文档库 最新最全的文档下载
当前位置:文档库 › 求矩阵的秩有下列基本方法

求矩阵的秩有下列基本方法

求矩阵的秩有下列基本方法
求矩阵的秩有下列基本方法

特别说明

此资料来自豆丁网(https://www.wendangku.net/doc/543215389.html,/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

https://www.wendangku.net/doc/543215389.html,/p-21209560.html

感谢您的支持

抱米花

https://www.wendangku.net/doc/543215389.html,/lotusbaob

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

3-1 矩阵的秩习题评讲

3-1 矩阵的秩习题评讲 2、设秩(A)=r,问A中有没有等于零的r-1阶子式?有没有等于零的r阶子式? 有没有不等于零的r+1阶子式? 解:秩(A)=r时,A中可能有等于零的r-1阶子式;也可能有等于零的r阶子 式;没有不等于零的r+1阶子式。例如: A=? ? ??? ? ??? ???00 00 40004320 4321,A中存在一个3阶子式4004204 21=8≠0,所有4阶子式有一行全为零,值为零,所以秩(A)=3。A中存在等于零的2阶子式,如 4 34 3;还存在等于零的3阶子式,如0 00000 3 20。 3、如果从矩阵A中划去一行(或一列)得到矩阵B,问A的秩与B的秩有什么关系? 解:设m?n矩阵A的行向量为:α1,α2,……,αm-1,αm。从矩阵A中划去一 行,不妨设划去第m行,得矩阵B,则B的行向量为:α1,α2,……,αm-1。分两种情况讨论。 (1)如果αm可由α1,α2,……,αm-1线性表出,则A的行向量组与B的行向量 组等价,故A的行秩=B的行秩,即秩(A)=秩(B)。 (2)如果αm不能由α1,α2,……,αm-1线性表出,取B的行向量组的一个最大 无关组,不妨设为:α1,α2,……,αr,则αm不能由α1,α2,……,αr线性表出。据P111 11题,α1,α2,……,αr,αm线性无关,显然作成A的行向量组α1,α2,……,αm-1,αm的一个最大无关组,于是A的行秩=B的行秩+1,即秩(A)=秩(B)+1。 综上所述,知: R(B)=? ? ?-1)()(A R A R 线性表出时列不可由其它行列当删去的行线性表出时列可由其它行列当删去的行)()()()(。 4、t取何值时,向量组:α1=(6,t+1,7),α2=(t,2,2),α3=(t, 1,0)线性相关? 解:用α1,α2,α3为行向量作矩阵A,有

关于矩阵秩的证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n ×m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →? ??? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

求矩阵的秩的步骤

求矩阵的秩的步骤 方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。 m×n矩阵的秩最大为m和n中的较小者,表示为min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。 设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。 当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

矩阵的秩及其应用

矩阵的秩及其应用 摘要:本文主要介绍了矩阵的秩的概念及其应用。首先是在解线性方程组中的应用,当矩阵的秩为1时求特征值;其次是在多项式中的应用,最后是关于矩阵的秩在解析几何中的应用。对于每一点应用,本文都给出了相应的具体的实例,通过例题来加深对这部分知识的理解。 关键词:矩阵的秩; 线性方程组; 特征值; 多项式 引言: 阵矩的秩是线性代数中的一个概念,它描述了矩阵的一个数值特征。它是矩阵 的一个重要性质。在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值,在多项式、空间几何中等多个方面都有广泛的应用。由于矩阵的秩的重要作用和地位,需要我们认真学习。 1.矩阵的秩及其求法 1.1矩阵的秩的定义 定义1.1.1[1] 矩阵A 的行(列)向量组的秩称为矩阵A 的行(列)秩。 定义1.1.2[2] 矩阵的列向量组(或行向量组)的任一极大线性无关组所含向量的个数称为矩阵的秩。 定义1.1.3[1] 设在矩阵A 中有一个不等于零的r 阶子式,且所有的1r +子式(如果存在的话)全等于零,则称矩阵A 的秩为r ,记为()r A r =或秩()A r =。零矩阵的秩规定为零。 注:由定义可以看出

(1)若A 为n m ?矩阵,则()r A m ≤,也()r A n ≤,即()min{,}r A m n = (2) ()()T r A r A = ,()()r kA r A = ,k 为非零数 1.2 矩阵的秩的求法 定义法和初等变换法是我们常用的求矩阵的秩的两种方法,下面就来比较一 下这两种方法。 方法1 按定义 例1.2.1 求矩阵A =?? ????????--413112212228 32的秩 解 按定义3解答,容易算出二阶子式 12232-0≠,而矩阵的所有三阶子式 13 1 2122832--=0,43112122232-=0,41312212 2 8 3--=0,4 1112222 8 2 -=0 所以 ()2r A = 方法2 初等变换法 引理1.2.1[1] 初等变换不改变矩阵的秩。 例1.2.1求矩阵23822122121314A -?? ??=-?? ????的秩 解 用“→”表示对A 作初等变换,则有 A →13142122122382????-????-??→131406440966????-????-??→131406440000?? ?? -??????=B ,在矩阵B 中易 知,所有三阶子式全为零,且有一个二阶子式 1306 ≠0. 所以()2r B =, 可得

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

求矩阵的秩的步骤

矩阵的秩就是指这个矩阵经过行列变换过后,化为最简式,以后非零行或者是非零列的最小的数目,这里简单介绍一下,怎样求矩阵的秩。工具/原料 ?矩阵 ?matlab 方法/步骤 1.1 启动matlab程序。 2.2 在命令窗口任意输入一个矩阵a。 >>a=rand(9,9) 3.3 调用rank函数,按一下回车键即可求得矩阵的秩=9。 4.4 再任意输入一个矩阵b。 >>b=rand(5,8) 5.5 再次调用rank函数,即可求到矩阵的秩=5。 END 注意事项 ?当一个矩阵的秩等于五的时候,就表示矩阵当中有五个飞线性 相关的向量组。

?出现的字肯定是小于行数,或者是小于列数。 r3-2r1,r4-r1~ 1 1 2 2 1 0 2 1 5 -1 0 -2 -1 -5 1 0 0 -2 2 -2 r3+r2,交换r3 r4 ~ 1 1 2 2 1 0 2 1 5 -1 0 0 -2 2 -2 0 0 0 0 0 只是求秩就不用再计算,显然矩阵的秩为3 矩阵的秩一般有2种方式定义 1.用向量组的秩定义 矩阵的秩= 行向量组的秩= 列向量组的秩 2.用非零子式定义 矩阵的秩等于矩阵的最高阶非零子式的阶 单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形 梯矩阵中非零行数就是矩阵的秩 这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.

向量组的极大线性无关组中所含向量的个数,称为向量的秩. 矩阵的行向量的秩称为行秩.列向量的秩成为列秩.

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

矩阵的秩 学年论文

学院数学与信息科学学院 专业信息与计算科学 年级2009级 姓名张晓函 论文题目矩阵的秩 指导教师彭玉成职称讲师成绩 2009年5月25日

学年论文成绩评定表

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1预备知识 (1) 2矩阵的秩的性质 (2) 3矩阵秩的计算 (4) 4矩阵秩的应用 (8) 5结束语 (9) 参考文献 (9)

矩阵的秩 学生姓名:张晓函学号:20095034048 数学与信息科学学院信息与计算科学系 指导教师:彭玉成职称:讲师 摘要:本文是关于求一个数字矩阵的秩的方法的初步探究.归纳总结了求矩阵秩的常用方法. 关键词:矩阵;初等变换;子式;极大线性无关组 Matrix rank Abstract:This article is about for a digital matrix rank of the preliminary inquiry method. Summarizes the commonly used method of matrix rank Keywords: matrix,elementary transformation, son,great linearly independent groups 前言 矩阵是贯穿线性代数的一块重要内容.而对矩阵秩的探究是我们学习矩阵的一个重要部分.也是我们判断线性方程组解的情形的重要手段.下面就来具体讨论、探究数字矩阵秩的求解方法. 1.预备知识 定义1.1:矩阵A中不为零的子式的最高阶数称为A的秩.记作() r A 定义1.2:矩阵的行秩就是矩阵行向量的秩;矩阵的列秩就是矩阵列向量的秩. 矩阵A中任意选定k行和k列,位于这些选定的行和列的交点定义1.3:在一个s n 上的2k个元素按原来的次序所组成k级行列式,称为A的一个k级子式. 定义1.4:向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 2.矩阵的秩的性质 1)现在我们来研究矩阵的秩具有哪些性质,从而利用这些性质求矩阵的秩。 性质2.1矩阵的行秩与列秩相等.

对矩阵的秩的有关理解及其在线性代数中的应用

对矩阵的秩的有关理解及其在线性代数中的应用 摘 要:本文叙述了矩阵秩的几个等价定义,并且给出了几个相关秩的解法.通过例子来验证和探讨了矩阵秩在线性代数中的应用,这些知识对我们理解矩阵的本质,灵活运用矩阵的秩去分析相关问题有一定的意义和作用. 关键词:矩阵的秩;秩的解法;秩的应用 On the Rank of Matrix relating to the understanding Extremely in the Application of Linear Algebra Abstract : This article describes several equivalent definitions of matrix rank, and gives the solution of some rank. Through example to verify that the discussion and application of matrix in linear algebra, this knowledge to our understanding of the nature of the matrix, flexible use of matrix rank to have a certain meaning and analysis of related problems. Key words : rank of matrix; rank method; the application of rank 0 前言 矩阵的理论是线性代数的理论基础。而在矩阵的理论中,矩阵的秩是一个基本的理论概念,也是矩阵最重要的数量特征之一,他在初等变换下是一个不变量.它是反应矩阵固有特性的一个重要概念.矩阵作为线性代数的重要工具,已渗透到各章内容之中,并成为行列式、线性代数方程组、线性空间、欧氏空间和二次型的纽带,它把线性代数各章节贯串成为一个整体.而矩阵的秩几乎贯穿矩阵理论的始终,是矩阵一个重要的、本质的属性,在求方阵的逆、判断线性方程组是否有解以及有多少个解、判断向量组的线性相关性、求矩阵的特征值等方面,矩阵的秩都有着广泛的应用. 1 矩阵秩的概念 首先给出矩阵秩的几个等价定义 定义1 设s ,矩阵中不为0子式的最高阶数,即A 有r 阶子式不为0,任何1r +阶子式(如果存在的话)全为0,称r 为矩阵A 的秩。记做()R A r =. 从本质上说,矩阵的秩就是矩阵中不等于0的姿势的最高阶数。这个不为0的子

矩阵秩的相关结论证明及举例

华北水利水电大学 矩阵秩的相关结论证明及举例 课程名称:线性代数 专业班级:能源与动力工程(热动)101班 成员组成:王威威 联系方式: 2014年12月30日

一:摘要 矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。 关键词:矩阵秩结论证明 英文题目 Abstract: Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof

求矩阵的秩的步骤

求矩阵的秩的步骤 在学习矩阵的秩之前,首先我们要先了解矩阵A的k阶子式:即在m×n矩阵A中,任取k行k列( k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式。先在矩阵中的m行中任选k行,得到组合;再在矩阵中的n列任选k列,得到组合。将二者相乘,便是矩阵A的k阶子式计算公式。 现在我们就可以定义矩阵的秩:设在m×n矩阵A中有不为零的r阶子式D,且所有r+1阶子式(如果存在的话)均为零,那么D称为矩阵A的最高阶非零子式,阶数r称为矩阵A的秩,记作R(A)。特别地规定了零矩阵的秩等于0。举个例子,我们先假定一个3阶矩阵。由定义可得S不可能再有大于三阶的子阵,那么我们知道S的三阶子阵只有一个|S|,若计算出|S|≠0,那么S的秩就为3,记做R(S)=3;若是|S|=0,那就同理再看S的9个二阶子阵……当然,越高阶的矩阵的秩会越难计算,下面的视频来讲解行阶梯形矩阵在求解高阶矩阵的秩中的妙用。 学习矩阵的秩并归纳出矩阵秩的一些最基本的四个性质,具体证明过程详见课本,其中最主要的是第三条性质,它证明了两个等价矩阵的秩是相等的,因此将矩阵通过初等变换化为行阶梯形矩阵能大大简化矩阵秩的运算。 矩阵的子式定义:

在m×n矩阵A中,任取k行k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式。 矩阵的秩定义: 设矩阵A中有一个不等于零的r阶子式D,且所有r +1阶子式(如果存在的话)全等于零,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。 规定零矩阵的秩为零。 矩阵的秩基本性质: ①若A为m×n矩阵,则 0≤R(A)≤min(m, n) ②R(AT)=R(A)

求矩阵的秩的步骤

求矩阵的秩的步骤 今天要讲的是关于矩阵秩的重要结论。关于矩阵的秩,讲三点,前两点是比较重要的,专门提出来强调一下,第三点是书上没有的一个重要的结论: 1、,也就是一个矩阵与另一个矩阵相乘后,新矩阵的秩一定不大于原矩阵。怎么证明呢,结合线性结合线性方程组的有解性来进行证明的,AB=C,已经说明了AX=C是有解的,而线性方程组的有解性与矩阵的秩的关系说明了R(A)=R(A,C),所以A的秩大于等于C的秩,再将此矩阵两边转置,再根据线性方程组的解与矩阵的秩间关系同理可得A的秩大于等于C的秩.当我们学习了与线性表示有关的系统性理论后对这个定理会有更直观的理解。 2、矩阵左乘列满秩矩阵后新矩阵的秩与原矩阵的秩一样,此结论希望引起大家重视,此结论就是同济大学第五版70页的例9,大家可以参照此过程。 3、给出一个关于矩阵的秩的一般性的结论, 上述是脱离了方程组单独讲的矩阵的秩的结论,而当秩与方程组结合时也有重要结论,对于方程组Ax=b 1、如果A是行满秩的矩阵,那么方程组要么有唯一解,要么有无穷

多解。 如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。怎么理解呢?比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。 A的形式要么是矮且胖要么是方阵(矩阵的列不可能小于矩阵的行数),如果矩阵A矮且胖的话,那么对线性方程组的约束的个数(矩阵的行数)小于未知数的个数,那就是无穷多解。矩阵A是方阵,根据克拉默法则我们也能得出是唯一解。 上面是我们根据我们对线性代数的直观理解做出的推导,那么这个结论怎么证明呢?

浅谈矩阵的秩及其应用定稿

山西师范大学本科毕业论文 浅谈矩阵的秩及其应用 姓名李欢 院系数学与计算机科学学院专业数学与应用数学 班级07510101 学号0751010125 指导教师张富荣 答辩日期2010.12.20 成绩

浅谈矩阵的秩及其应用 内容摘要 矩阵理论,在线性代数中占有十分重要的地位。而在矩阵理论中,矩阵的秩又是一个十分重要的概念,它是矩阵的一个数量特征,而且初等变换不改变矩阵的秩,是初等变换下的不变量。矩阵的秩与矩阵是否可逆,线性方程组的解得情况等都有密切的关系。 论文开头介绍了矩阵的秩,矩阵的行秩和列秩以及与矩阵有关的常见的命题和定理,部分定理并给出证明。第二部分介绍了计算矩阵的两种计算方法,求非零子式的最高级数法和初等变换法,并对其优劣进行比较。在矩阵的运算过程中,矩阵的秩存在某些关系,熟练地掌握这些关系对解有关矩阵的习题很有帮助。最后详细地介绍了矩阵的秩与线性方程组解的个数之间的关系,并将其应用到解析几何中,判断空间两直线位置关系。 本论文主要将矩阵的秩这一重要概念的相关内容及其相关定理的证明详细给出,并在一些具体题目中加以应用。 【关键词】矩阵矩阵的秩线性方程组非零子式的最高级数初等变换

A Brief Introduction on the rank of Matrix and the Application of the rank of Matrix Abstract In matrix theory, rank of matrix is an important concept. It is a matrix of number of characteristics, and it is invariant under elementary transformations. Rank of matrix may have a close relationship with the solution of linear equations. At the beginning, the paper presents the concept of rank of matrix, the matrix row rank and column rank, and the common matrix-related theorems. And some theorems are given proof. The second section of the paper describes two methods for calculating the rank of matrix, one is seeking the highest grade of the non-zero minor, and the other is elementary transformation. And it compares their advantages and disadvantages. In the process of matrix computation, there are some important relations about the matrix rank .If we have a good understanding about these relations, it will be very helpful. Finally, it has a detail description on the application of the rank of matrix, especially the relationship between the rank of matrix and the solution of linear equations. In this paper, it contains some important concepts related to the rank of matrix, the proof and some specific application. 【Key Words】matrix rank of matrix linear equations the highest grade of the non-zero minor elementary transformation

求矩阵的秩的步骤

将该矩阵转换为行梯形矩阵,然后矩阵的秩等于非零行的数量。 在步骤矩阵中,选择了1,3行和3,4列。由元素在其交点处形成的二阶子矩阵的行列式是矩阵A的二阶子矩阵。 行等级是A的线性独立行的最大数量。也就是说,如果将矩阵视为行向量或列向量,则等级是这些行向量或列向量的等级,即包含在其中的向量数最大独立组。 扩展数据: 证明: 由AB构造的块矩阵和n阶恒等式en | AB O | | O En | A将以下两个矩阵相乘并相乘,然后将它们加到上两个矩阵中 | AB A | | 0 En |

相乘-B,在左侧矩阵中添加两个块 | 0 A | | -B En | 因此,R(AB)+ n = R(第一个矩阵)= R(最后一个矩阵)> = R(a)+ R(b) 即R(a)+ R(b)-N <= R(AB) 在数学中,矩阵是根据矩形阵列排列的一组复数或实数。最早的矩阵是由等式的系数和常数组成的方阵。这个概念最早是由19世纪的英国数学家凯利(Kelly)提出的。 矩阵是高等代数以及统计分析等应用数学中的常用工具。[2]在物理学中,矩阵应用于电路科学,力学,光学和量子物理学;在计算机科学中,矩阵还用于3D动画中。矩阵运算是数值分析领域中的重要问题。将矩阵分解为简单矩阵的组合,可以在理论上和实际应用中简化矩阵的运算。对于一些广泛使用的特殊形式的矩阵,例如稀疏矩阵和准对角线矩阵,有特定的快速算法。关于矩阵理论的发展和应用,请参考矩阵理论。在天体物理学,量子力学等领域,将存在无穷维矩阵,这是矩阵的一种概括。

数值分析的主要分支致力于矩阵计算的有效算法的开发,这已经是一个世纪以来的主题,并且是一个不断扩展的研究领域。矩阵分解法简化了理论和实际计算。为特定矩阵结构(例如稀疏矩阵和近角矩阵)定制的算法可加快有限元方法和其他计算的速度。在行星理论和原子理论中存在无限矩阵。无穷矩阵的一个简单示例是函数的泰勒级数的导数算子矩阵[3]

浅谈矩阵的秩及其应用的开题报告汇总

鞍山师范学院 本科毕业生毕业论文开题 报告 题目:浅谈矩阵的秩及其应用 系别:数学与信息科学学院 专业:数学与应用数学 年级:13级2班 姓名:杨笑 导师:张立新

(一)选题意义 1. 理论意义: 高等代数作为数学专业基础课程之一,矩阵理论又是它主要的内容,其中矩阵的秩特别重要,它是反映矩阵固有性质的一个重要概念。不管是数学专业还是非数学专业,掌握矩阵的秩的定义以及简单性质,有助于我们解决一些基本的矩阵的秩的相关问题。通过本篇论文,可以让我们对矩阵的秩有更加深刻的理解,及灵活运用矩阵的秩分析相关问题有一定的意义和作用。 2. 现实意义: 矩阵的秩几乎贯穿矩阵理论的始末,是矩阵的一个重要的本质属性,在解线性方程组,判断线性空间中点线面的位置关系,以及在解析几何中,判断空间两直线位置关系等领域都有广泛的应用。 (二)论文综述 1、国内外研究现状及分析: 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。最初,矩阵概念的产生是作用于解线性方程组,英国数学家凯莱在矩阵论的研究中作出了巨大贡献,定义了矩阵的秩、初等因子、矩阵初等变换等概念,并且讨论了矩阵初等变换的一些重要性质,同时,弗罗伯纽斯的贡献也不是不可磨灭的,在凯莱的基础上,引进了正交矩阵、矩阵的相似变换等概念,并讨论了正交矩阵与合同矩阵的一些重要性质。矩阵本身所具

有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。 矩阵的应用也是相当广泛的,不仅仅是在数学领域,在物理、力学、科技等方面也发挥了不可忽视的作用,目前,虽然很多数学家在矩阵的秩的研究中做出了很多贡献,但是,矩阵的秩作为矩阵的一个重要性质,在高等代数、几何空间、数学分析等方面都有密切关系,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用。在解析几何中,矩阵的秩可用来判断空间中两直线、两平面及直线和平面之间的关系。在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观察的。此外,矩阵的秩也可用来判定向量组的线性相关性、两个向量组之间的等价、求向量组的极大无关组、向量组的线性表示、求齐次线性方程组的基础解系、求解非齐次线性方程组等等。分块矩阵是矩阵论中一个比较重要的内容,它的应用研究非常广泛和深刻,特别是在高等代数和线性代数中分块矩阵的应用更加广阔,例如在计算行列式、求逆矩阵及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要是在证明和计算等方面。如研究用分块矩阵解决行列式和方程组等问题,研究用分块矩阵解循环分块矩阵方程问题,研究用分块矩阵求逆矩阵问题。但在分块矩阵的推广方面很少有研究,难以创新,但分块矩阵的应用的研究不能仅仅停留于现在这个程度,应该使其推广和应用到其它领域之中,使之能够成为我们学习和研究便利的工具。所以矩阵依然有着很大的研究价值。

浅谈矩阵的秩

目录 摘要 (1) Abstract (1) 前言 (1) 1.矩阵的秩的概念 (1) 2.秩的求法[]1 (2) 2.1子式判别法 (2) 2.2初等变换法 (2) 3.矩阵的秩的应用 (2) 3.1方程组与矩阵的秩 (2) 3.1.1判断齐次线性方程组有非零解[]3 (2) 3.1.2判断非齐次线性方程组的解 (3) 3.1.3线性方程组有解 (3) 3.2矩阵运算与矩阵的秩 (4) 3.2.1加法 (4) 3.2.2 乘法 (4) 3.3可逆矩阵与矩阵的秩 (4) 结束语 (5) 参考文献 (5)

浅谈矩阵的秩 摘 要: 矩阵的秩,是矩阵最重要的数字特征之一。矩阵的很多性质可以通过矩阵的秩来刻画。基于矩阵的秩在高等代数学中的重要性,本文系统总结了矩阵的秩的基本性质,求法及其应用。 关键词: 矩阵的秩;线性方程组;初等变换,可逆矩阵 Matrix rank Abstract: Matrix rank, it is one of the most important characteristics of digital matrix. Many properties of matrix rank of the matrix to depict. Based on the matrix rank in higher algebra, the importance of system in this paper summarizes the basic properties of the rank of matrix, the calculation methods and their applications. Keywords : matrix rank; System of linear equations; Elementary transformation, reversible matrix. 前言 矩阵是数学中的一个重要的基本概念,也是应用数学研究的一个重要工具。矩阵的理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本的概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。 1.矩阵的秩的概念 一个向量组的极大线性无关组所含向量的个数称为这个向量组的秩。所谓矩阵的行秩就矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩。矩阵的行秩等于矩阵的列秩,并统称为矩阵的秩,记作R (A ) 例如,矩阵 113102-14A=00050 000???????????? 的行向量组是 1α =(1,1,3,1) 2α =(0,2,-1,4) 3α =(0,0,0,5) 4α =(0,0,0,0) 可以证明,1α,2α,3α,是向量组1234αααα,,,的一个极大线性无关组,事实上,由 112233k k k ααα++=0可得1230k k k ===,这就证明了123ααα,,线性无关。因为4α是零向量,所以添上4α后就线性相关了。因而向量组的秩为3,即向量组的行秩为3。A 的列向量组是 1β=(1,0,0,0), 2β=(1,2,0,0), 3β=(3,-1,0,0), 4β=(1,4,5,0)

相关文档