文档库 最新最全的文档下载
当前位置:文档库 › 光电图像处理 第四章 图像变换1

光电图像处理 第四章 图像变换1

数字图像处理实验四图像几何变换

课程名称数字图像处理与分析 实验序号实验4 实验项目图像几何变换 实验地点 实验学时实验类型 指导教师实验员 专业班级 学号姓名 2017年9月25日

成绩: 教 师 评 语

三、实验软硬件环境 装有MATLAB软件的电脑 四、实验过程(实验步骤、记录、数据、分析) 1、图片比例缩放 代码: I=imread('11.jpg'); J=imresize(I,1.25); J2=imresize(I,1.25,'bicubic'); imshow(I); figure,imshow(J); figure,imshow(J2); Y=imresize(I,[100150],'bilinear');%Y=imresize(I,[mrows ncols],method)---返回一个指定行列的图像。若行列比与原图不一致,输出图像将发生变形。 figure,imshow(Y) %nearest,bilinear,bicubic为最近邻插值、双线性插值、双三次插值方法。默认为nearest。 运行结果: 分析:由实验结果可知,实现了图片放大和缩小的效果。 2、图像旋转 代码:

J=imrotate(I,32,'bilinear');%J=imrotate(I,angle,method,’crop’)------crop用于剪切旋转后增大的图像部分,返回和原图大小一样的图象。 imshow(I); figure,imshow(J) 运行结果: 分析:由实验结果可知,实现了图片旋转的效果 3、图像剪切 代码:

J=imcrop(I); figure(1),imshow(I);title('yuantu'); figure(2),imshow(J);title('croptu') J1=imcrop(I,[604010090]);%对指定区域进行剪切操作figure(3),imshow(J1);title('croptu2'); 运行结果: 运行代码后,出现如下界面,选中要裁剪的区域,双击被选中的区域 出现以下界面:

光电成像

光电测试考试资料整理 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X射线(Roentgen射线)与y射线(Gamma射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4.什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5.反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6.光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1.人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45min,充分暗适应则需要一个多小时。 2.何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3.试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。 [2]特点:眼睛的分辨力与很多因素有关,从内因分析,与眼睛的构造有关(此处不再讨论)。从外因分析,主要是决定于目标的亮度与对比度,但眼睛会随外界条件的不同,自动进行适应,因而可得到不同的极限分辨角。当背景亮度降低或对比度减小时,人眼的分辨力显著地降低。于中央凹处人眼的分辨力最高,故人眼在观察物体时,总是在不断地运动以促使各个被观察的物体依次地落在中央凹处,使被观察物体看得最清楚。 4.简述下列定义:(1)图像信噪比(2)图像对比度(3)图像探测方程 答:[1]图像信噪比:图像信号与噪声之比[2]图像对比度:指的是一幅图像中明暗区 域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。 [3]当关系式成立时,表明图像可探测到,反之将不能探测。

光电成像技术

2014-2015 第一学期 光电成像技术 ——红外热成像技术的发展及其应用 院系电子工程学院光电子技术系 班级光信1104 姓名王凯 学号05113123 班内序号14 考核成绩

红外热成像技术的发展及其应用 摘要:用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。 关键字:红外线,红外热成像技术,发展及其应用 一、引言 1800年英国的天文学家Mr.William Herschel 用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。 二、红外热成像技术 我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。红外热成像仪大致分为致冷型和非致冷型两大类。 目前,世界上最先进的红外热像仪(热成像仪或红外热成像仪),其温度灵敏度可达0.03℃。 1、红外热像仪的工作原理 红外热像仪可将不可见的红外辐射转换成可见的图像。物体的红外辐射经过镜头聚焦到探测器上,探测器将产生电信号,电信号经过放大并数字化到热像仪的电子处理部分,再转换成我们能在显示器上看到的红外图像。

图像光电转换的基本过程

图像光电转换的基本过程

————————————————————————————————作者:————————————————————————————————日期:

图像光电转换的基本过程 电视图像的传送是基于光电转换原理,而实现光电转换的关键器件是发送端的摄像管和接收端的显像管。 1. 图像的分解 电视系统处理和传送的对象是光的景物,景物存在于三维空间,其光学特性(即景物的亮度和色度信息)不仅随空间位置的不同而不同,而且还与时间有关系(静止景物除外)。因此,景物信息是三维空间和时间的函数,可用光学信息表达式为:。 但是目前的电视系统仍为平面彩色电视,只传输景物的二维光学信息,因此上式中的z可不考虑。另外,这里仅讨论黑白平面活动图像,只需传输各像素的亮度信息,其光学信息表达式简化为:。 但是,亮度仍然是x、y、t的三维函数,而经传输通道传送的电信号为电压(或电流),只能是时间的一维函数为:。实现转换的方法是:将景物信息分解成很多小点,这样

就能以每个小点为单位进行光电转换和传送。因此,对于每个小点来说,其光学特性以及经光电转换得到的电信号就只与时间有关了,也就是将景物信息转化成时间的一维函数。 将景物图像化整为零的方法称为图像的分解,分解之后的小点称为像素。所谓像素,就是组成图像的元素,即基本单位,具有单值的亮度信息和空间位置。一幅电视图像由许许多多个像素组成,电视系统能够分解的像素数越多,图像就越清晰、细腻。在我国的黑白广播电视标准中,一幅图像包含大约40~50万个像素。图像的结构—导学。 图像的分解是在摄像端的光电转换和扫描过程中完成的。在接收端,通过显示装置的扫描和电光转换作用,这些被分解的像素又会在屏幕上合成出原来的图像,从而实现电视的全过程。 2.图像的传送 一幅图像由许多像素组成,这些像素的亮度信息经光电转换之后变成相应的电信号。电视系统的任务是将各像素的变换成, 实现转换的方式,有同时传输制和顺序传输制。 ●像素信息同时传输制

数字图像处理复习题

第一章绪论 一.选择题 1. 一幅数字图像是:( ) A、一个观测系统 B、一个有许多像素排列而成的实体 C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 2. 半调输出技术可以:( ) A、改善图像的空间分辨率 B、改善图像的幅度分辨率 C、利用抖动技术实现 D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 3. 一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( ) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。 4. 图像中虚假轮廓的出现就其本质而言是由于:( ) A、图像的灰度级数不够多造成的 B、图像的空间分辨率不够高造成 C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃,图像中的虚假轮廓最易在平滑区域内产生。 5. 数字图像木刻画效果的出现是由于下列原因所产生的:() A、图像的幅度分辨率过小 B、图像的幅度分辨率过大 C、图像的空间分辨率过小 D、图像的空间分辨率过大 提示:图像中的木刻效果指图像中的灰度级数很少 6. 以下图像技术中属于图像处理技术的是:()(图像合成输入是数据,图像分类输出 是类别数据) A、图像编码 B、图像合成 C、图像增强 D、图像分类。 提示:对比较狭义的图像处理技术,输入输出都是图像。 解答:1.B 2.B 3.A 4.A 5.A 6.AC 二.简答题 1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 2. 什么是图像识别与理解? 3. 简述数字图像处理的至少3种主要研究内容。 4. 简述数字图像处理的至少4种应用。 5. 简述图像几何变换与图像变换的区别。 解答: 1. ①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。③图像的几何变换:改变图像的大小或形状。④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。 2. 图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感谢为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

matlab-光电图像处理实验(傅立叶变换)

光学图像处理 实 验 报 告 学生姓名: 班级: 学号: 指导教师: 日期:

一、实验室名称: 二、实验项目名称: 图像变换 三、实验原理: 傅立叶变换是信号处理领域中一个重要的里程碑,它在图像处理技术中 同样起着十分重要的作用,被广泛的应用于图像特征提取、图像增强与恢复、噪声抑制、纹理分析等多个方面。 1、离散傅立叶变换(DFT ): 要把傅立叶变换应用到数字图像处理当中,就必须处理离散数据,离散傅 立叶变换的提出使得这种数学方法能够和计算机技术联系起来。 正变换: 逆变换: 幅度: 相位角: 功率谱: 2、快速傅立叶变换(FFT ): 离散傅立叶变换运算量巨大,计算时间长,其运算次数正比于N^2,当 N 比较大的时候,运算时间更是迅速增长。二快速傅立叶变换的提出将傅立叶变换的复杂度由N^2下降到了NlgN/lg2,当N 很大时计算量可大大减 少。 而快速傅立叶变换(FFT)需要进行基2或者基4的蝶形运算,算法上面 较离散傅立叶变换困难。 ∑∑-=-=+-=1010)//(2),(1),(M x N y N vy M ux j e y x f MN v u F π∑∑-=-=+=1010) //(2),(),(M x N y N vy M ux j e v u F y x f π

3、离散余弦变换(DCT): 为FT 的特殊形式,被展开的函数是实偶函数的傅氏变换,即只有余弦项。变换核固定,利于硬件实现。具有可分离特性,一次二维变换可分解为两次一维变换。 正变换: 逆变换: 其中: 四、实验目的: 1. 了解各种图像正交变换的作用和用途; 2. 掌握各种图像变换的方法和原理; 3. 熟练掌握离散傅立叶变换(DFT)、离散余弦变换(DCT)的原理、方法和实 现流程,熟悉两种变换的性质,并能对图像傅立叶变换的结果进行必要解释; 4. 熟悉和掌握利用Matlab 工具进行图像傅立叶变换及离散余弦变换的基本 步骤、MATLAB 函数使用及具体变换处理流程; 5. 能熟练应用Matlab 工具对图像进行FFT 及DCT 处理,并能根据需要进行 必要的频谱分析和可视化显示。 五、实验内容: 1、读取以下两幅图像,分别对其进行离散傅立叶变换(FFT)。变换处理中,要求进行频谱原点平移到(0,0),并能分别显示出其2D 频谱图。通过对变换结果的分析,可以看出变换结果满足傅立叶变换(FT )的什么性质。 2、任意读取一幅灰度图像,对其进行FFT 变换,变换结果要求分别展示其64×64、128×128、256×256 的频谱图(注:为便于分析,要求变换结果的频率原点移动到(0.0)),且对64×64 频谱图能进行3D 显示。 3、任意读取一幅灰度图像,对其进行DCT 变换。变换处理过程要求利用正交变换矩阵法及matlab 的dct2()函数两种方法分别进行,并对变换结果进行比较和分析。 六、实验器材(设备、元件): ()()()()??? ??+??? ??+=∑∑-=-=N y v N x u y x f v c u c v u F N x N y c 212cos 212cos ,)()(,1010ππ∑∑-=-=??????+??????+=101 02)12(cos 2)12(cos ),()()(),(N u N v c N v y N u x F y c x c y x f ππυμ?????-≤≤==1 1201)(N k N k N k c

光电图像处理论文

数字图像的盲复原研究

1 引言 图像复原,是指消除或减轻图像获取过程中所发生的质量下降,也就是退化,使它趋向于复原成退化前的理想图像。 图像复原的难易程度主要取决于对退化过程的先验知识掌握的精确程度。如果我们对退化的类型、机制和过程都十分清楚,那么就可以根据图像退化的先验知识建立退化模型,采用各种反退化处理方法,如维纳滤波等,对图像进行复原处理,这是比较典型的图像复原方法。然而,在实际的图像处理时,许多先验知识(包括图像的及成像系统的先验知识)往往并不具备。一方面,某些情况下,要获得图像的先验知识需要付出很大的代价,甚至有的还是物理不可实现的。如,在遥感和天文应用中,得出原始图像的统计模型或获得从未被拍摄过的景象的特定信息都是十分困难的;在航空拍摄和天文学中,因为点扩散函数(PSF)的变化难以把握,所以无法获得模糊过程的精确模型;在医学、电视会议等实时图像处理中,PSF的参数很难预知,从而也无法实时地恢复图像。另外,用于估计退化过程的识别技术还会产生很大的误差,以致于复原出的图像存在人为假象。由此看来,图像退化是不可避免的,同时又很难用硬件准确测出图像系统的PSF。基于以上原因,提出了图像盲复原技术这一课题。 图像盲复原是指在图像系统(即退化过程)的信息全部或部分未知的情况下,通过退化图像的特征来估计真实图像和模糊算子的过程。不管从理论上,还是从实际操作上,都是一个十分困难的问题。尽管对经典的线性图像复原己进行过深入的研究,但这些方法并不能直接应用于图像的盲复原,而是有待于进一步的探讨。 另外,对图像复原结果的评价也应确定一些准则,这些准则包括最小均方误差(MMSE)准则、加权均方准则、最大墒准则等。 本章通过对己有算法的研究来讲述图像盲复原的基本原理和方法,探讨它的发展趋势和价值。 2、图像的成像模型 图像复原的首要任务是建立图像的退化模型,即首先必须了解、分析图像退化的机理,并用数学模型表现出来。由于图像退化的原因很多,退化机理比较复杂,因此,要提供一个完善的数学模型是非常复杂和困难的。

光电图像处理实验报告(图像增强)

电子科技大学 实 验 报 告 学生姓名: XXX 学号: XXXXXXXXXX 指导教师: XXX 日期: 2010年3月25日

一、实验室名称: 光电楼327机房 二、实验项目名称: 图像增强 三、实验原理: 图像在生成、获取、传输等过程中,受照明光源性能、成像系统性能、通道带宽和噪声等因素的影响,造成对比度偏低、清晰度下降、并引入干扰噪声。 因此,图像增强的目的,就是改善图像质量,获得更适合于人眼观察、或者对后续计算机处理、分析过程更有利的图像。图像增强是有选择地突出某些对人或计算机分析有意义的信息,抑制无用信息,提高图像的使用价值。 1、 对数与指数变换提高对比度 (1) 对数变换,低灰度区扩展,高灰度区压缩。 (2) 指数变换,高灰度区扩展,低灰度区压缩。 对合适的图像选择对数变换或者指数变换,均可提高图像对比度。 c b y x f a y x g ln ] 1),(ln[),(++ =1 ),(]),([-=-a y x f c b y x g

2、中值滤波 中值滤波法是把邻域内所有像素按灰度顺序排列,然后取中间值作为中心像素的输出。中值滤波可以有效的去除椒盐噪声。 四、实验目的: 1、熟练掌握各种灰度域变换的图像增强原理及方法; 2、熟悉直方图均衡化和直方图规格化的原理及方法; 3、了解空域滤波中常用的平滑和锐化滤波器; 4、熟悉和掌握利用Matlab 工具进行图像的读、写、显示及基本的图像处理 步骤; 5、利用Matlab 工具进行图像增强处理。 五、实验内容: 1、读取一幅低对比度图像,分别对其进行对数变换与指数变换。进行变换前, 应根据需要分别选取合适的指数和对数函数(即确定a、b、c 等调节因子),画出指数和变换曲线。程序设计及处理过程中,要求在同一窗口中分别显示 原始图像、变换结果及其直方图。 2、读取一幅含有椒盐噪声的被污染图像,并对其进行中值滤波处理。要求在 同一窗口中显示原始图像及中值滤波的结果。(选作内容) 六、实验器材(设备、元件): 计算机,Matlab软件 七、实验步骤: 1、对数与指数变换提高对比度 ⑴打开计算机,从计算机中选择一幅对比度较低的图像作为原始图像。 ⑵观察图像类型,选择合适的提高对比度的方法,指数变换或者对数变换。 ⑶画出程序设计流程图(图一),在Matlab中输入代码调入图像。 ⑷选择将图像进行指数变换,设置常数a,b,c,并输出显示变换曲线。 ⑸输出显示原图像和变换后图像以及其直方图,观察直方图和图像,看是 否达到提高对比度的效果,若未达到,重新设置常数a,b,c。直到图像对 比度提高,并且变换后直方图上灰度分布较原直方图广。 ⑹记录下数值,并将各图存储。

光电图像处理课程论文——光电检测器件的性能比较与应用选择

光电检测器件的性能比较与应用选择 1.光电检测器件的分类 根据光电检测器件对辐射的作用形式的不同(也就是工作机理的不同),可将其分为热电检测器件和光子检测器件两大类。 热电检测器件目前常用的有热释电器件、热敏电阻、热电偶和热电堆等。他们的特点如下。 (1)响应波长无选择性。对从可见光到远红外的各种波长的辐射,热电检测器件都表现出同样的敏感。 (2)响应慢。热电检测器件吸收辐射后再产生信号所需要的时间长,一般在几毫秒以上。 光电检测器件应用广泛,通常所说的光电检测器件指的就是光子检测器件。这种器件可分两大类:一类是电真空或光电发射型检测器件,如光电管和光电倍增管;另一类是固体或半导体光电检测器件,如光导型(光敏电阻)和光伏型(光电池与光电二、三极管等)检测器件。它们的特点如下。 (1)响应波长有选择性,因这些器件都存在某一截止波长λ,超过此波长则器件无响应。 (2)响应速度快,一般为几纳秒或几百微秒。 2.光信号的类型 在应用光电检测器件的测量仪器和系统中,光电器件接收的光信号有以下几种。 (1)通断光信号光信号的通断是指由被测对象导致的投射到光电器件上的光信号的截断或通过,如光电开关、光电报警器等接收到的即是通断光信号。此时的光电器件不考虑线性,但要考虑灵敏度。 (2)按一定频率变化的光信号这种光信号是有一定频率的,必须使所选器件的上限截止频率(最好是最佳工作频率)大于输入信号的频率,这样才能测出输入信号的变化。 (3)幅度变化的光信号当被测对象对光的反射率、透过率发生变化或被测对象本身的光辐射强度变化时,光信号幅度大小亦随之改变。为准确测出光信号幅度大小的变化,必须选用线性好、响应快的器件,如光电倍增管、光电二极管等。 (4)有色度差的光信号当被测对象本身辐射的色温存在差异或者表面颜色变化时必须选择具有合适光谱特性的光电器件。

光电图像处理

光 电 图 像 处 理 XX XXXXX XXXXXXXX

一、论述光电图像处理的概念、内容及意义。 概念:光电图像处理是指计算机系统通过光学系统和光电图像传感器,对图像采集和对原始图像的加工,将自然界中的模拟图像转换为计算机中的数字图像,进而对图像进行处理和分析,使之能具备更好的视觉效果或能满足某些应用的特定要求。 内容:光电图像处理是一门多学科的综合学科,它会聚了光学、电子学、数学、摄影技术和计算机技术等众多学科方面。主要内容包括两方面的,一是光电成像技术,它是为弥补人类视觉缺陷和扩展人类自身的视觉功能;二是数字图像处理技术,它为改善图像的视觉效果,使计算机具有与人类一样的视觉功能。 意义:图像处理的目的是改善图像质量,提取有用信息,识别预定目标等,以此极大改变,方便人们的生活。

二.车牌识别技术 1.引言 近年来,随着全球经济化形式的不断发展人们的物质生活需要日益提高,私人拥有机动车辆的数量呈几何增长态势,车辆的普及成为了目前的必然趋势。在此情况下仅仅依靠大力发展交通设施已不能解决现在已经存在的交通拥挤,环境污染加剧,交通事故频发等问题。汽车数量的增加日益成为制约城市发展的重要因素之一,由于城市空间的严格限制,修建新道路所需的巨额资金以及环境的压力,相比于建设更多的道路基础设施,建立完善的道路网络缓解道路交通增长的需求,大力发展智能交通系统,才有可能真正解决日益严重的交通问题。 2.车牌识别技术简介 随着模式识别技术的发展,车牌字符识别已成为智能交通系统的重要组成部分它可以从复杂的背景中准确地提取,识别汽车牌照,车辆类型等信息,在交通控制和监视中占有很重要的地位,具有广泛的应用前景。所以汽车牌照的识别问题已经成为现代交通工程领域中研究的重点和热点问题之一。 由于受环境待识别车辆的车型复杂和车牌位置不固定等的影响,给车牌定位方法的选择带来一定的困难。车牌本身的污染,缺损也会影响识别率。一些车辆由于天气或是路况不好使得车牌被灰尘,泥土沾染,另外还有一些车辆行驶时间较长车牌上的字符已经部分缺损了,严重的时候,人眼也很难辨别车牌上的字符,这些情况都会影响系统的识

数字图像处理课程设计报告

本科综合课程设计报告 题 目 ____________________________ 指导教师__________________________ 辅导教师__________________________ 学生姓名__________________________ 学生学号__________________________ _______________________________ 院(部)____________________________专业________________班 ___2008___年 _12__月 _30__日 数字图像处理演示系统 信息科学与技术学院 通信工程 052

1 主要内容 1.1数字图像处理背景及应用 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 1.2 图像处理演示系统设计要求 能加载和显示原始图像,显示和输出处理后的图像; 系统要便于维护和具备可扩展性; 界面友好便于操作; 1.3 图像处理演示系统设计任务 数字图像处理演示系统应该具备图像的几何变换(平移、缩放、旋转、翻转)、图像增强(空间域的平滑滤波与锐化滤波)的简单处理功能。 1.3.1几何变换 几何变换又称为几何运算,它是图像处理和图像分析的重要内容之一。通过几何运算,可以根据应用的需要使原图像产生大小、形状、和位置等各方面的变化。简单的说,几何变换可以改变像素点所在的几何位置,以及图像中各物体之间的空间位置关系,这种运算可以被看成是将各物体在图像内移动,特别是图像具有一定的规律性时,一个图像可以由另外一个图像通过几何变换来产生。实际上,一个不受约束的几何变换,可将输入图像的一个点变换到输出图像中的任意位置。几何变换不仅提供了产生某些特殊图像的可能,甚至还可以使图像处理程序设计简单化。从变换性质来分可以分为图像的位置变换、形状变换等 1.3.2图像增强 图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像中的某些“有用”的信息,削弱或去除不需要的信息,以达到扩大图像中不同物体特征之间的差别,使处理后的图像对于特定应用而言,比原始图像更合适,或者为图像的信息提取以及其他图像分析技术奠定了基础。一般情况下,经过增强处理后,图像的视觉效果会发生改变,这种变化意味着图像的视觉效果得到了改善,某些特定信息得到了增强。

光电图像处理

硕士研究生课程论文 论 文 题 目: 光电图像处理设备分辨率检测系统 课 程 名 称: 光电图像处理 研 究 生 姓 名: 庞 锦 学 号: 1049721103104 所属专业、班级: 物理电子学、1108班 论文提交时间: 2012 年 05 月 20 日

光电图像处理设备分辨力检测系统 摘要:针对光电图像处理设备分辨力测试自动化程度低、受人为因素影响大的问题,提出一种新型光机电一体化分辨力自动测试系统。该系统能够通过安装于运动控制机构上的2个多光谱可控光源,模拟无穷远光束分辨力图案,实现光电图像处理设备的系统空间分辨力、时间分辨力测试。实验验证了该系统的有效性。关键词:分辨力;自动测试系统;光电设备检测 Resolution Test System for a New Optoelectronic Image Processing Equipment Abstract: Concerning the low degree automation of resolution testing and the effect by artificial factors of opto-electronic image-processing equipment, a new type resolution automatic testing system of the light, mechanical and electrical integration is presented. The two multispectral controllable light sources, which are installed on the pattern of movement control agencies of the system are used to analog resolution picture of infinite beam, the system spatial resolution, time resolution testing of the photoelectric image-processing equipment are realized. The effectiveness of the system is verified by the experience. Key words: Resolution; Automatic test system; Photoelectric detection equipment

数字图像处理图像变换实验报告

数字图像处理图像变换实验 报告 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

实验报告实验名称:图像处理 姓名:刘强 班级:电信1102 学号:1404110128

实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件 PC机数字图像处理实验教学软件大量样图 二、实验目的 1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的 简单操作; 2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的 具体步骤; 3、观察图像的灰度直方图,明确直方图的作用和意义; 4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效 果; 5、观察图像正交变换的结果,明确图像的空间频率分布情况。 三、实验原理 1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤 图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。 图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为: B(x,y)=f[A(x,y)] 其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。一旦灰度变换函数确定,该点运算就完全确定下来了。另外,点运算处理将改变图像的灰度直方图分布。点运算又被称为对比度增强、对比度拉伸或灰度变换。点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。 图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。 实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:

1 光电图像处理实验(图像基本操作).

光电图像处理实验报告 学生姓名: 班级: 学号: 指导教师: 实验日期:

一、实验名称:图像基本操作 二、实验目的: 1.掌握MATLAB的操作窗口功能; 2.熟练掌握MATLAB的图像处理基本操作,熟练掌握数字图像读取、显示、保存; 3.熟练掌握MATLAB各种图像格式文件的互相转换。 三、实验原理: MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB工作环境: 桌面包括4个子窗口:命令窗口、工作空间窗口、当前路径窗口、历史命令窗口。 命令窗口是用户在提示符(>>)处键入MATLAB命令和表达式的地方,也是显示那些命令输出的地方。 工作空间窗口显示当前的变量名称和值。双击可以启动数组编辑器。 当前路径窗口显示当前的工作目录。工作目录的内容显示在当前目录窗口内。可通过Set Path改变。 历史命令窗口包含用户已在命令窗口中输入的命令的记录。如果要重新执行以前的MATLAB命令,可在历史命令窗口中双击该命令即可。 使用MATLAB编辑器创建M文件:MATLAB编辑器既是用于创建M文件的文本编辑器,

光电成像原理

光电成像原理论文 院系:物理学系 专业:光信息科学与技术 姓名:王世明 学号:2007113143

嵌入式光电成像系统及高分辨率的实现 王世明 (西北大学2007级陕西西安 710069) 摘要:自上世纪初人类揭示光电效应的本质以来,光电成像技术一直是成像领域的热点技术,并得到了迅速的发展。目前,光电成像技术已广泛应用于国防、航天、生物科学、化工检测、工业监控乃至日常消费等领域。本论文分析了目前光电成像系统结构和性能上的优势和不足,从提高系统移动性和集成度、突破传输受限和增强系统实时处理和分析三个方面出发,设计了一套新型的光电成像系统,并详细分析了这套系统的整体构造、软硬件设计和实现形式、调试技术和实验结果。 嵌入式技术的引入,可以大大减小光电成像系统的体积,降低功耗,提高便携性,从而扩展光电成像技术的应用领域。本论文将该系统应用于图像采集,得到了理想的实验结果。论文最后,总结了设计过程中所做的工作和创新点,同时对于系统的进一步完善和开发进行了展望。本文主要介绍了光电成像原理的发展过程及其在实际生活中的运用,为我们介绍了具体的应用及未来的发展前景。 实现成像系统的超高分辨是光电探测领域中探索和追求的重要目标。 对提高天文观测、空间侦察和资源探铡的信息容量及精度具有重要意义。 归纳总结了近年来国内外从光学系统结构、光电探测器及软件重建等方面对提高系统分辨能力所进行的部分研究和进展.结合本实验室在这一领城开展的研究,时其中的一些理论及工程方法探索进行了阐述和分析,旨在为进一步实现超高分辨光电成像系统的研究提供建设性参考意见。 关键词:光电成像、嵌入式系统、ADS调试、图像采集 一.光电成像系统的发展 现代人类是生活在信息时代,获取图像信息是人类文明生存和发展的基本需要,据统计,在人类接受的信息中,视觉信息占到了60%。但是由于视觉性能的限制,通过直接观察所获得的图像信息是有限的。首先是灵敏度的限制,在照明不足的情况下人的视觉能力很差;其次是分辨力的限制;还有时间上的限制,已变化过的景象无法留在视觉上。总之,人的直观视觉只能有条件地提供图像信息。在很久以前,人们就已经开始为开拓自身的视觉能力而探索,望远镜、显微镜、胶片照相机等的应用,为人类观察和保留事物景象提供了方便。直到上世纪20年代,爱因斯坦完善了光与物质内部电子能态相互作用的量子理论,人类从此揭开了内光电效应的本质。同时,随着半导体理论发展和随之研制出来的各种光电器件,内光电效应得到了广泛的应用。而在外光电效应领域,1929年科勒制成了第一个实用的光电发射体一银氧铯光阴极,随后成功研制了红外变像管,实现了将不可见的红外图像转换为可见光图像。随之而来的是紫外变像管和X射线变像管,人类的视觉光谱范围获得了很大的扩展。上世纪30年代,人类又开始为扩展视界而致力于电视技术的研究。以弗兰兹沃思开发的光电析像器为起端,伴随而来的是众多摄像器件的诞生,超正析像管、分流摄像管、视像管、热释电摄像管等。1976年,美国贝尔实验室发现电荷通过半导体势阱发生转移的现象,利用

数字图像处理图像变换实验报告

实验报告 实验名称:图像处理 姓名:刘强 班级:电信1102 学号:1404110128

实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件 PC机数字图像处理实验教学软件大量样图 二、实验目的 1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的 简单操作; 2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体 步骤; 3、观察图像的灰度直方图,明确直方图的作用和意义; 4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果; 5、观察图像正交变换的结果,明确图像的空间频率分布情况。 三、实验原理 1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤 图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。 图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为: B(x,y)=f[A(x,y)] 其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。一旦灰度变换函数确定,该点运算就完全确定下来了。另外,点运算处理将改变图像的灰度直方图分布。点运算又被称为对比度增强、对比度拉伸或灰度变换。点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。 图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。 实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:

相关文档
相关文档 最新文档