文档库 最新最全的文档下载
当前位置:文档库 › 影响轮胎磨损的因素探讨

影响轮胎磨损的因素探讨

影响轮胎磨损的因素探讨
影响轮胎磨损的因素探讨

影响轮胎磨损的因素探讨

庾 晋,周 洁

(中国人民解放军76140部队,广西桂林 541001)

摘要:介绍了影响轮胎磨损的正常因素,指出轮胎每行驶1000km或每月定期检查胎纹和胎侧,观察胎纹磨损是否异常,胎冠是否圆滑平整,胎侧是否起泡或隆起;轿车前胎的磨损比后胎大,最好每行驶10000km将轮胎换位,确保行车安全。

关键词:轮胎;磨损;使用;保养

中图分类号:TQ33611 文献标识码:B 文章编号:100628171(2002)1020629202

轮胎的磨损与许多因素有关,有正常磨损也有异常磨损。如果能较好地掌握有关轮胎磨损的常识,不但可延长轮胎使用寿命,节省开支,还能及时发现安全隐患,确保行车安全。

1 轮胎磨损的正常因素

轮胎磨损主要是由轮胎与地面之间产生的摩擦力造成的。汽车起步、转弯及制动等行驶条件的不断变化也加重轮胎磨损,转弯速度过快、起步过急、制动过猛还会加快轮胎的磨损。轮胎的磨损还与汽车的行驶速度有关,行驶速度愈快,轮胎磨损愈严重。路面质量也直接影响轮胎与地面的摩擦力,路面较差时轮胎与地面的滑动加剧,加快了轮胎的磨损。上述情况产生的轮胎磨损基本上是均匀的,属正常磨损。这是因为轮胎快速反复变形,由轮胎内摩擦产生摩擦热,同时外胎与内胎间、轮胎与轮辋间以及轮胎与路面间因摩擦也要生热,使轮胎温度上升,高温会使轮胎材料的物理性能下降,从而加速胎面磨损。

2 外界环境影响轮胎磨损

(1)路况。同一车型、同一种轮胎,在二级公路上的行驶里程比在一级公路上少20%~25%;在三级公路上的行驶里程则比在一级公路上少40%~45%;在碎石路面上的行驶里程仅为沥青

作者简介:庾晋(19652),男,湖南长沙人,硕士,中国人民解放军76140部队高级工程师,从事军事运输研究。路面、混凝土路面的60%左右;在山区公路上的行驶里程一般比在平原地区的同类路面上少15%~20%。

(2)气温。一般来说轮胎的正常工作温度为95℃,当外界温度为0℃时,允许轮胎温升为95℃;当外界温度为40℃时,允许轮胎温升为55℃。轮胎胎面温度每升高1℃,其磨损程度增加2%。轮胎在标准气压下,外界温度升高5℃,轮胎气压增大5~10kPa;外界温度升高10℃,轮胎气压增大20~30kPa。轮胎在同一路面、同一车速下行驶,外界温度升高5℃,轮胎行驶里程减少10%~15%;外界温度升高10℃,轮胎行驶里程减少45%。

(3)负载。若承载负荷超过额定负荷的10%,轮胎行驶里程减少8%;承载负荷超过20%,行驶里程减少35%;承载负荷超过50%,行驶里程减少59%;承载负荷超过100%,行驶里程减少80%。

3 轮胎磨损的警报标志

汽车轮胎的胎面不仅要保护胎体不受路面的冲击,而且还要与地面保持一定的附着力。附着力使汽车能够驱动、转向和制动。附着力越高,汽车的操纵稳定性越好,行驶越安全。当轮胎花纹磨损将尽时,即轮胎花纹磨损到距沟槽底不足116mm时,轮胎的滑移量显著增大,制动距离急剧增长。这不但使车辆的操纵稳定性变差,还会引发交通事故。

926

第10期 庾 晋等1影响轮胎磨损的因素探讨

世界各国都对汽车轮胎的磨损极限做了相应规定。美国规定汽车轮胎的磨损极限为花纹高度不小于110mm;日本汽车轮胎协会规定货车和客车轮胎的磨损极限为312mm,轿车轮胎的磨损极限为116mm。我国规定轿车子午线轮胎花纹磨损极限为116mm,货车和客车子午线轮胎花纹磨损极限为210mm,另外要求轮胎制造厂必须在轮胎上按标准设置磨损指示器。

多数国家在轮胎的胎冠面上沿轮胎圆周五等分处的花纹沟槽底部轴向设置一条高116mm的凸台。当轮胎花纹磨损到距沟槽底部116mm 时,沟槽开始断裂,即出现一条清晰的裂纹,此时提醒驾驶员必须更换轮胎。为便于查核,在埋设磨损指示器位置的两边胎肩上,相应地用印模印出“Δ”标志,以提示此处设置了轮胎磨损指示器。

4 观察轮胎磨损纠正行车错误

轮胎在与地面的长期磨损中,将汽车行驶中的不良现象“记录在案”,提醒驾驶员注意。若轮胎两肩磨损较严重,说明轮胎经常在低压或超载状态下行驶,应及时充气,避免超载。轮胎中部磨损主要是因为轮胎长期在气压过高的条件下使用,这样不仅降低轮胎的使用寿命,还易发生轮胎爆破现象。在大多数情况下,胎冠上波浪状磨痕与轮胎本身的质量以及轮胎的合理定位有关,如轮胎平衡不良、轮辋变形、轮毂轴承松旷等,一旦发现,应及时查找原因,排除故障。

汽车的前轮前束是保证汽车有良好转向特性的重要参数之一,前轮前束可以通过改变转向横拉杆的长度加以调整(调整时应注意正负前束)。不同车型的前束值各不相同,当前束值偏离了原设定值时,会造成转向轮胎的异常磨损,也使汽车前轮的转向特性变差,以致转向盘的自动回正功能部分丧失。通过观察转向轮轮胎胎冠锯齿状磨痕的方向变化,可以判别转向轮前束值大小的变化。转向轮前束值变小时,胎冠由里侧向外侧呈锯齿状磨损;相反,当胎冠由外侧向里侧呈锯齿状磨损时,说明前束值过大。

5 保养到位可延长轮胎使用寿命

平常用车前,先检查胎压是否正常。每行驶1000km或每月定期检查胎面花纹及胎侧,观察胎面花纹磨损是否异常,胎冠是否圆滑平整,胎侧是否起泡或隆起。若在胎压过小的情况下行驶,会造成胎面两侧过度磨损;若在高速行驶时车身发生抖动,这是因轮胎不平衡造成的,只要进行轮胎平衡校正即可;若出现行车方向不易控制或汽车斜着跑、直行时方向盘不正等现象,则是四轮定位出现了问题。及时发现和解决问题有助于避免轮胎的异常磨损。

6 对调轮胎可节约开支

一般轿车皆为前轮驱动形式,前胎的磨损比后胎大,因此只需将前后两对车轮对调便可再行走了。通常最好每行驶10000km对换一次。如果备用胎是相同尺寸的,便可把左前胎调往后方,而右后胎调往右前,右前调往左后,左后则作备用胎,备用胎又作左前,为一循环。此外,若现用轮胎为方向性轮胎,对调时只可前后对调,不可左右调换,否则影响排水性能。

7 结语

作为一名合格的驾驶员,一定要掌握轮胎磨损的规律,在驾驶过程中注意轮胎的使用与保养,以延长轮胎的使用寿命,确保行车安全。

收稿日期:2002204222

聚氨酯发泡轮旋转模具的构造

中图分类号:TQ33014+1 文献标识码:D

由台湾省许清津申请的专利(专利号 00258305,公布日期 2001209212)“聚氨酯发泡轮旋转模具的构造”,是于轮圈外部采用液态发泡材料成型出聚氨酯发泡轮胎的施工模具。模具座以模轴枢设置定位模,定位模上枢设有启闭模,两模具相对设有模穴,定位模与模具座相对设定模件与定模装置,使模具于固定轮圈后,以锁模装置锁住启闭模,整个模具即可以模轴为中心转动,使模穴内的轮胎原料得以充分流动,从而获得成品表面光滑的高品质物件。

(杭州市科技情报研究所 王元荪供稿)

036

轮 胎 工 业 2002年第22卷

汽车轮胎不正常磨损现象及其解决方法

汽车轮胎属于消耗品,每天都要和粗糙的路面深度接触,磨损自然是难免的事情,使用一段时间之后就必须更换。 但是一些不正常的磨损情况是会缩短轮胎的使用寿命,让它提前下岗的,而且有时可以从轮胎的磨损程度发现车子隐藏的故障,所以切不可掉以轻心。 一般来说如果车子没有问题,轮胎的磨损就应该是均匀的,要是您的车子轮胎的磨损并不均匀,那可能就是有问题了。 下面让我们来看看常见的几种轮胎不正常磨损现象及其解决方法: 轮胎的中央部分早期磨损:主要原因是充气量过大。 适当提高轮胎的充气量,可以减少轮胎的滚动阻力,节约燃油。 但充气量过大时,不但影响轮胎的减振性能,还会使轮胎变形量过大,与地面的接触面积减小,正常磨损只能由胎面中央部分承担,形成早期磨损。 如果在窄轮辋上选用宽轮胎,也会造成中央部分早期磨损。 轮胎两边磨损过大:主要原因是充气量不足,或长期超负荷行驶。 充气量小或负荷重时,轮胎与地面的接触面大,使轮胎的两边与地面接触工作而形成早期磨损。 轮胎的一边磨损量过大:主要原因是前轮定位失准。 当前轮的外倾角过大时,轮胎的外边形成早期磨损,外倾角过小或没有时,轮胎的内边形成早期磨损…… 轮胎胎面出现锯齿状磨损:主要原因是前轮定位调整不当或前悬挂系统位置失常、球头松旷等,使正常滚动的车轮发生滑动或行驶中车轮定位不断变动而形成轮胎锯齿状磨损。 个别轮胎磨损量大:个别车轮的悬挂系统失常、支承件弯曲或个别车轮不平衡都会造成个别轮胎早期磨损。 出现这种情况后,应检查磨损车轮的定位情况、独立悬挂弹簧和减振器的工作情况,同时应缩短车轮换位周期。

轮胎出现斑秃形磨损:在轮胎的个别部位出现斑秃形磨损的原因是轮胎平衡性差。 当不平衡的车轮高速转动时,个别部位受力大,磨损加快,同时转向不顺,操纵性能变差。 若在行驶中发现某一个特定速度方向有轻微抖动时,就应该对车轮进行平衡,以防出现斑秃形磨损。

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

轮胎异常磨损的特征及原因分析(精)

轮胎异常磨损的特征及原因分析

详细说明如下: 1.胎冠两肩磨损 造成胎肩过度磨损的原因主要有:汽车轮胎气压不足或汽车超载。这样将使轮胎胎冠接地印迹增宽,并且中部略向上拱起,因此招致胎冠两肩着地,形成胎冠两侧的偏磨,汽车超载或胎压不足还会引起油耗增大,并会造成胎温过高而产生爆裂。 2.胎冠中央磨损 引起胎冠中央过度磨损的主要原因是轮胎气压高于标准压力,从而使轮胎刚性增大,与地面接触面积减少。另外在行驶中随着轮胎内部 温度升高,轮胎气压还有继续升高的趋势。这样容易造成轮胎胎冠中部磨损增加,花纹底部开裂。 轮胎胎压过高还会使帘线层过度伸张,甚至产生折断、破损,并且容易在不平路面高速行驶时,由于遇到障碍物冲击而发生爆裂。 3.胎冠内侧或外侧产生偏磨 胎冠内侧或外侧偏磨的可能原因有: (1)前轮前束不合格;车轮外倾角过大或过小。

(2)汽车频繁地急转弯。 (3)汽车前轮长期没有换位。 前轮外倾角和前轮前束不合乎标准会造成转向轮产生偏磨。此外,有些后桥为独立式悬架的车桥,也存在车轮外倾角。如果调整不当,也会造成轮胎偏磨。 4.胎冠由外向内或由内向外呈锯齿状磨损 轮胎胎冠磨损呈锯齿状,均与汽车前束有关。如果胎冠由外侧向里侧呈锯齿状,说明汽车前轮前束过大(对于独立悬架的后轮来说,亦然);反之,若胎冠由里侧向外侧呈锯齿状磨损,说明汽车前轮前束过小。 5.胎冠呈波浪状或碟边状磨损 如果轮胎出现这两种形式的磨损,说明: (1)汽车车轮动平衡不良,在转动中出现抖动。 (2)汽车车轮轮毅磨损松旷,或是轮毅轴承松旷及调整不当。 (3)前轮定位不准。 (4)悬架系统有故障。 分析以上几种常见的轮胎磨损形式可以看出,造成这些现象的根本原因在于轮胎在使用中出现了不正常的变形,使得轮胎内部受力恶化,发热严重。变形越大,轮胎越易损坏。因而,正确使用和保养轮胎的关键,就在于保证轮胎的正常变形。这里提醒车主,在轮胎的使用中注意: (1)掌握轮胎充气标准,及时检查。 (2)掌握合理的行车速度。 (3)保持正确的前轮定位和良好的汽车技术状况。 (4)按操作规范驾驶汽车。

中重型汽车轮胎异常磨损探究

2015年第13期(总第328期) NO.13.2015 ( Cumulativety NO.328) 近年来由于汽车轮胎问题而引发的交通事故数不胜数,中重型汽车的事故发生率更是引起了社会各界的重视。轮胎的异常磨损问题在中重型汽车中显得尤为突出。因此,只有更好地识别汽车轮胎出现的各种异常磨损的原因,才能提出更好的改进措施,才能有效地规避事故的发生。 1 中重型汽车轮胎异常磨损的现状 中重型汽车一般有公交车、客运车、牵引车、自卸车、载货车、挂车等。但由于运输条件的不同,常会出现多种轮胎异常磨损的现象,下面对两种常见的汽车轮胎磨损现象及原因进行分析: 1.1 轮胎异常磨损分类 1.1.1 定点磨胎。汽车定点磨损的状况,可能是车辆动平衡的问题,可能是轮胎钢圈的问题,也可能是悬架系统的问题。 一般可以通过转动轮胎的方法进行检验,如果每次轮胎都停止在同一部位,则说明汽车轮胎的动平衡存在问题。 可通过检查轮胎的钢圈是否失圆,首先拆开防尘盘,检查制动鼓的内圆是否失圆;然后将轮胎拆下检查轮胎的内圆跳动情况。如果两次检查的数据相差较大,则属于钢圈问题,只有替换钢圈才能解决问题,如果数据相差不大,则属于抽动鼓失圆。 悬架系统造成的轮胎定点磨损问题,可用牵引车的使用进行说明。例如,在实际情况下,牵引车一般高度要是不同,就会产生悬架系统与主车不匹配的现象。在车辆进行货物装载时,悬架系统的水平臂并不是水平状态。此时,车辆就会受力不均匀,车轴负荷不同而导致受力较小的车轴在制动时抱死,进而导致制动鼓的失圆。长期负载不均匀会造成汽车轮胎抱死的现象,比如在2014年4月17日,合肥一辆801路公交车右车轮突然起火,这起事故虽然得到了司机的及时灭火,并没有产生较大影响。但是在事后究其原因主要是由汽车轮胎抱死的现象而产生。 1.1.2 锯齿形磨损。轮胎在使用过程中还可能产生花纹波浪型的磨损,这种磨损在轮胎表面的圆周上有明显的纹路差异。这种情况是车辆行进过程中轮胎的行进角度与车辆行驶方向存在一定的偏差或者在车辆拐弯时容易发生的磨损状况。这种现象的产生可能是轮胎安装的技术不到位。车轴固定不牢固会造成螺栓松动,轻则造成轮胎的波纹状磨损,重则产生轮胎脱落的现象。例如在2014年11月25日发生的一起货车事故就是由于轮胎突然飞出。这起事故发生在旅顺北路沙岗子路段,这辆货车属于半挂车,在行驶过程中货车左侧中间位置的两个轮胎突然脱落飞出,轮胎砸中一辆私家车和一台电动摩托车,同时砸向两个路人,被砸中的路人伤势比较严重。 1.1.3 磨胎冠或胎肩。中重型汽车轮胎的气压长期偏高,就会使轮胎的胎面变宽,胎面的受力面积变大,此时就会长期磨损车胎中部;轮胎的磨损也可能出现轮胎肩部严重磨损的现象,轮胎气压长期偏低使胎面过窄,就会磨损胎肩。 1.2 中重型汽车轮胎异常磨损的原因 1.2.1 道路原因。中重型汽车常有货车运输或客运运输,而货车的长途运输经常行驶在道路设施不好的地区,比如说山路、砂石或泥泞道路,这些道路的崎岖坎坷加大了汽车磨损的程度。 1.2.2 轮胎质量的原因。轮胎的质量不好会导致胎面和钢圈无法承受负荷和路面的摩擦,直接影响着事故的发生。2009年5月,锦湖和韩泰两大知名轮胎生产企业就被国家质监总局提出过批评。而在2011年3月15日,央视又曝光了天津锦湖轮胎原料掺假事件。根据相关部门统计,每年有46%的交通事故都是由汽车轮胎的故障造成的,其中爆胎率占70%。轮胎的质量问题会造 中重型汽车轮胎异常磨损探究 高 慧 战来杰 宗秀芬 (微山县交通运输局,山东微山 277600) 摘要:文章首先对中重型汽车轮胎异常磨损的现象进行了分析,接着讨论了轮胎异常磨损的原因,最后探讨了中 重型汽车轮胎异常磨损的处理措施。 关键词:中重型汽车;汽车轮胎;异常磨损;运输安全;汽车磨损度 文献标识码:A 中图分类号:U463 文章编号:1009-2374(2015)13-0095-02 DOI:10.13535/https://www.wendangku.net/doc/553281821.html,ki.11-4406/n.2015.13.047 - 95 -

304不锈钢抗拉强度试验影响因素分析

龙源期刊网 https://www.wendangku.net/doc/553281821.html, 304不锈钢抗拉强度试验影响因素分析 作者:林剑峰 来源:《科学与财富》2016年第25期 摘要:文章通过试验,对比分析了不同试验速率与温度对奥氏体304不锈钢拉伸性能测试结果的影响规律,总体上的试验结果表明,试验速率对测定结果的影响较小,环境的温度变化才是测定结果波动的主要影响因素,以期本试验研究分析可指导生产检测与产品验收。 关键词:奥氏体304不锈钢;拉伸试验;马氏体;环境温度;试验速率 拉伸试验是力学性能试验中最基础、最常用的试验,拉伸试验中给出的性能指标也是在工业上应用最广泛的材料性能指标。304不锈钢是一种通用型奥氏体不锈钢,它的金属制品耐高温,韧性高,加工性能好,广泛使用于工业和家具装饰行业和食品医疗行业。拉伸性能是其力学性能测试中最基本、最通用的检验指标,也是304不锈钢产品的最基本交货依据。由于304不锈钢属于非稳态奥氏体不锈钢,在拉伸试验变形过程中会发生应变诱发相变产生马氏体,但金属材料本身材质的不均匀性以及在应变强化过程中温度、速率、应变量等均可影响应变诱发马氏体的转变量、转变速率等方面的情况,使得抗拉强度测定结果存在差异,不利于测试的进行。因此,有必要对拉伸试验检测结果波动的影响因素进行分析,掌握不同测试条件下拉伸性能测试结果的变化规律,从而对所检验的材料做出科学的评价。 1试验材料与试验方法 1.1试验材料 试验材料选用厚度为20mm、共3个炉号的热轧固溶态304不锈钢板,不同炉号钢板的化学成分略有不同。 1.2 试验方法 采用不同试验温度(在GB/T228.1-2010规定的温度范围内10~35℃)和不同拉伸试验速率(上、下限分别略大于和略小于GB/T228.1-2010规定的拉伸速率范围0.005~0.008s-1)对 上述304不锈钢板进行拉伸试验。拉伸试验用试样为螺纹头棒状试样,试样形状及尺寸如图1所示。拉伸试验前后分别测试试样均匀变形段的马氏体含量。拉伸试验采用德国产Z300高低温电子拉伸试验机完成,马氏体含量测定用瑞士产FeritscopeFMP30铁素体含量测定仪完成。 2 试验结果与讨论 2.1 304不锈钢加工硬化分析

汽车轮胎异常磨损原因分析与排除

毕业论文 汽车轮胎异常磨损原因分析与排除

目录 摘要 (3) 关键词 (3) 引言 (3) 1.汽车轮胎的概述 (3) 1.1汽车轮胎的分类 (3) 1.2汽车轮胎的标记 (5) 2.汽车轮胎异常磨损原因分析 (6) 2.1凹形磨损的分析 (7) 2.2气压过低时引起的磨损分析 (7) 2.3气压过高时引起的磨损分析 (7) 2.4侧滑与前轮定位不正常引起的汽车轮胎磨损分析 (7) 2.5转向轴引起的不正常磨损分析 (8) 2.6驾驶员驾驶操作引起的不正常磨损分析 (8) 3.汽车轮胎异常磨损预防及对策 (8) 3.1掌握轮胎标准气压充气 (8) 3.2加强车辆的维护保养 (8) 3.3定期对车辆轮胎进行换位 (9) 3.4掌握正确的驾驶方法 (9) 结论 (9) 参考文献 (10) 致谢 (10)

汽车轮胎异常磨损原因分析与排除 摘要:轮胎是汽车的主要运行材料,是汽车与地面之间的传力元件,因此,轮胎容易产生异常磨损,轮胎也是汽车上的易损件之一。汽车轮胎异常磨损现象有多种,轮胎的磨损原因也有多种。文中详细地分析了汽车轮胎异常磨损的原因,并提出预防轮胎异常磨损的措施。 关键词:轮胎异常磨损原因分析预防排除 引言:轮胎是车辆行驶系的重要组成部分,亦是车辆与地面的唯一接触体,其性能优劣不仅关系到轮胎自身的耐久性和稳定性,更影响着车辆行驶的安全性、经济性、操控性、乘坐舒适性、噪声等特性。在汽车的运行过程中要特别注意预防轮胎的早期磨损,防止轮胎的不正常损坏。正确合理地使用汽车轮胎,可以有效地延长轮胎的使用寿命。当汽车轮胎发生异常磨损时,会直接影响汽车的技术性能和经济性,甚至由于轮胎的非正常损伤而造成严重的行车事故。因此分析研究轮胎的异常损伤具有非常重要的意义。 1.汽车轮胎的概述 轮胎是在各种车辆或机械上装配的接地滚动的圆环形弹性橡胶制品。通常安装在金属轮辋上,能支承车身,缓冲外界冲击,实现与路面的接触并保证车辆的行驶性能。轮胎常在复杂和苛刻的条件下使用,它在行驶时承受着各种变形、负荷、力以及高低温作用,因此必须具有较高的承载性能、牵引性能、缓冲性能。同时,还要求具备高耐磨性和耐屈挠性,以及低的滚动阻力与生热性。世界耗用橡胶量的一半用于轮胎生产。轮胎通常由外胎、内胎、垫带3部分组成。也有不需要内胎的,其胎体内层有气密性好的橡胶层,且需配专用的轮辋。世界各国轮胎的结构,都向无内胎、子午线结构、扁平(轮胎断面高与宽的比值小)和轻量化的方向发展。 1.1汽车轮胎的分类 1.1.1按轮胎用途来分 轿车轮胎——是装于轿车上的轮胎,它主要用于良好路面上高速行使,最高行驶速度可达200千米/小时以上,要求乘坐舒适,噪声小,具有良好的操纵性和稳定性。轮胎结构多数采用子午线结构。根据行驶速度的要求分为不同系列,在标准与手册中常见的有95、88系列为斜交轮胎,80、75、70、65系列为子午线轮胎。

轮胎异常磨损故障分析及处理方法 2

轮胎异常磨损故障分析 导致轮胎异常磨损的原因是多样的,有轮胎本身的质量问题、有用户的使用保养及特殊的道路使用条件问题、有设计问题,也有底盘制造、装配调整的问题。10m以下车型有前轮摆振的倾向,在四轮定位稍不良时就会诱发前轮摆振,导致前轮轮胎波浪状磨损的反馈比较多。 对于轮胎本身的质量问题,要完善质量保证协议并加强监控力度。用户使用保养的问题,可通过完善使用说明书及售后提示用户来解决。特殊道路使用条件应在销售订单中作为一项控制点。设计要严格控制轮胎负荷率和前轮定位参数合理,增加10米以下车型前轮回正能力和阻尼力。轴距是车辆最基本的参数,要通过轴距工装严格保证制造精度。空气悬架车要通过推进线进行四轮定位,推进线的检测精度是非常重要的。 下表是针对各种问题的分析及改进方案,供设计、工艺、质检等部门对后续车辆的改进、控制参照。表中的轮胎磨损排除因个别车轮轮辋、轴承、制动器、轮胎不平衡引起的故障。

附图1

附图2 附图3 (图中为了表示轴距误差,后桥与底盘中心线偏转一个角度,实际上有些车是前轮偏转一个角度而后桥与底盘中心垂直,在此没有图形表示。)

附图4 (图中为了表示轴距误差,后桥与底盘中心线偏转一个角度,实际上有些车是前轮偏转一个角度而后桥与底盘中心垂直,在此没有图形表示。)

附图5 底盘中心线 后桥中心线 第二部分轮胎异常磨损的处理方法 一、轮胎异常磨损的分类 不同形态的异常磨损,其形成的机理不同,因而处理的方法也就不同。工作中经常见到一些人,只要听到轮胎异常磨损,马上就去做车轮动平衡或者前轮定位,这种不分青红皂白,千篇一律的处理问题的方法是错误的。在此我们将工作中经常见到的轮胎异常磨损形态做一大致分类: 1、磨损均匀但寿命很短。最常见的是旅游车上,真空轮胎行驶里程只有4~5 万公里,公交车使用的斜交胎,行驶的里程只有2 万公里左右,轮胎花纹已全部磨光。 2、波浪形磨损。轮胎胎面呈波浪状,或者个别轮胎胎面在圆周上出现半边的花纹深度比另外半边的花纹深度有明显的差别。 3、其它不规则磨损。不规则磨损的形态又有很多,如内侧或外侧磨损,内外侧同时磨损,胎面花纹锯齿状磨损等。 二、轮胎寿命过短的原因及处理 1、道路问题。经常在山区行驶的车辆要比在平原行驶的车辆轮胎寿命短,行驶在正在

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

汽车轮胎3种磨损过快的主要原因分析

1、轮胎气压长期不正常。 轮胎气压是轮胎的生命,气压过低,胎体变形增大,胎侧容易出现裂口,同时导致过度生热,促使橡胶老化,帘布层疲劳、帘线折断。气压过低,还会使轮胎接地面积增大加速胎肩磨损;气压过高,会使轮胎帘线受到过度的伸张变形,胎体弹性下降,使汽车在行驶中受到的负荷增大,如遇冲击会产生内裂和爆破,同时气压过高还会加速胎冠磨损,并使耐轧性能下降。为了在行车过程中时刻掌握胎压数据,可以安装一个铁将军胎压监测仪,可以提前发现轮胎气压异常。但是中国消费者习惯使用轮胎到“磨平”才能罢休,没有形成定时定量更换轮胎的习惯,亟待改善。所以,为了避免轮胎老化引发的事故发生,建议车主对轮胎还是需要勤检查,并且对轮胎生产日期要清楚,这样心里就有底了。为了获得最佳的轮胎磨耗状况,轮胎调位是必要的。每8000到10000公里为轮胎调一次位,即使行驶不足 8000公里,如果轮胎出现不规则磨耗,就应进行调位,同时,要及时检查车轮定位,查明导致轮胎不规则磨耗的原因。轮胎要勤检查,特别是车主长期行车的路况比较恶劣,这项工作至关重要,不能忽视,毕竟行车路况差对轮胎的寿命有严重的影响。当你发现轮胎逐渐变硬、老化龟裂等情形发生,就应毫不犹豫地换轮胎,特别是有类似气泡的凸起物,就表示该处的结构层已经断了、承受不起胎压而起泡,随时都有爆胎的情况发生。除了轮胎老化造成爆胎事故外,轮胎胎压不正确也是引发爆胎的一个重要原因。

2、前轮定位不准。 前轮定位对轮胎的使用寿命影响极大,而尤以前轮前束和前轮外倾为主要因素。前轮外倾主要会加速胎肩的磨损即偏磨;前轮前束主要是加速轮胎内外侧的磨损。 3、不良驾驶习惯。 司机在行车中除了处理情况外,要选择路面行驶,躲避锋利的石头、玻璃、金属等可能对轮胎的扎破和划伤,躲避化学遗洒物质对轮胎的黏附,避免对轮胎的腐蚀;行驶在拱度较大的路面时,要尽量居中行驶,避免和减少汽车重心偏移,减少一侧轮胎负荷增大而使轮胎磨损不均;合理的装载是基本常识,一般情况下,超载20%轮胎寿命减少30%,超载40%轮胎寿命减少50%;另外急速转弯,紧急制动,高速起步以及急加速等都将对轮胎的损坏产生影响,是司机在行车中要避免的。

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

案例五汽车底盘维修案例

案例五 一、高速行驶是方向盘震动 1、原因分析 汽车在高速行驶或在某一较高车速行驶时出现行驶不稳、摆头,甚至方向盘抖动,出现这种情况的原因有如下几点 ⑴前轮定位角失准,前束过大。 ⑵前轮胎气压过低或由于轮胎修补、异常磨损等原因引起动不平衡。 ⑶钢圈变形、制动鼓平衡性差。 ⑷传动系统零部件安装松动。 ⑸传动轴弯曲,动平衡差,车桥变形 ⑹减震器故障。 ⑺主减速器异常磨损或间隙过大。高速振摆有两种情况,一是随着车速的提高振摆渐强烈,二是在某一较高车速出现振摆,并引起方向盘抖动,过了这一车速则振动明显降低,后一种情况,称之为共振。 2、检查方法 可先架起驱动桥,前轮加塞安全三角木,启动发动机并逐步换入高速档,使驱动轮达到原来出现摆振的速度。由于此时前桥处于静止状态,若车身或方向盘仍然出现抖动,则为传动系统引起的振摆,可从传动轴、主减速器及后桥的其它零部件上查找原因;若达到原先摆振的速度,汽车不出现抖动,则基本可确定是前桥部分存在故障,可用车轮定位仪检查车轮定位和前束是否符合要求,检查轮胎是否变形过大和用轮胎平衡机检查车轮动平衡情况。在平时处理这种高速摆振时,某些型号的车辆,在某一特定车速范围出现共振现象,如更换新钢圈、新轮胎后,故障现象消失,但行驶1万公里左右,又会出现同样故障,经更换大规格钢圈和轮胎后,故障则完全消除。从中可以推断,原车配置的钢圈和轮胎可能偏小,在车辆满载及超载情况下,载荷超过了钢圈和轮胎的承载能力,导致钢圈及轮胎变形,引起车辆共振。公交车由于超载情况比较普遍,此类情况更易发生。

二、转向沉重 1、原因分析 转向沉重的原因较多,但通常有以下几点: ⑴轮胎气压不足,尤其是前轮气压不足,转向会比较吃力。 ⑵助力液压油不足,助力泵至方向机的油路有皱褶,导致方向机供油不足。⑶转向助力泵损坏或型号不对,导致供油不足。 ⑷方向机内部发卡。 ⑸前轮定位不准,如主肖后倾角过大,转向就会沉重。 2、诊断及处理 按照先易后难的原则,先检查轮胎气压、助力油壶的油量是否符合要求,再检查油路是否有皱褶,一般来说,如果是⑵、⑶、⑷这三种原因引起的故障,转向时都会有异响。 三、行驶时跑偏 1、故障现象 检查跑偏,一般是在行驶时,摆正方向盘,然后放开方向盘行驶,看汽车是否走直线。如果不走直线,就是行驶跑偏。注意一定要把行驶跑偏和制动跑偏加以区别。 2、原因分析 ⑴左右轮胎气压不一致,这时由于左右轮胎的行驶阻力不等,会导致行驶跑偏。 ⑵车桥移位,导致车辆左右两边的轴距不等。 ⑶前轮定位不准。左右前轮外倾角、主肖后倾角、主肖内倾角、前束等距不合要求,都会导致车辆行驶跑偏。 3、诊断及处理 检查左右两边车胎气压是否一致,用车轮定位仪检查车轮定位(包括车桥定位和前后轮定位)是否符合要求,并进行适当调整。

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

汽车轮胎不正常磨损原因分析及解决措施

10.16638/https://www.wendangku.net/doc/553281821.html,ki.1671-7988.2019.11.075 汽车轮胎不正常磨损原因分析及解决措施 张柳1,李彦彦1,高艳兵2 (1.郑州轻工业大学机电工程学院,河南郑州450000; 2.郑州磨料磨具磨削研究所有限公司,河南郑州450000) 摘要:文章着重研究了由于四轮定位参数不当引起的不正常磨损问题,对其原因进行了剖析,并提出相应的解决措施。通过对轮胎不正常磨损问题的原因进行分析,为汽车售后轮胎问题提供了解决思路。 关键词:轮胎不正常磨损;汽车四轮定位;轮胎检查 中图分类号:U463.345 文献标识码:A 文章编号:1671-7988(2019)11-227-03 Analysis and Solution of Abnormal Wear of Automobile Tire Zhang Liu1, Li Yanyan1, Gao Yanbing2 (1.Mechanical and Electrical Engineering Institute,Zhengzhou University of Light Industry, Henan Zhengzhou 450000; 2.Zhengzhou Research Insitute for Abrasives & Grinding Co., Ltd., Henan Zhengzhou 450000) Abstract: In this paper, the abnormal wear problem caused by improper four-wheel alignment parameters is studied, the causes are analyzed, and the corresponding solutions are put forward. Through the analysis of the causes of abnormal wear of tires, this paper provides a solution to the problem of after-sales tires of automobiles. Keywords: Abnormal wear of tires; Four wheel alignment; Tyre inspection CLC NO.: U463.345 Document Code: A Article ID: 1671-7988(2019)11-227-03 前言 轮胎磨损主要是轮胎与地面间滑动产生的摩擦造成的。轮胎磨损有均匀的正常磨损和故障性不正常磨损之分。轮胎正常磨损的原因一般为较高的行驶速度和低劣的路面质量。驾驶员的一些不当操作比如转弯时油门过大、起步时猛踩油门、刹车过急会导致轮胎磨损的速度加快。轮胎胎压过高过低、四轮定位参数变化、底盘零部件设计不合理等则会使车辆产生某些故障性不正常磨损。 1 轮胎不正常磨损原因分析 轮胎不正常磨损会使车辆在行驶过程中表现出一定的故障症状,大大降低车辆的驾驶性能甚至安全性。在此着重对六种典型的轮胎不正常磨损原因进行分析。 1.1 中央部分早期磨损 中央磨损多数由胎压过高引起。实际操作中往往会给轮胎多充一点气,这样可以减小车辆行驶时的滚动阻力,提高汽车的燃油经济性。但是气压过大时,车胎的帘线产生过度的伸张,导致轮胎弹性减小,只有轮胎的中心部分与地面接触,故而加速此部分的磨损。同时,轮胎的NVH性能降低,再加上有遭受冲击的可能会发生爆胎。 1.2 胎肩磨损 相对于中央磨损,轮胎两边胎肩磨损过于严重则是由于胎压过低或者车辆长时间超重行驶造成的。气压过小或者汽车超重时,车胎被压扁,导致胎肩接触路面,在车辆行驶时就会产生磨损。另外,轮胎侧面易产生开裂、过热,使得橡胶老化、帘线断裂。 作者简介:张柳,郑州轻工业大学硕士,助理工程师,就职于郑州 轻工业大学机电工程学院。研究方向:汽车发动机、底盘以及车辆 传动技术。 227

影响钢材力学性能的因素2.

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

轮胎异常磨损-通用资料

轮胎异常磨损 车轮和轮胎是汽车行驶机构中的重要组成部分。它们支持着整车的重量,提供汽车正常行驶所需要的驱动力,并能缓冲车轮受路面冲击时而引起的振动,以保证汽车平稳行驶。 汽车在行驶中,轮胎在汽车负荷和路面反作用力的作用下,会产生各种各样的磨损。其中,有—部分磨损是非正常的,是由于汽车性能上的缺陷而引起的,需要车主引起重视,及时排除故障隐患,避免造成意外。 轮胎的异常磨损主要有以下几种形式: 1.胎冠两肩磨损 造成胎肩过度磨损的原因主要有:汽车轮胎气压不足或汽车超载。这样将使轮胎胎冠接地印迹增宽,并且中部略向上拱起,因此招致胎冠两肩着地,形成胎冠两侧的偏磨。 汽车超载或胎压不足还会引起油耗增大,并会造成胎温过高而产生爆裂。 2.胎冠中央磨损 引起胎冠中央过度磨损的主要原因是轮胎气压高于标准压力,从而使轮胎刚性增大,与地面接触面积减少。另外在行驶中随着轮胎内部温度升高,轮胎气压还有继续升高的趋势。这样容易造成轮胎胎冠中部磨损增加,花纹底部开裂。 轮胎胎压过高还会使帘线层过度伸张,甚至产生折断、破损,并且容易在不平路面高速行驶时,由于遇到障碍物冲击而发生爆裂。 3.胎冠内侧或外侧产生偏磨 胎冠内侧或外侧偏磨的可能原因有: (1)前轮前束不合格;车轮外倾角过大或过小。 (2)汽车频繁地急转弯。 (3)汽车前轮长期没有换位。 前轮外倾角和前轮前束不合乎标准会造成转向轮产生偏磨。此外,有些后桥为独立式悬架的车桥,也存在车轮外倾角。如果调整不当,也会造成轮胎偏磨。 4.胎冠由外向内或由内向外呈锯齿状磨损 轮胎胎冠磨损呈锯齿状,均与汽车前束有关。如果胎冠由外侧向里侧呈锯齿状,说明汽车前轮前束过大(对于独立悬架的后轮来说,亦然);反之,若胎冠由里侧向外侧呈锯齿状磨损,说明汽车前轮前束过小。 5.胎冠呈波浪状或碟边状磨损 如果轮胎出现这两种形式的磨损,说明: (1)汽车车轮动平衡不良,在转动中出现抖动。 (2)汽车车轮轮毅磨损松旷,或是轮毅轴承松旷及调整不当。 (3)前轮定位不准。 (4)悬架系统有故障。 分析以上几种常见的轮胎磨损形式可以看出,造成这些现象的根本原因在于轮胎在使用中出现了不正常的变形,使得轮胎内部受力恶化,发热严重。变形越大,轮胎越易损坏。因而,正确使用和保养轮胎的关键,就在于保证轮胎的正常变形。这里提醒车主,在轮胎的使用中注意: (1)掌握轮胎充气标准,及时检查。 (2)掌握合理的行车速度。 (3)保持正确的前轮定位和良好的汽车技术状况。 (4)按操作规范驾驶汽车。 (5)认真执行轮胎的维护作业。 (6)合理地组装轮胎。 签名档:

屈服和抗拉强度的区别

屈服和抗拉强度的区别 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp 时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n 一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很

相关文档
相关文档 最新文档