性出发,掌握晶闸管的可控整流应用,掌握晶闸管的过压和过流保护方式,结合实物和实训掌握晶闸管管脚及好坏的判断,通过应用实例,了解晶闸管的典型应用。 课后思考 1晶闸管导通的条件是什么?导通时,其中电流的大小由什么决定?晶闸管阻断时,承受电压的大小由什么决定? 2为什么接电感性负载的可控整流电路的负载上会出现负电压?而接续流二极管后负载上就不出现负电压了,又是为什么? 3 如何用万用表判断晶闸管的好坏、管脚? 4 如何选用晶闸管?

晶闸管的结构及特性 一、晶闸管外形与符号: 图5.1.1 符号 图5.1.2 晶闸管导通实验电路图 为了说明晶闸管的导电原理,可按图5.1.2所示的电路做一个简单的实验。 (1)晶闸管阳极接直流电源的正端,阴极经灯泡接电源的负端,此时晶闸管承受正向电压。控制极电路中开关S断开(不加电压),如图5.1.2(a)所示,这时灯不亮,说明晶闸管不导通。 (2)晶闸管的阳极和阴极间加正向电压,控制极相对于阴极也加正向电压,如图5.1.2(b)所示.这时灯亮,说明晶闸管导通。 (3)晶闸管导通后,如果去掉控制极上的电压,即将图5.1.2(b)中的开关S断开,灯仍然亮,这表明晶闸管继续导通,即晶闸管一旦导通后,控制极就失去了控制作用。 (4)晶闸管的阳极和阴极间加反向电压如图5.1.2(C),无论控制极加不加电压,灯都不亮,晶闸管截止。 (5)如果控制极加反向电压,晶闸管阳极回路无论加正向电压还是反向电压,晶闸管都不导通。 从上述实验可以看出,晶闸管导通必须同时具备两个条件: (1) 晶闸管阳极电路加正向电压; (2) 控制极电路加适当的正向电压(实际工作中,控制极加正触发脉冲信号)。

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路 描述: SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。在电子技术和工业控制中,被派作整流和电子开关等用场。在这里,笔者介绍它们的基本特性和几种典型应用电路。 1.锁存器电路。图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。此时微动开关K2不再起作用(已自锁)。要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。所以该电路具有锁存器(J-1自锁)的功能。 图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。由此可见,图2电路也具有锁存器的功能。图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。 2.单向可控硅SCR振荡器。图3电路是利用SCR的锁存性制作的低频振荡器电路。图中的扬声器LS(8Ω/0.5W)作为振荡器的负载。当电路接上电源时,由于电源通过R1对C1充电,初始时,C1电压很低,A、B端的电位器W的分压不能触发SCR,SCR不导通。当C1充得电压达到一定值时,A、B端电压升高,SCR被触发而导通。一旦SCR导通,电容器C1通过SCR和LS放电,结果A、B端的电压又下降,当A、B端电压下降到很低时,又使SCR截止,一旦SCR截止,电容器C1又通过R1充电,这种充放电过程反复进行形成电路的振荡,此时LS发出响声。电路中的W可用来调节SCR门极电压的大小,以达到控制振荡器的频率变化。按图中元件数据,C1取值为0.22~4μF,电路均可正常工作。 3.SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。电路工作时,当A点低压交流为正半周时,SCR导通对C1充电。当充电电压接近C点电压或交流输入负半周时,SCR截止,所以C1上充得电压(即输出端CD)不会高于C点的稳压值。只有储能电容C1输出端对负载放电,其电压低于C点电压时,在A点的正半周电压才会给C1即时补充充电,以维持输出电压的稳定。图4电路与电池配合已成功用于某设备作后备电源。该稳压电源,按图中参数其输出电流可达2~3A。

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

贴片可控硅MACASOTL规格参数

双向可控硅MAC97A6 (SOT23-3L) MAC97A6(SOT23-3L)双向可控硅 n特点: l先进的平面钝化技术,进一步提高了电压稳固性和可靠性,具有通态压 降低,门极逻辑电平触发,耐电流冲击能力强,全循环交流导通,在所 有四个象限中触发,兼容正栅极触发电路,出色的可靠性和产品质量, 可直接应用IC驱动。 n用途: l广泛应用于调光、调温、调速等调压电路;微波炉、洗衣机、空调、电 风扇、饮水机、夜明灯等家电的控制电路及用于交流相控、斩波器、逆 变器和变频器等电路;阻性负载;不苛刻的电机负载;虚假触发干扰并 非首要关注点的负载;灯具调光器;电阻加热和照明负载;低成本电器。 n极限参数: 名称符号数值单位条件 重复峰值阻断电压V DRM≥600 V I DRM=20μA 通态均方根电流I T(RMS) 1 A所有导通角 通态浪涌电流I TSM 10 A t=10ms 12 A t=16.7ms 门极峰值电流I GM 1.2 A T j=125℃ 结温范围T j-40~125 ℃--- 贮存温度T stg-40~150 ℃--- n电特性(T j=25℃): 名称符号测试条件Min Max Type 单位正向断态峰值电流I RRM T j=125℃V RRM=V DRM---- 0.1 ---- mA 通态峰值电压V TM I TM=6A t=380μs---- 1.5 ---- V 门极触发电流Ⅰ-Ⅱ-Ⅲ I GT V D=12V R L =100Ω ---- 5 ---- mA Ⅳ---- 7 ---- mA 门极触发电压V GT V D=12V R L =100Ω---- 2 0.8 V 门极不触发电压V GD V D=1/2 V DRM T J=125℃0.2 ---- ---- V 断态电压临界上升率dV/dt V DM=67%V DRM Gate open Tj=110℃ 10 ---- ---- V/μs 通态电流临界上升率dI/dt I G=0.2A I T=1A d I G/dt=0.2 A/μs50 A/μs 维持电流I H V D=24V I GT=50m A≤25 mA SZJBL 1

晶闸管的主要参数

晶闸管的主要参数 作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】 晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。此

电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压 门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。 (十)维持电流IH 维持电流IH是指维持晶闸管导通的最小电流。当正向电流小于IH时,导通的晶闸管会自动关断。(十一)断态重复峰值电流IDR 断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA (十二)反向重复峰值电流IRRM 反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

各种规格型号可控硅晶闸管

KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1000A/1800V, KK1000A/2000V, KK1000A/2500V, KK1000A/3000V, KK1000A/3300V, KK1000A/3800V, KK1000A/4000V, KK1200A/600V, KK1200A/800V, KK1200A/1000V, KK1200A/1200V, KK1200A/1400V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK1200A/3800V, KK1200A/4000V, KK1500A/600V, KK1500A/800V, KK1500A/2000V,KK1500A/2500V KK1500A/1000V, KK1500A/1200V, KK1500A/1400V, KK1500A/1600V, KK1500A/1800V, KK1500A/2000V, KK1500A/2500V, KK1500A/3000V, KK1500A/3300V, KK1500A/3800V, KK1500A/4000V, KK1600A/600V, KK1600A/800V, KK1600A/1000V, KK1600A/1200V, KK1600A/1400V, KK1600A/1600V, KK1600A/1800V, KK1600A/2000V, KK1600A/2500V, KK1600A/3000V, KK1600A/3300V, KK1600A/3800V, KK1600A/4000V, KK2000A/600V, KK2000A/800V, KK2000A/1000V, KK2000A/1200V, KK2000A/1400V, KK2000A/1600V, KK2000A/1800V, KK2000A/2000V, KK2000A/2500V, KK2000A/3000V, KK2000A/3300V, KK2000A/3800V, KK2000A/4000V, KK2500A/600V, KK2500A/800V, KK2500A/1000V, KK2500A/1200V, KK2500A/1400V, KK2500A/1600V, KK2500A/1800V, KK2500A/2000V, KK2500A/2500V, KK2500A/3000V, KK2500A/3300V, KK2500A/3800V, KK2500A/4000V, KK3000A/600V, KK3000A/800V, KP3000A/1000V, KK3000A/1200V, KK3000A/1400V, KK3000A/1600V, KK3000A/1800V, KK3000A/2000V, KK3000A/2500V, KK3000A/3000V KK3000A/3500V,KK3500A/3000V,KK3000A/4000V,KK3500A/3000V,KK3500A/3500V,KK3500A/4000V KK3500A/4500V,KK3500A/5000V,KK3500A/5500V,KK3500A/6000V,KK4000A/3000V,KK4000A/3500V KK4000A/4000V,KK4000A/4500V,KK4000A/5000V,KK4000A/5500V,KK4000A/6000V,KK4000A/6500V KK5000A/3000V,KK5000A/3500V,KK5000A/4000V,KK5000A/4500V,KK5000A/5000V,KK5000A/5500V KP5000A/6000V,KP5000A/6500V,KP5500A/3000V,KP5500A/4000V,KP5500A/4500V,KP5500A/5000V KK5000A/6000V,KK5000A/6500V,KK5500A/3000V,KK5500A/4000V,KK5500A/4500V,KK5500A/5000V KP1000A/1800V, KP1000A/2000V, KP1000A/2500V, KP1000A/3000V, KP1000A/3300V, KP1000A/3800V, KP1000A/4000V, KP1200A/600V, KP1200A/800V, KP1200A/1000V, KP1200A/1200V, KP1200A/1400V, KP1200A/1600V, KP1200A/1800V, KP1200A/2000V, KP1200A/2500V, KP1200A/3000V, KP1200A/3300V, KP1200A/3800V, KP1200A/4000V, KP1500A/600V, KP1500A/800V, KP1500A/2000V,KP1500A/2500V KP1500A/1000V, KP1500A/1200V, KP1500A/1400V, KP1500A/1600V, KP1500A/1800V, KP1500A/2000V, KP1500A/2500V, KP1500A/3000V, KP1500A/3300V, KP1500A/3800V, KP1500A/4000V, KP1600A/600V, KP1600A/800V, KP1600A/1000V, KP1600A/1200V, KP1600A/1400V, KP1600A/1600V, KP1600A/1800V,

电力电子技术考前模拟题(有答案)

电力电子技术考前模拟题 一、选择题 1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差A度。 A、180°, B、60°,c、360°, D、120° 2、α为C度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。 A,0度,B,60度,C,30度,D,120度, 3、晶闸管触发电路中,若改变B 的大小,则输出脉冲产生相位移动,达到移相控制的目的。 A、同步电压, B、控制电压, C、脉冲变压器变比。 4、可实现有源逆变的电路为A。 A、三相半波可控整流电路, B、三相半控桥整流桥电路, C、单相全控桥接续流二极管电路, D、单相半控桥整流电路。 5、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理A。 A、30o-35o, B、10o-15o, C、0o-10o, D、0o。 6、在下面几种电路中,不能实现有源逆变的电路有哪几种BCD。 A、三相半波可控整流电路。 B、三相半控整流桥电路。 C、单相全控桥接续流二极管电路。 D、单相半控桥整流电路。 11、下面哪种功能不属于变流的功能(C) A、有源逆变 B、交流调压 C、变压器降压 D、直流斩波 12、三相半波可控整流电路的自然换相点是( B ) A、交流相电压的过零点; B、本相相电压与相邻相电压正、负半周的交点处; C、比三相不控整流电路的自然换相点超前30°; D、比三相不控整流电路的自然换相点滞后60°。 13、如某晶闸管的正向阻断重复峰值电压为745V,反向重复峰值电压为825V,则该晶闸管的额定电压应为 (B) A、700V B、750V C、800V D、850V 14、单相半波可控整流电阻性负载电路中,控制角α的最大移相范围是( D ) A、0o-90° B、0o-120° C、0o-150° D、0o-180° 15、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差A度。 A 、180度;B、60度;C、360度;D、120度; 16、可实现有源逆变的电路为A。 A、单相全控桥可控整流电路 B、三相半控桥可控整流电路 C、单相全控桥接续流二极管电路 D、单相半控桥整流电路 17、由晶闸管构成的可逆调速系统中,逆变角βmin选A 时系统工作才可靠。 A、300~350 B、100~150 C、00~100 D、00 18、α= B度时,三相全控桥式整流电路带电阻负载电路,输出负载电压波形处于连续和断续的临界状态。 A、0度; B、60度; C、30度; D、120度; 19、变流装置的功率因数总是C。 A、大于1; B、等于1; C、小于1; 20、变流器工作在逆变状态时,控制角α必须在D 度。 A、0°-90°; B、30°-120°; C、60°-150°;。 D、90°-150°; 2、三相半波可控整流电阻性负载电路,如果三个晶闸管采用同一相触发脉冲,α的移相范围D。 A、0o--60o; B、0o--90o;。 C、0o--120o; D、0o--150o; 23、在单相桥式全控整流电路中,大电感负载时,控制角α的有效移相范围是A。 A、0°~90° B、0°~180° C、90°~180° 24、三相全控桥式整流电路带电阻负载,当触发角α=0o时,输出的负载电压平均值为D。 A、0.45U2; B、0.9U2; C、1.17U2; D、2.34U2; 26、三相全控桥式整流电路带大电感负载时,控制角α的有效移相范围是A度。 A、0°-90°; B、30°-120°; C、60°-150°; D、90°-150°; 二、判断题 1、在半控桥整流带大电感负载不加续流二极管电路中,电路出故障时会出现失控现象。(√) 2、在用两组反并联晶闸管的可逆系统,使直流电动机实现四象限运行时,其中一组逆变器工作在整流状态,那么另一组就工作在逆变状态。(×) 3、晶闸管串联使用时,必须注意均流问题。(×) 4、逆变角太大会造成逆变失败。(×) 5、并联谐振逆变器必须是略呈电容性电路。(√) 6、给晶闸管加上正向阳极电压它就会导通。(×)

晶闸管的基本检测方法

晶闸管的基本检测方法 1.判别单向晶闸管的阳极、阴极和控制极 脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。 2.判别单向晶闸管的好坏 脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。 3.判别双向晶闸管的好坏 脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。可以断定该双向晶闸管具备双向触发能力,性能基本良好。 4.晶闸管的代换原则 晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。 普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。 双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。 逆导晶闸管一般被用于电磁灶、电子镇流器、超声波电路、超导磁能贮存系统及开关电源等电路。 光控晶闸管一般被用于光电耀合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路等。 BTC晶体管一般被用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等。 门极关断晶闸管一般被用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等。

相关文档