文档库 最新最全的文档下载
当前位置:文档库 › 高中数学(苏教版选修2-3)双基达标训练:2.5.1 离散型随机变量的均值

高中数学(苏教版选修2-3)双基达标训练:2.5.1 离散型随机变量的均值

高中数学(苏教版选修2-3)双基达标训练:2.5.1 离散型随机变量的均值
高中数学(苏教版选修2-3)双基达标训练:2.5.1 离散型随机变量的均值

2.5 随机变量的均值和方差 2.5.1 离散型随机变量的均值

双基达标 (限时15分钟)

1.设15 000件产品中有1 000件次品,从中抽取150件进行检查,则查得次品数的数学期望为________.

解析 设查得的次品数为随机变量X ,

由题意得X ~B ? ?

???150,115,所以E (X )=150×115=10.

答案 10

2.随机变量X 的分布列为

则E (3X +4)=解析 ∵E (X )=1×0.5+2×0.2+4×0.3=2.1, ∴E (3X +4)=3E (X )+4=6.3+4=10.3 答案 10.3

3.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).

解析 X 的可能取值为0,1,2,

P (X =0)=C 25C 27=1021,P (X =1)=C 15C 1

2C 27

=10

21,

P (X =2)=C 22

C 27

=121,

∴E (X )=1021×0+1021×1+121×2=4

7. 答案 4

7

4.若随机变量X ~B (n,0.6),且E (X )=3,则P (X =1)的值是________. 解析 E (X )=n ×0.6=3,∴n =5,

∴P (X =1)=C 15(0.6)1×0.44=3×0.44

.

答案 3×0.44

5.随机变量X 的分布列是

E (X )=7.5解析 由E (X )=4×0.3+7a +9b +10×0.2=7.5, 得7a +9b =4.3,

又a +b +0.3+0.2=1,∴a +b =0.5. 解得a =0.1,b =0.4. 答案 0.1 0.4

6.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是1

3.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时: (1)求X =2时的概率; (2)求X 的数学期望.

解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24

? ????232? ????132

=827

. (2)法一 X 的所有可能取值为0,1,2,3,4,依题意知

P (X =k )=C k 4? ????23k ? ??

??134-k

(k =0,1,2,3,4).

∴X 的概率分布列为

∴数学期望E (X )=0×18+1×881+2×881+3×3281+4×1681=8

3. 法二 ∵X 服从二项分布,即X ~B ? ?

?

??4,23,

∴E (X )=4×23=8

3.

综合提高 (限时30分钟)

7.投掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X 的期望是________. 解析 在一次试验中成功的概率为1-46×46=5

9, ∵X ~B ? ?

???10,59,∴E (X )=np =10×59=509.

答案 50

9

8.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:

解析 由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的期望是6 000×0.96+(-25 000)×0.04=4 760(元). 答案 4 760

9.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,射击停止后尚余子弹的数目X 的数学期望值为________. 解析 X 的所有可能取值为3,2,1,0,其分布列为

∴E (X )答案 2.376

10.设随机变量X 的分布列为P (X =k )=p k (1-p )1-k (k =0.1,0<p <1),则E (X )=________.

解析 X 服从两点分布,∴E (X )=1-p . 答案 1-p

11.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.

(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;

(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列

和数学期望.

解(1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”

为事件A,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”

为事件B.

由于事件A、B相互独立,

所以P(A)=C25

C26=

2

3,P(B)=

C24

C26=

2

5,

所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P(A·B)=

P(A)·P(B)=2

2

5=

4

15.

(2)X可能的取值为0,1,2,3,则

P(X=0)=4

15,P(X=1)=

C25

C26·

C12·C14

C26+

C15

C26·

C24

C26=

22

45,

P(X=3)=C15

C26·

1

C26=

1

45.

P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=2 9.

故X的分布列为

所以X的数学期望E(X)=0×4

15+1×

22

45+2×

2

9+3×

1

45=1 (人).

12.第16届亚运会于2010年11月12日在广州举办,运动会期间来自广州大学和中山大学的共计6名大学生志愿者将被随机平均分配到跳水、篮球、体操

这三个比赛场馆服务,且跳水场馆至少有一名广州大学志愿者的概率是3 5.

(1)求6名志愿者中来自广州大学、中山大学的各有几人?

(2)设随机变量X为在体操比赛场馆服务的广州大学志愿者的人数,求X的分布列及均值.

解(1)记“至少一名广州大学志愿者被分到跳水比赛场馆”为事件A,则A 的对立事件为“没有广州大学志愿者被分到跳水比赛场馆”,

设有广州大学志愿者x人(1≤x<6),

则P(A)=1-C26-x C24

C26C24=

3

5,即x

2-11x+18=0,

解得x=2或x=9(舍去),

即来自广州大学的志愿者有2人,来自中山大学的志愿者有4人.(2)X的所有可能取值为0,1,2.

P(X=0)=C24C24

C26C24=

2

5,P(X=1)=

C12C14C24

C26C24=

8

15,

P(X=2)=

C24

C26C24=

1

15.

故X的分布列为

从而E(X)=0×2

5+1×

8

15+2×

1

15=

2

3(人).

13.(创新拓展)某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

方案1:运走设备,此时需花费4 000元;

方案2:建一保护围墙,需花费1 000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元;

方案3:不采取措施,此时,当两河流都发生洪水时损失达60 000元,只有一条河流发生洪水时,损失为10 000元.

(1)试求方案3中损失费X(随机变量)的分布列;

(2)试比较哪一种方案好.

解(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B=0.18),所以有且只有一条河流发生洪水的概率为P(A·B+A·B)=P(A)·P(B)+P(A)·P(B)=0.34,两河流同时发生洪水的概率为P(A·B)=0.045,都不发生洪水的概率为P(A·B)=0.75×0.82=0.615,设损失费为随机变量X,则X的分布列为

(2)对方案1 1 000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56 000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为1 000+56 000×0.045=3 520(元).

对于方案3:损失费的数学期望为

E(X)=10 000×0.34+60 000×0.045=6 100(元),

比较可知,方案2最好,方案1次之,方案3最差.

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

高中数学选修4-4知识点清单

高中数学选修4-4 坐标系与参数方程知识点总结 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系. (2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P 2.

设点P(x,y)是平面直角坐标系中的任意一点,在变换φ 点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示 2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ). (1)极坐标化直角坐标 =ρcosθ, =ρsinθW. (2)直角坐标化极坐标 2=x2+y2, θ=y x(x≠0). 三简单曲线的极坐标方程 1.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 2.圆的极坐标方程 (1)特殊情形如下表:

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

高中数学选修-5知识点(最全版)

高中数学选修4-5知识点 1.不等式的基本性质 1.实数大小的比较 (1)数轴上的点与实数之间具有一一对应关系. (2)设a 、b 是两个实数,它们在数轴上所对应的点分别是A 、B .当点A 在点B 的左边时,a b . (3)两个实数的大小与这两个实数差的符号的关系(不等式的意义) ???a >b ?a -b >0 a = b ?a -b =0a ,<,≥,≤共5个. (2)相等关系和不等关系 任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的. (3)不等式的定义:用不等号连接起来的式子叫做不等式. (4)不等关系的表示:用不等式或不等式组表示不等关系. 3.不等式的基本性质 (1)对称性:a >b ?b b ,b >c ?a >c ; (3)可加性:a >b ,c ∈R ?a +c >b +c ; (4)加法法则:a >b ,c >d ?a +c >b +d ; (5)可乘性:a >b ,c >0?ac >bc ;a >b ,c <0?ac b >0,c >d >0?ac >bd ; (7)乘方法则:a >b >0,n ∈N 且n ≥2?a n >b n ; (8)开方法则:a >b >0,n ∈N 且n ≥2?n a >n b . (9)倒数法则,即a >b >0?1a <1b . 2.基本不等式 1.重要不等式 定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式 (1)定理2:如果a ,b >0,那么a b +≥ a +b 2≥ab),当且仅当a =b 时,等号成立. (2)定理2的应用:对两个正实数x ,y , ①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

高中数学苏教版教材目录(必修+选修)

苏教版 -----------------------------------必修1----------------------------------- 第1章集合 1.1集合的含义及其表示 1.2子集、全集、补集 1.3交集、并集 第2章函数 2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法 2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性 2.3映射的概念 第3章指数函数、对数函数和幂函数 3.1指数函数3.1.1分数指数幂3.1.2指数函数 3.2对数函数3.2.1对数3.2.2对数函数 3.3幂函数 3.4函数的应用3. 4.1函数与方程3.4.2函数模型及其应用 -----------------------------------必修2----------------------------------- 第1章立体几何初步 1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球 1.1.3中心投影和平行投影1.1.4直观图画法 1.2点、线、面之间的位置关系1. 2.1平面的基本性质 1.2.2空间两条直线的位置关系1.平行直线2.异面直线 1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直 1.2.4平面与平面的位置关系1.两平面平行2.平面垂直 1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步 2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式 3.一般式 2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离 2.1.6点到直线的距离 2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2. 3.1空间直角坐标系2.3.2空间两点间的距离 -----------------------------------必修3----------------------------------- 第1章算法初步 1.1算法的意义 1.2流程图1. 2.1顺序结构1.2.2选择结构1.2.3循环结构 1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句 1.3.4循环语句 1.4算法案例 第2章统计 2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法 2.1.2系统抽样2.1.3分层抽样 2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2. 3.1平均数及其估计2.3.2方差与标准差 2.4线性回归方程 第3章概率 3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率 3.2古典概型 3.3几何概型 3.4互斥事件 -----------------------------------必修4----------------------------------- 第1章三角函数 1.1任意角、弧度1.1.1任意角1.1.2弧度制 1.2任意角的三角函数1. 2.1任意角的三角函数1.2.2同角三角函数关系 1.2.3三角函数的诱导公式 1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质 1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用 第2章平面向量 2.1向量的概念及表示 2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘 2.3向量的坐标表示2. 3.1平面向量基本定理2.3.2平面向量的坐标运算 2.4向量的数量积 2.5向量的应用 第3章三角恒等变换 3.1两角和与差的三角函数 3.1.1两角和与差的余弦 3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式 -----------------------------------必修5----------------------------------- 第1章解三角形 1.1正弦定理 1.2余弦定理 1.3正弦定理、余弦定理的应用 第2章数列 2.1数列 2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式 2.2.3等差数列的前n项和 2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式 2.3.3等比数列的前n项和 第3章不等式

高中数学选修4系列1-4-5知识点总结(全套)

1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

全国高中生创新知识与能力培育计划能力测试(高一数学)

全国高中生创新知识与能力培育计划能力测试 高一数学 (时间:60分钟每小题5分,共100分) 数学符号说明:R 表示实数集,Z 表示整数集,Z +表示正整数集。 1. 已知{}A =博雅,优才,{}B =清华,北大,则一一映射:f A B →的个数为(). A .1 B .2 C .3 D .4 2. 如图,圆O 的内接正六边形 ABCDEF 的边心距OM =则弧 BC 的长为(). A .3π B .23π C .π D .43 π 3. 函数()lg(91)()f x x x = +-∈的定义域中所有元素之积为(). A .0 B .1 C .2 D .6 4. 称两条相互垂直的直线为一组垂线.平面内5条直线构成n 组垂线,n 不可能为(). A .3 B .4 C .5 D .6 5. 如图所示,有两种边长为1cm 的菱形框(选项A 腰长为1cm 的等腰三角形框(选项C ,D ),上点O 1cm 2cm 、的速度,行。记爬行时间为x 秒,两只蚂蚁的距离为cm y x A . B . C . D . A

6. 函数2()(13)3x x f x -=+?是(). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇且偶函数 7. 平面直角坐标xOy 中,点集{} (,)1,1x y x y x y -+≤≤所覆盖的平面图形的面积为() . A .0.5 B .1 C .2 D .4 8. 已知2333log (2015)log log 62 y x +-=( ),x y + ∈ ,则x 的最小值的各位数字之和为() . A .2 B .4 C .6 D .8 9. 已知二次函数()y f x =过原点,且(1)()1f x f x x -=+-,则2 ()3 f 的值为(). A .1 3 B .19 C .13 - D .19- 10. 微积分思想的萌芽可以追溯到公元前200多年,古 希腊大数学家阿基米德在《抛物线求积》中研究了如下问题:如图,在平面直角坐标系xOy 中,抛物线2 y x =与直线1y =所围图形为弓形AOB 。求弓形 AOB 面积S 。 我们可以这样解决该问题:如图,设矩形ABCD 平分2n 份,过等分点作x 轴的垂线,将面积S '分割求和,则 22222222222222221012(1)112322n n S n n n n n n n n n n ???? -'??++++<

高中数学选修1 2知识点总结

知识点总结 1-2知识点总结选修统计案例第一章

.线性回归方程1 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系?③线性回归方程:(最小二乘法) ay?bx?n??ynxxy??ii?1?i?b?其中,n2??2nxx?i?1?i? bx?a?y??. 注意:线性回归直线经过定点)y(x,n?)?yx)(y(x?ii.相关系数(判定两个变量线性相关性):21i??r nn??22)y?x)?y((x ii1?i1i?负相关; <0时,变量注: ⑴>0时,变量正相关;y,xyx,rr接近,两个变量的线性相关性越强;② ⑵①越接近于1||r||r时,两个变量之间几乎不存在线性相关关系。0于条件概率3.ABAB发生的概对于任何两个事件和发生的条件下,,在已知BAAAPBPB)|, ) 其公式为|(. 率称为发生时发生的条件概率记为(ABP)(=AP)( 4相互独立事件 AB PABPAPB) ,则,如果_((())(1)一般地,对于两个事件=,AB 相互独立.、称 AAAnPAAA PAPA)(…(2)如果_,),…,=相互独立,则有)(…(n2111 22PA). (n----BBAABAAB也相互独立.(3)如果与,与相互独立,则,与,

:5.独立性检验(分类变量关系)列联表(1)2×2为两个变量,每一个变量设BA,变变量都可以取两个值,;?A,A:AA112量;?BB:B,B112通过观察得到右表所示数据: 列联表.×2并将形如此表的表格称为2 (2)独立性检验B,×2列联表中的数据判断两个变量A根据2 列联表的独立性检验.是否独立的问题叫2×2 的计算公式统计量χ 2(3)2bc n ad)-(2=χ

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表 称为离散型随机变量离散型随机变量X ,简称X 的分布列。 (2)分布列的性质:①0,1,2,,i p i n ?g g g ;②11n i i p ==? (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x ==为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C --===g g g g 其中m i n {,m M n =,且* ,,,,)n N M N n M N N #?,称分布列为超几何分布列。如果随机变量X 的分布列

题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1) 该顾客中奖的概率; (2)该顾客获得的奖品总价值X 元的概率分布列.

高中数学离散型随机变量综合测试题(附答案)

高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量 一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X; ④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是() A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量; ③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是() A.小球滚出的最大距离 B.倒出小球所需的时间 C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数 [答案] D

[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是() A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=54,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是() A.2 B.2或1 C.1或0 D.2或1或0 [答案] C [解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选

高中数学选修2-3随机变量及其分布综合测试题

高中数学选修2-3随机变量及其分布综合测试题 一、选择题 1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某 超市一天中的顾客量X 其中的X 是连续型随机变量的是 A .① B .② C .③ D .①②③ 2.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球 D .至少取到一个红球的概率 3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则 “X >4”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚大于4点,第二枚也大于4点 C .第一枚为6点,第二枚为1点 D .第一枚为4点,第二枚为1点 4.随机变量X 的分布列为P (X =k )=) 1(+k k c ,k =1、2、3、4,其中c 为常数,则P (15 22X <<) 的值为 A .54 B .65 C .32 D .43 5. 甲射击命中目标的概率是 2 1,乙命中目标的概率是 3 1,丙命中目标的概率是 4 1. 现在三 人同时射击目标,则目标被击中的概率为 10 7 D. 5 4C. 3 2 B. 4 3A. 6.已知随机变量X 的分布列为P (X =k )=3 1,k =1,2,3,则D (3X +5)等于 A .6 B .9 C .3 D .4 7. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则EX = A .4 B .5 C .4.5 D .4.75 8.某人射击一次击中目标的概率为35 ,经过3次射击,此人至少有两次击中目标的概率为 A . 81125 B . 54125 C . 36125 D . 27125 9.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A. 0 B. 1 C. 2 D. 3 10.已知X ~B (n ,p ),EX =8,DX =1.6,则n 与p 的值分别是 A .100、0.08 B .20、0.4 C .10、0.2 D .10、0.8 11.随机变量2(,)X N μσ ,则随着σ的增大,概率(||3)P X μσ-<将会 A .单调增加 B .单调减小 C .保持不变 D .增减不定 12.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为: A .0.4 B .1.2 C .3 4.0 D .0.6

高中数学创新能力培养

高中数学创新能力培养 发表时间:2019-07-05T17:09:04.277Z 来源:《成功》2018年第10期作者:于梅 [导读] 高中学生的创新能力是贯穿于整个数学教学活动中的,要善于引导学生进行发现问题,分析问题,解决问题,并能够总结问题,从而在此基础上,培养学生的数学创新能力,为终身的学习打下良好的基础。教师要在教学活动中突出对学生的创新能力培养;教师应当创造一个活泼轻松的教学环境;教师应充分保护学生的学习兴趣和创新兴趣。 莱西市实验学校山东莱西 266600 【摘要】高中学生的创新能力是贯穿于整个数学教学活动中的,要善于引导学生进行发现问题,分析问题,解决问题,并能够总结问题,从而在此基础上,培养学生的数学创新能力,为终身的学习打下良好的基础。教师要在教学活动中突出对学生的创新能力培养;教师应当创造一个活泼轻松的教学环境;教师应充分保护学生的学习兴趣和创新兴趣。 【关键词】高中数学;创新能力;教学观念;教学环境 一、数学教学中的创新教育 在数学教学中,为了培养学生的创新能力,对学生进行必要的引导十分关键。 1.加强学生自学能力培养 从人生发展的角度而言,使学生具备自学的能力十分重要。很多情况下,一个人知识的获得需要依靠自身主动学习、积极探索钻研以及积累来实现。因此,在数学教学过程中,教师应当努力为学生创设自学的机会,对学生的自学给予科学的引导,提升学生的自学能力,进而带动学生创新能力的发展。通过实践可以发现,具有较强自学能力的学生学习主动性高,对知识的掌握更具有深度与广度,学习悟性高,学习能力强。 2.对学生进行逆向思维引导 从常规习惯相反的方向思考问题就是逆向思维。也就是说,逆向思维对问题的思考与探索是从完全相反或对立的角度展开的。逆向思维是对常规的一种突破,属于创新思维方法之一,具有绝妙奇特的特点。从高中数学教学实际情况来看,很多学生思维定式十分严重,缺乏创新思维。所以,在教学过程中,教师要积极引导学生敢于打破常规,能够从多角度甚至是反向与对立的角度对问题展开深入的思考与探索,进而产生创新的见解。 3.对学生的侧向思维进行引导 在特定条件下,利用曲径通幽、旁敲侧击的方法探索新的解决途径,拓展思维流向,由此及彼,从侧面新的角度探索问题解决的方法就是侧向思维法。侧向思维和逆向思维比较,主要区别表现为逆向思维是逆向的,侧向思维是平行同向的,其突出优点就是能够降低思维定式产生的消极影响,从侧面对问题进行换角度思考,增强问题解决的应变性,对现有的论证与观点进行突破,最终实现创新。 4.对学生的多向思维进行引导 逆向思维、侧向思维与别的发散形式的综合其实就是多向思维。多向思维能够调动思维的活力,从多角度对问题进行探索,有利于产生新颖独到的见解。在数学教学过程中,激活学生的创新思维,有利于学生主体地位的落实,更有利于学生创新能力的培养。 二、营造民主和谐的课堂氛围,为培养创新思维创造有利环境 构建民主和谐的课堂氛围,有利于学生创新思维的培养,所以丰富教学形式,优化课程结构,建立和谐的师生关系十分关键。教师应结合具体的教学内容综合运用合作学习、探究学习、自主学习等学习模式,增强课堂教学方式的灵活性。充分利用教材中的研究性素材,为培养创造性思维创设有利环境。创新能力需要在实践探索中形成,单纯依靠死记硬背是难以实现的,研究性学习为学生亲身参与实践创设了条件,学生在这样的切身体验中有利于形成主动探索、质疑与勤于动手的习惯,以增强学生的求知欲望,提高学生的创新能力,进而提升学生分析问题、解决问题的能力。例如,在讲“统计”时,可以让学生对学校每周学生体育锻炼时间的分布情况,以及自己家庭中每月开支情况展开调查统计。学生在这些过程中提升了自我与他人的交流合作能力,学生对信息收集与利用能力得到了锻炼与提高,为学生创新能力的培养创造了良好的条件。 三、激发学生的创新兴趣,培养学生的创新能力,实现持久发展 “兴趣是最好的老师”。如果学生对所学内容缺乏兴趣,就会在学习过程中表现得十分被动,难以使学生产生强烈的求知欲望。学生在数学学习过程中饱含兴趣,对学习就会形成创新的动力。兴趣是维持创新持久的动力条件。在数学教学过程中,教师要善于利用学生的好奇心,设置恰当的问题,激发学生的求知欲望。教师设置的问题,要结合学生的实际发展情况,做到难易适度,以激发学生对知识展开进一步探求的冲动,进而使学生自觉产生质疑,自觉探索解决,从而培养学生的创新能力。教师要充分激发学生的好胜心,这样学生才会敢于面对失败,在数学学习过程中勇于探索,具备较强的自信心。教师要善于为学生创设各种机会,使学生在数学学习中体验到成功的快乐,这对于学生创新能力的培养十分重要。教师要对学生多多鼓励与赞扬,培养学生学习的自信心。 总之,新课程改革突出强调了培养学生创新能力的重要性。在高中数学教学过程中,教师应把学生创新能力的培养贯穿于教学的各个环节,从多方位锻炼学生的思维发展,提升学生的质疑能力、探究能力,使学生形成较强的创新能力,这对于学生终身学习具有深远的意义。 参考文献: [1]杨帆.高中数学教学论文:更新观念,解放思想,迎接新课程. [2]林奇兵.创新数学教学思想激发学生学习兴趣. 【作者简介】于梅;出生日期:1981.9;性别:女;籍贯:山东省莱西市店埠镇;民族:汉族;毕业学校:山东理工大学;单位:莱西市实验学校;学历:本科;职称:二级教师;方向:高中数学教学与研究。

相关文档 最新文档