文档库 最新最全的文档下载
当前位置:文档库 › A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control

A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control

A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control
A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control

A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control for Torque Ripple Reduction Changliang Xia,Senior Member,IEEE,Jiaxin Zhao,Yan Yan,and Tingna Shi

Abstract—A novel direct torque control(DTC)strategy us-ing duty cycle optimization is proposed for matrix converter (MC)-based permanent-magnet synchronous motor(PMSM) drive system,which is characterized by low torque ripples,no need for rotational coordinate transformation,and?xed switching frequency.Analytical expressions of change rates of torque and ?ux of PMSM as a function of MC voltage vectors are derived.An enhanced switching table is established by means of discretization and averaging,in which changes of torque and?ux caused by voltage vectors are shown explicitly.Then,the proposed MC-fed DTC algorithm is implemented based on the table.Numerical simulation and experiments with a prototype are carried out.Both simulation and experimental results demonstrate that remarkable torque ripple reduction,more than30%,has been achieved.As a result,the proposed strategy is proved to be effective in reducing torque ripples for MC-based PMSM drives.

Index Terms—Direct torque control(DTC),matrix converter (MC),permanent-magnet synchronous motor(PMSM),torque ripple reduction.

I.I NTRODUCTION

M ATRIX converters(MCs)are a kind of compact ac–ac converters without an intermediate dc link.It is at-tracting extensive attention due to their advantages such as high power density,sinusoidal input/output currents,and con-trollable input power factor[1].Recently,research works on commutation technology[2],operation stability[3],and control/modulation strategy[4]–[18]of MCs have been widely reported.Driven by the achievements of these research works, MCs have been increasingly applied in many industrial?elds, such as elevators,wind power generation,and mechanical manufacture[19].

A large amount of research focusing on control and modula-tion strategies of MCs,developed up to now,can be divided into scalar techniques,pulsewidth modulation(PWM),predictive control,and direct torque control(DTC)[4].The Venturini

Manuscript received December25,2012;revised May15,2013;accepted July12,2013.Date of publication July31,2013;date of current version December20,2013.This work was supported in part by the project supported by the National Key Basic Research Program of China(973project)under Grant2013CB035602,in part by the Key Program of the National Natural Science Foundation of China under Grant51037004,and in part by the National Natural Science Foundation of China under Grant51077097.

C.Xia is with the School of Electrical Engineering and Automation,Tianjin University,Tianjin300072,China,and also with the Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy,Tianjin Polytech-nic University,Tianjin300387,China(e-mail:motor@https://www.wendangku.net/doc/533331816.html,).

J.Zhao,Y.Yan,and T.Shi are with the School of Electrical Engineering and Automation,Tianjin University,Tianjin300072,China(e-mail:zhaojiaxin@ https://www.wendangku.net/doc/533331816.html,;yanyan@https://www.wendangku.net/doc/533331816.html,;tnshi@https://www.wendangku.net/doc/533331816.html,).

Digital Object Identi?er10.1109/TIE.2013.2276039method[5]is the?rst scalar technique,which obtains the duty ratio of each switch directly by calculating the function of the instantaneous value of the input voltage and the reference value of the output voltage.Space vector modulation[6](SVM), which is based on the instantaneous space vector represen-tation of input and output voltages and currents and belongs to pulsewidth modulation,was developed and improved in the1990s.As a modern technique,predictive control[7],[8] evaluates the effect of each possible switching state by a cost function.The switching state which minimizes the cost function will be selected to output.DTC,which employs the structure of hysteresis comparators and heuristic switching tables to obtain high-performance ac drives,was extended to MC-fed induction machines(MC-DTC)in2001[9].Since MC-DTC can effectively control not only the torque and?ux of the motor but also the input power factor of the grid side,it has been developed rapidly in the last decade[10]–[13].Rodriguez et al.

[4]show that MC-DTC has merits of simple structure and quick torque dynamic response.

DTC was introduced into voltage source inverter(VSI)-fed induction machines in1986(VSI-DTC)[20].It has attracted the interest of researchers due to advantages such as simple structure,no need for rotary coordinate transformation,and independence of motor parameters.With the control and mod-ulation technology getting mature,MC has become a new choice for motor drive.In[9],an MC-based DTC is reported, which can keep the power factor close to unity and realize the simultaneous control of torque and?ux.

Generally,MC-DTC adopts hysteresis comparators and switching tables similar to those of VSI-DTC.Both the MC-DTC and the VSI-DTC strategy have two major shortcomings: signi?cant torque ripples and variable switching frequency [21].To overcome the shortcomings,some enhanced DTC strategies have been proposed.

1)Using multilevel hysteresis and subdivided voltage vec-

tors to reduce torque ripple.VSIs only produce six active voltage vectors with?xed magnitude and direction.In order to get more voltage vectors,Casadei et al.[22] suggest the use of the discrete SVM,which leads to 56virtual voltage vectors with different amplitude.The increased number of voltage vectors available allows the subdivision of the hysteresis of torque into?ve levels and the creation of a more accurate switching table.MC has a large number of voltage vectors available for modulation,

i.e.,18active voltage vectors with?xed direction and

0278-0046?2013IEEE

variable amplitude depending on input voltage.In [10],active voltage vectors of MCs are divided into large and small vectors according to their amplitude.Five-level torque hysteresis is employed to get minimal torque rip-ple.As a result,the simplicity and robustness of DTC are maintained,and all calculations can be performed in the stationary coordinate.However,the switching frequency of these methods still remains un?xed.

2)Using SVM instead of the switching table.DTC-SVM strategies usually calculate their output volt-age reference by means of closed-loop schemes with proportional–integral (PI),deadbeat,sliding mode,or predictive controllers [23],[24],with errors of torque and ?ux as the input of the controller.Then,the reference voltages are modulated using the SVM method.MC-based DTC-SVM systems are reported in [11]–[13],in which MC is considered as a virtual two-stage (recti?er stage and inverter stage)converter.SVM is used for the modulation of both stages.Therefore,the torque and ?ux of the motor can be adjusted accurately and smoothly,as SVM generates a continuous rotating vector of output voltage and input current on the complex plane.Although rotary coordinate transformation could be a computation burden,DTC-SVM is favored by many researchers due to its fast torque response and minimal torque ripples.

3)Using duty cycle control.This strategy selects active vectors from the switching table and obtains time du-rations by torque optimization to minimize the torque error in each cycle [25],[26].The advantages of duty cycle control are small torque ripples and ?xed switching frequency,while its disadvantages are complicated imple-mentation and dependence on motor parameters.In this paper,a novel MC-DTC strategy based on duty cycle control is proposed for permanent-magnet synchronous motor (PMSM)drives.In order to simplify calculation and reduce the motor parameter dependence of duty cycle control,an enhanced switching table is established,and the duty cycle is computed by a new method.This paper is organized as follows.Section II introduces the characteristics of MCs and standard MC-DTC algorithm.Relationships between the output voltage vectors of MCs and torque and ?ux of PMSM are analyzed in Section III.The enhanced switching table and the novel MC-DTC algorithm are proposed in Section IV.Then,simulation and experimental studies are carried out in Sections V and VI,respectively.Finally,some conclusions are summarized in Section VII.

II.S TANDARD MC-DTC

A.MCs

A typical three-phase to three-phase MC with nine bidirec-tional switches is shown in Fig.1.The relationship between the input and output voltage and current of MC can be expressed as

v o =??v A

v B v C ??=?

?s Aa (t )s Ab (t )s Ac (t )s Ba (t )s Bb (t )s Bc (t )s Ca (t )s Cb (t )s Cc (t )

????v a v b v c ??=M ·v i

(1)Fig.1.Simpli?ed circuit of a three-phase to three-phase MC.

i i =?

?i a i b i c ??=?

?s Aa (t )s Ba (t )

s Ca (t )s Ab (t )s Bb (t )s Cb (t )s Ac (t )

s Bc (t )

s Cc (t )????i A i B i C

??=M T ·i o (2)where s pq (t )is the state of switch S pq ,p ∈{A ,B ,C },q ∈

{a ,b ,c },and M T is the transpose of transfer matrix M .

Considering the open and short circuit requirement of MC,27switching states can be used for modulation,among which 21can be employed in the DTC algorithm,as presented in Table I.The ?rst 18switching states (±1~±9),which are named “active vectors,”produce vectors of output voltage and input current with ?xed direction.The rest (0a ~0c ),which are named “zero vectors,”produce zero output voltage and input current vectors.All the active output voltage vectors and input current vectors of MC are shown in Fig.2(a)and (b),respectively.

B.Standard MC-DTC

Generally,VSI-DTC employs one switching state from the VSI switching table during one sampling period to increase or decrease motor torque or ?ux [20].The output voltage vectors of MC have the same direction as those delivered by a VSI (V 1?V 6),as shown in Fig.2(a).Hence,MC-DTC based on VSI-DTC can adjust the input power factor on the grid side and torque and ?ux on the motor side at the same time,by means of the second selection of switching states.

In Fig.2,the space is equally divided into six sectors,which are indexed by h α(α=1,2,...,6),with the ?rst sector covering from ?π/6to π/6.As a result,in each sector,there are two output voltage vectors that have the same direction as that of the VSI vector,and their related input current vectors just lie on different sides of the input voltage vector,in which way the phase between input voltages and currents could be controlled.The schematic diagram of the standard MC-DTC [9]is presented in Fig.3.One desired virtual VSI voltage vector is selected from the VSI switching table (see Table II).Then,one MC switching state is employed from Table III based on the virtual VSI voltage vector.When a zero-voltage vector is required from Table II,the zero con?guration of the MC,which minimizes the number of commutations,is selected.The torque and ?ux are estimated,as shown in the lower part of Fig.3,in which the required output voltage and input current can be

TABLE I

S PACE V ECTORS OF A 3×3

MC

Fig.2.MC active vectors.(a)Active output voltage vectors.(b)Active input current vectors.

obtained from the input voltage,output current,and transfer matrix M .

The standard MC-DTC,like VSI-DTC,still employs only one switching state throughout the whole sampling period,which will cause undesired torque

ripple.

Fig.3.Standard MC-DTC block diagram.

III.A NALYSIS OF T ORQUE AND F LUX V ARIATIONS A.Torque and Flux Equations of PMSM

The stator voltage equation of PMSM in the stator ?ux x-y rotating coordinate is

v s =R s i s +

d

d t

Ψs +j ωs Ψs (3)

where v s =[v x v y ]T ,Ψs =[Ψx Ψy ]T ,i s =[i x i y ]T ,ωs ,and R s are the stator voltage vector,stator ?ux vector,stator cur-rent vector,stator ?ux angular velocity,and stator resistance,respectively.

TABLE II

VSI S WITCHING T

ABLE

TABLE III

MC S WITCHING T

ABLE

The stator ?ux vector is oriented and aligned on the x -axis;hence,(3)can be derived as

v x =R s i x +

d

d t

|Ψs |v y =R s i y +ωs |Ψs |(4)

where |Ψs |is the amplitude of the stator ?ux vector.With the voltage drop of stator resistance neglected,(4)can be simpli?ed as follows:

d

d t

|Ψs |=v x (5)ωs =

v y

|Ψs |

.(6)

The electromagnetic torque of PMSM is expressed as [27]T e =

3p |Ψs |

4L d L q

[2ψf L q sin δ?|Ψs |(L q ?L d )sin 2δ]

(7)

where δis the displacement angle between the stator and permanent-magnet ?ux linkage,ψf is the permanent-magnet ?ux,L d and L q are the direct and quadrature stator inductances,respectively,and p is the number of pole pairs.

From (7),the change rate of torque can be derived as d d t T e =3p |Ψs |2L d L q [ψf L q cos δ?|Ψs |(L q ?L d )cos 2δ]d δd t

.(8)

The derivative of δis given by

d δ=d (θs ?θr )=ωs ?ωr

(9)

Fig.4.MC voltage vector projected on the stator ?ux reference frame x-y.

where θs and θr are the stator and rotor positions,respectively,and ωr is the rotor electrical angular velocity.From (6),(8),and (9),the change rate of torque can be derived as

d

d t

T e =K (v y ?ωr |Ψs |)(10)

where K =(3p/2L d L q )[ψf L q cos δ?|Ψs |(L q ?L d )cos 2δ].According to (5)and (10),it can be noticed that the change rates of ?ux and torque of PMSMs are related to the x -and y -axis components of the stator voltage vector,respectively.B.Evaluation Function of Torque and Flux

Each output voltage vector of MCs can be decomposed into x and y components.Take the +1switching state as an example,its voltage vector projected on frame x-y is presented in Fig.4.As shown in Fig.4,the stator ?ux vector is oriented and aligned on the x -axis,the a-axis denotes the A phase windings of motors,θs is the stator ?ux linkage position,and V +1is the active voltage vector produced by the +1switching state.As can be noted from Table I and Fig.4,the x-y components of V +1can be expressed as

V +1x =2/3v ab cos(?θs )

=2/√

3V m cos(αi +π/6)cos θs V +1y =2/3v ab sin(?θs )

=?2/√

m cos(αi +π/6)sin θs

(11)

where V +1x and V +1y are the projections on the x -and

y -axes of V +1,respectively;V m and αi are the maximum value and phase angle of the input line-to-neutral voltage vector,respectively.The input side of MCs is usually connected to a power grid;hence,V m is always a constant value,and αi is equal to ωi t ,where ωi is the angular frequency of the power grid.

The torque evaluation function τ,?ux evaluation function λ,and back electromotive force (EMF)evaluation function e are de?ned as follows:

τ=V y 2/√3V m (12)λ=V x 2/√3V m (13)e =

ωr |Ψs |2/√3V m

.(14)

Fig.5.τ+1andλ+1variation.(a)Three-dimensional diagram ofτ+1.(b)Contour map ofτ+1.(c)Contour map ofλ+1.

It can be noted that bothτandλare related to the voltage vector,and e is related to motor speed.Substituting(11)into (12)and(13),the torque evaluation function and?ux evaluation function of the+1switching state are obtained as

τ+1=?cos(αi+π/6)sinθs(15)

λ+1=cos(αi+π/6)cosθs.(16) Theτandλfunctions of all active voltage vectors of MCs can be calculated based on the aforementioned contents,and the results are shown in the right side of Table I.

By substituting(12)–(14)into(10)and(5),the relationship between the evaluation functionsτ,λ,and e and the change rates of torque and?ux can be obtained as

d

T e∝K(τ?e)(17)

d

d t

|Ψs|∝λ.(18)

MCs have18active switch states,which correspond to18 pairs ofτandλfunctions.From(17)and(18),the common features of all theτandλfunctions can be concluded as follows:τandλfunctions are proportional to the change rates of torque and?ux,respectively.In addition,the functions are only related to the phase angle of the input voltage vector and stator?ux vector.They are independent of motor parameters.

IV.N OVEL MC-DTC

A.Enhanced MC Switching Table

As the online calculation of the functions ofτandλac-cording to Table I will bring undesirable calculation burden, a lookup table with the average values ofτandλcan eliminate the burden by explicitly showing the effects of MCs voltage vectors on torque and?ux.

It can be noted that bothτandλare binary periodic functions.An analysis of one period,whereθs∈[0,2π]and αi∈[0,2π],will be carried out.By takingτ+1as an example, a3-D diagram ofτ+1is presented in Fig.5(a).A contour map can be obtained by describing the third dimension with color and contour,as shown in Fig.5(b).The color from light to dark

in the contour map denotes the gradual decline ofτ+1,and the

solid lines are the isograms connecting points with the same

value ofτ+1.

In Fig.5(b),the horizontal axisθs and longitudinal axis

αI are divided into12intervals,respectively,where lθ= {1,2...12}and lα={1,2...12}are the numbers of inter-vals.As a result,the whole plane will be divided into12×

12zones.The dotted lines denote the borderlines of each zone.

Similarly,the contour map ofλ+1can be obtained,as presented

in Fig.5(c).

The average values of each zone in the contour maps are

calculated as follows:

pτ=round

?

??k

(π/6)2

π

6

π

6

(lα?1)

π

6

π

6

(lθ?1)

τdθs dαi

?

??(19) pλ=round

?

??k

(π/6)2

π

6

π

6

(lα?1)

π

6

π

6

(lθ?1)

λdθs dαi

?

??(20)

where round[]denotes the rounding of the number to the nearest integer and pτand pλare the impact factors of torque and?ux,respectively.The values of pτand pλwill be integers between?9and+9when the coef?cient k is equal to10. According to(17)–(20),the relationships of pτand pλwith the change rates of torque and?ux can be obtained as follows: d

d t

T e≈avg

d

d t

T e

∝K(pτ?p e)(21) d

d t

|Ψs|≈avg

d

d t

|Ψs|

∝pλ(22)

where avg()is the average function in each zone and the back EMF impact factor p e is

p e=round(10e).(23) Equations(21)and(22)imply that pτand pλare approximately proportional to the change rates of torque and?ux,respectively.

Fig.6.(Left)Enhanced switching table of V+1.(Right)Enhanced switching table of all active vectors.

Substituting(15)into(19),the pτof the V+1vector in each zone can be calculated.Moreover,the enhanced switching table of the V+1vector can be established,as presented in Fig.6,in which the effects of the+1switching state on torque can be shown explicitly.If the table is colored in accordance with the changing of pτ,the similarity between Figs.5(b)and Fig.6is evident.

It can be seen from Table I that the functions ofτandλof all switching states are obtained by multiplying the two terms.The one containingαi is related to time,which will be referred to as time-dependent expression in the following sections,and the other containingθs is related to the relative position of the stator ?ux vector to output voltage vector,which will be referred to as space-dependent expression in the following sections. There are several characteristics about the functions ofτand λsummarized as follows:

1)The functions ofτandλof each switching state have the

same time-dependent expression,butλlagsτbyπ/2in the space-dependent expression.Therefore,the contour map ofλof each switching state can be obtained by moving the contour map ofτof this switching state to the right byπ/2.Taking V+1as an example,Fig.5(b) will coincide with Fig.5(c)when the former is moved to the right byπ/2.The same result can be obtained by moving the horizontal axis to the left by the same value.

Since(19)and(20)will not change the aforementioned characteristic,the enhanced switching table of the V+1 vector about pλcan be obtained by moving the number of lθin Fig.6to the left by three cells,as shown hereinafter by the dashed line in Fig.6.

2)The functions ofτ+1,τ+2,andτ+3have the same space-

dependent expression.For the time-dependent expres-sion,τ+2lagsτ+1by2π/3,andτ+3lagsτ+2by2π/3.

Hence,the enhanced switching tables of V+2and V+3 about pτare obtained by moving the number of lαdown-ward by four cells and eight cells in Fig.6,respectively.

3)The functions ofτ+1,τ+4,andτ+7have the same time-

dependent expression.For the space-dependent expres-sion,τ+4lagsτ+1by2π/3,andτ+7lagsτ+4by2π/3.

There are similar characteristics for the functions of τ+2,τ+5,τ+8and those ofτ+3,τ+6,τ+9.The enhanced switching tables of other vectors can be obtained in the same way.

4)The functions ofτandλof the negative switching states

(?1,?2,~?9)are opposite to those of the positive switching states(+1,+2,~+9).

Overall,the enhanced switching table of all the positive vectors can be obtained by moving the numbers of lαand lθaccording to the aforementioned three characteristics,and the values of pλand pτof the negative vectors can be calculated according to the fourth characteristic.

The enhanced MC switching table of all the active vectors is presented in Fig.6,in which the effects of all the MC active switching states on the torque and?ux of PMSMs can be shown directly.In Fig.6,the three columns on the left lαare the numbers of sectors of the input voltage vector,and the three rows at the top and bottom lθare the numbers of sectors of the stator?ux vector for inquiring pλand pτ,respectively.For example,assuming that the pτof V+4in the zone of lθ=9and lα=5is needed,as shown by the dotted arrow in Fig.6,?nd V+4at the bottom of the table,and then,the result of pτ=6 is obtained.Assuming that pλof V?9in the zone of lθ=3and lα=4is needed,as shown by the solid arrow in Fig.6,?nd V+9at the top of the table;then,the result of pλ=3is gained, and the?nal result of pλ=?3is obtained by calculating its opposite value.

Fig.7.Proposed MC-DTC block diagram.

The torque and?ux impact factors pτand pλin the enhanced

switching table are integers ranging from?9to+9,except0,±4,±7,and±8.The reason is that±4,±7,and±8are related to the rotating switching states of MCs and0is produced by

the zero switching states of MCs.In such a way,the effects of

all the active switching states of MCs on the torque and?ux

of PMSMs according to the enhanced switching table can be

evaluated explicitly.

B.Calculation of Duty Cycle

According to(21),the change rates of torque generated by

active vectors and zero vectors are approximately proportional

to K(pτ?p e)and?Kp e,respectively.Supposing that an active vector is applied to the motor with a time duration of t k in one control cycle t s,the impact of this active vector on motor torque can be obtained as follows:

ΔT e=kτK(pτ?p e)t k(24) where kτis a positive constant.A zero voltage is applied for the rest time of the control cycle t s?t k;hence,the torque variation is deduced as

ΔT e=?kτKp e(t s?t k).(25) The sum of(24)and(25)is the total torque increment in a full control cycle,presented as follows:

ΔT e=ΔT e+ΔT e=kτK(pτt k?p e t s)(26) where pτis obtained by Fig.6,p e is calculated by(23),and ΔT e is the difference between the reference and actual value of torque.Based on(26),the duty cycle can be derived as

d=t k

t s

=

ΔT e

K T pτ

+

p e

(27)

where K T is the torque constant which equals kτKt s.The analysis about the value range of K T will be given in Section IV-C.C.Analysis of Torque Constant K T

Theoretically,the torque constant K T equals kτKt s.Accord-ing to(10),K is a function of angleδand motor parameters.It tends to vary as a result ofδchange caused by load ripple and motor parameter variation caused by the temperature rising or system nonlinear characteristic.Therefore,in this paper,K T is obtained by the experimental tuning method rather than through calculation by kτKt s.

The qualitative analysis of the impact of K T variation on the performance of the proposed control method is given as follows.

1)According to(27),when K T→0,d→1.Considering

the extreme situation of d=1,the proposed method is equivalent to the standard MC-DTC method.As a result, the system has fast torque response in the dynamic state but relatively large torque ripple in the steady state.

2)When K T→∞,d→p e/pτ,andΔT e has little in?u-

ence on duty cycle d.In this case,the dynamic perfor-mance is very poor,and it is hard for the actual torque to track its reference when the load changes sharply. Consequently,K T should be tuned properly.The experimen-tal tuning method used in this paper is given as follows.

1)To ensure fast torque response in the dynamic state,the

value of K T should make d close to1.Considering the starting dynamic in which the motor operates at maxi-mum torque,d should be greater than0.85,and we obtain

1.2T N

K T pτ

≥0.85(28)

where T N is the motor rated torque and pτis estimated to be9.

2)To ensure small torque ripples in the system steady state,

the former part in(27)should be0.1~0.5times the latter part,and we obtain

0.1p e≤

|BT e|

K T

≤0.5p e(29)

Fig.8.Stator?ux estimator.

where BT e is the torque hysteresis band and p e is set to be4.

The value range of K T is the intersection of(28)and(29).In the range,with a larger value of K T,torque ripples in the steady state are less,but dynamic performance is degraded.Moreover, with a smaller value of K T,fast dynamic response is achieved, but torque ripples are signi?cant.

D.Proposed MC-DTC

The block diagram of the proposed MC-DTC is presented in Fig.7.It can be seen that an enhanced switching table and a duty cycle calculation part are added based on the standard method.At?rst,an active voltage vector is chosen using the standard method;then,pτis obtained by referring to the enhanced switching table.At last,the duty cycle is calculated by substituting pτand motor speed into(27).

In Fig.7,the stator?ux estimator employs the low-pass?lter method[28].Its block diagram is shown in Fig.8.

In Fig.8,ωe is the synchronous frequency of the stator ?ux andωc is the cutoff frequency of the low-pass?lter.The equations ofωe andωc are presented as follows:

ωc=γωe,ωe=ψα(uβ?R s iβ)?ψβ(uα?R s iα)

ψ2α+ψ2

β

(30)

whereψα,ψβ,uα,uβ,and iα,iβare the stator?ux,stator voltage,and stator current in the stationaryα?βcoordinate, respectively.Generally,γis between0.1and0.5[28].A higher value ofγcan signi?cantly reduce the dc offset in the measurements but will produce big phase errors.Aside from that,methods based on modern control theory can also be used for?ux estimation,such as the self-adaptive estimator[29]and Kalman?lter[30].

Torque estimation is performed in the stationaryα?βcoor-dinate as follows:

T e=1.5p(ψαiβ?ψβiα).(31)

E.Discussion

Standard MC-DTC[9]divides space vectors into three groups based on their effect on torque:increasing,decreasing, and keeping unchanged.It implements relatively rough and qualitative torque control.In[13],the performance of DTC is improved as SVM is used to produce the voltage space vector more accurately.It implements a kind of quantitative control. Compared with the standard MC-DTC,the proposed strategy divides space vectors more?nely.They are grouped into19 levels,with+9representing maximum increment action,?9 representing maximum decrement action,and0representing keeping unchanged.The strategy can achieve more exact torque control than the?ve-level division method[10].It is a method between qualitative and quantitative control.Table IV compares the proposed method with some existing MC-DTCs with re-spect to the vector number used in one cycle,motor parame-ter dependence,coordinate transformation requirement,PWM method,etc.

Predictive control is a kind of advanced control strategy[7], [8]which has been used in industrial automation control.It can be noted that both predictive control and the proposed strategy need to evaluate how space vectors affect the quantities under control.However,they use rather different ways to evaluate. Predictive control calculates the mathematical model of the motor online by substituting the space vector to be output to obtain its resultant change of current or https://www.wendangku.net/doc/533331816.html,pared with it,the proposed method requires less computation as it implements the evaluation by looking up a table of pτ,which is calculated of?ine.In addition,as far as tracking ability is concerned,although both methods aim to exactly track the reference,their tracking performances in one cycle could be very different.Predictive control outputs the space vector with the minimum cost function during the whole cycle.As a result, ripples of the controlled quantities may be comparatively sig-ni?cant.By contrast,the method in this paper makes relatively ?ne adjustment on the action time of the output space vector in each cycle according to its effect on system performance,which tends to obtain more accurate tracking.

V.S IMULATION R ESULTS

The performances of the standard and proposed methods are given and compared by Matlab/Simulink.The parameters of the PMSM,control system,and input?lter are presented in Tables V–VII,respectively.The sampling periods of the standard and proposed methods are set to be50and100μs, respectively,in order to achieve similar average commutation frequencies.

The electromagnetic torque ripples of both the standard and the proposed methods are evaluated by means of their respective standard deviation,which can be expressed as

σT=

1

n?1

n

i=1

T e(i)?T e

2

,T e=

1

n

n

i=1

T e(i)(32)

where n is the number of samples.

The dynamic performances of the standard and proposed methods are shown in Fig.9,where a step speed command (from20to60r/min)is introduced at t=1s,and then,an abrupt change of load(from0to400N·m)is introduced at t=1.5s.It can be seen that both the standard and the proposed methods have fast torque dynamic response.How-ever,a remarkable torque ripple reduction can be observed in the proposed method.To be speci?c,the values ofσT of the standard and proposed methods are12.99and7.80N·m, respectively,within the range of1.3–1.5s.

In Fig.10,robustness against motor parameter variation is tested for the proposed method.In the simulation,the d-q inductances are increased to150%of their nominal values,and the other simulation conditions are the same as those in Fig.9.

TABLE IV

C OMPARISON B ETWEEN I MPROVED

MC-DTC

TABLE V

R ATED P ARAMETERS OF

PMSM

TABLE VI

P ARAMETERS OF C ONTROL S

YSTEM

TABLE VII

P ARAMETERS OF I NPUT F

ILTER

It can be seen that the variation of motor inductance has no signi?cant effect on system performance.Within the range of 1.3–1.5s,the value of σT is equal to 5.78N ·m.

Fig.11shows the standard deviation of the electromagnetic torque of both the standard and proposed methods with different loads and speeds.It can be seen that,for the lower speed range,the torque ripples of the proposed method are much smaller than those of the standard method.To be speci?c,in the condition of n =20r/min and T L =200N ·m,the values of σT of the standard and proposed methods are 12.25and 3.55N ·m,respectively.For the higher speed range,the torque ripples are increased in the proposed method,as the duty cycle d becomes close to 1with larger back EMF.Nevertheless,the torque ripples of the proposed method are also reduced effectively.To be speci?c,in the condition of n =80r/min and T L =200N ·m,the values of σT in the standard and proposed methods are 13.07and 8.70N ·m,respectively.

VI.E XPERIMENTAL R ESULT

To verify the feasibility and effectiveness of the proposed method,an MC setup was implemented,as shown in Fig.12.The complete system was connected to the utility grid through the variac.An input R–L–C ?lter was adopted to attenuate switching harmonics.A clamp circuit was designed to protect the MC against the overcurrent and overvoltage that occur on the input side and/or output side of MC.The control system employed a TMS320F28335digital signal processor for control strategy and an EP1C6?eld-programmable gate array for switch commutation.The sampling periods of the standard and proposed methods are 50and 100μs ,respectively.The parameters of the experimental system are presented in Tables V–VII.

A.Steady-State Performance

The steady performances of two methods are presented with the speed reference value being 40r/min and the load torque being 150N ·m.In the experiment,the standard and proposed methods are implemented under similar average commutation frequencies,which are equal to 4.44and 4.84kHz,respectively.The average commutation frequency is calculated by counting the total commutation numbers of a bidirectional switch during a ?xed period of time.

Fig.13shows the electromagnetic torque,stator current,and stator ?ux modulus waveforms of two methods.Signi?cant torque ripple can be found in the standard method as shown in Fig.13(a)with σT being 11.32N ·m,while Fig.13(b)shows that remarkable torque ripple reduction can be found in the proposed method with σT being only 7.53N ·m.The torque ripple reduction percentage is 33.48%.As can be seen in the zoom zone (100ms),the torque waveform of the standard method contains more high-frequency components than the proposed method.

The waveforms of output voltage of two methods and their harmonic spectra are shown in Fig.14.It can be seen that the harmonics of the standard method are mainly distributed within the range of 0.5–6kHz,while the harmonics of the proposed method are mainly in the vicinity of the switching frequency (10kHz).Then,the total harmonic distortion (THD)of output voltage is further calculated.The result shows that the output voltage THDs of the standard and proposed methods are 42.31%and 46.25%,respectively.

Fig.15shows the input voltage and current waveforms and the harmonic spectra of input current of two methods.It can be

Fig.9.Simulation results of transient performance.(a)Speed,electromagnetic torque,and stator current for standard method.(b)Speed,electromagnetic torque,and stator current for proposed

method.

Fig.10.Simulation results of speed,electromagnetic torque,and stator cur-rent for proposed method with 1.5L d and 1.5L q

.

Fig.11.Standard deviation of electromagnetic torque.(a)Standard method.(b)Proposed method.

seen that the distortion of input current in the standard method is more severe than that in the proposed method.The THDs of the standard and proposed methods are 10.98%and 7.74%,

respectively.

Fig.12.Photograph of experimental setup.

B.Dynamic Performance

Fig.16shows the waveforms of speed,electromagnetic torque,and stator current of two methods with the load torque stepping up from no load (approximately 30N ·m)to 200N ·m and the speed being 40r/min.It can be seen that,with the abrupt change of load,for both the standard and the proposed methods,the electromagnetic torque increases rapidly,and the speed meets the reference value only after a short period.However,remarkable torque ripple reduction can be observed in the proposed method.

Fig.17shows the waveforms of speed,electromagnetic torque,and α?βcomponents of stator ?ux linkage of two methods with the speed reference value stepping up from 20to 40r/min under no-load condition.It can be seen that,with the stepping change of the speed reference value,the electromag-netic torque for both the standard and the proposed methods steps up to the upper limit of speed PI within a very short time period.Once the actual speed meets the reference value,the torque becomes the same with the no-load torque rapidly.It can be concluded that the proposed method has the advantage of fast torque dynamic response.C.Low-Speed Behavior

Fig.18shows the waveforms of stator ?ux modulus and electromagnetic torque of the standard and proposed methods,respectively,with the speed being 15r/min.In the experiment,

Fig.13.Experimental waveforms of electromagnetic torque,stator current,and stator ?ux modulus with ω?r being 40r/min and T L

being 150N ·m.(a)Standard method.(b)Proposed

method.

Fig.14.Experimental waveforms of output line voltage and its harmonic spectra with ω?r being 40r/min and T L

being 150N ·m.(a)Standard method.(b)Proposed

method.

Fig.15.Experimental waveforms of input voltage and current and harmonic spectra of input current with ω?r being 40r/min and T L

being 150N ·m.(a)Standard method.(b)Proposed method.

the load torque of the standard method steps up from no load to 70N ·m,and that of the proposed method steps up from no load to 150N ·m.It can be seen that,for the standard method,with the load torque being 70N ·m,serious distortion of stator ?ux appears in the area where the ?ux sector changes,while for the proposed method,?ux can be maintained in the vicinity of the reference value even when the load torque is increased to 150N ·m.

D.In?uence of Torque Constant K T

The effects of torque constant K T on control system perfor-mances have been given in Section IV.Here,the experimental tests with K T being 3,6,and 12N ·m are carried out.Fig.19(a)shows the waveforms of torque reference (dark line)and actual torque (light line)with the speed reference value being 30r/min and the load torque stepping up from no load to 150N ·m.It can be seen that,with K T being 3and 6N ·m,the actual torque

Fig.16.Experimental waveforms of speed,electromagnetic torque,and stator current for step change of load torque with T L increasing from 30to 200N ·m

and ω?r

being 40r/min.(a)Standard method.(b)Proposed

method.Fig.17.Experimental waveforms of speed,electromagnetic torque,and stator ?ux α?βcomponents for step change of speed reference,with ω?r

increasing from 20to 40r/min and T L being 30N ·m.(a)Standard method.(b)Proposed

method.

Fig.18.Experimental waveforms of stator ?ux modulus and electromagnetic torque for low-speed range.

can track the reference value immediately,while in the case of K T being 12N ·m,a time delay occurs and becomes more obvious at the moment of torque stepping.Fig.19(b)shows the waveforms of torque response with the speed reference value being 30r/min and the load torque being 150N ·m.As can be seen in Fig.19(b),the torque ripples are low with K T being 6and 12N ·m,which becomes signi?cant in the case of K T being 3N ·m.The control system can maintain stable operation and highly dynamic response even when K T changes within a wide value range,which shows better robustness

Fig.19.Experimental waveforms of transient and steady-state performance for proposed method with different K T .(a)Reference and actual value of electromagnetic torque for transient operation.(b)Electromagnetic torque response for steady-state

operation.

Fig.20.Experimental waveforms of electromagnetic torque and stator current for proposed method in different speed references with K T being 8.5N ·m and T L increasing from 30to 150N ·m.

against the variation of control parameters.To summarize,the experimental results are in accordance with the analysis in the previous section.

In Fig.20,the value of K T is equal to 8.5N ·m,and the load torque steps up from no load to 150N ·m with different speed references.It can be seen that the proposed method is able to achieve better steady-state and dynamic performances with different operating conditions when an appropriate value is assigned to K T .

VII.C ONCLUSION

In this paper,a novel DTC algorithm using duty cycle control strategy has been proposed for MC-fed PMSM drive system.This paper de?nes the evaluation functions to analyze the rela-tionships between the voltage vectors of MCs and the change rates of torque and magnitude of stator ?ux.By discretizing and averaging evaluation functions,the torque and ?ux impact factors p τand p λare acquired,and they are approximately proportional to the change rates of torque and magnitude of stator ?ux,respectively.Furthermore,an enhanced switching table is established,and a new duty cycle optimization approach is proposed.The performance of the novel MC-DTC has been tested by simulation and experiment,and the results are con-cluded as follows.

1)Remarkable torque ripple reduction and fast dynamic response can be achieved by the proposed method.The

standard deviation of electromagnetic torque is reduced by more than 30%,compared with the standard method.2)For low-speed range,distortions of stator ?ux can be eliminated to some extent compared with the standard method.Therefore,the load capacity of the drive system is improved by the proposed method.

3)The value of torque constant K T can affect the perfor-mance of the proposed method.To discuss the in?uence of K T ,an experimental tuning method of K T is presented in this paper.Both theoretical analysis and experimental results show that,with a larger value of K T ,torque rip-ples in the steady state are less but dynamic performance is degraded.

R EFERENCES

[1]P.W.Wheeler,J.Rodriguez,J. C.Clare,L.Empringham,and

A.Weinstein,“Matrix converters:A technology review,”IEEE Trans.Ind.Electron.,vol.49,no.2,pp.276–288,Apr.2002.

[2]H.She,H.Lin,B.He,X.Wang,L.Yue,and X.An,“Implementation of

voltage-based commutation in space-vector-modulated matrix converter,”IEEE Trans.Ind.Electron.,vol.59,no.1,pp.154–166,Jan.2012.

[3]C.Xia,P.Song,T.Shi,and Y .Yan,“Chaotic dynamics characteristic

analysis for matrix converter,”IEEE Trans.Ind.Electron.,vol.60,no.1,pp.78–87,Jan.2013.

[4]J.Rodriguez,M.Rivera,J.Kolar,and P.Wheeler,“A review of control and

modulation methods for matrix converters,”IEEE Trans.Ind.Electron.,vol.59,no.1,pp.58–70,Jan.2012.

[5]M.Venturini,“A new sine wave in sine wave out,conversion tech-nique which eliminates reactive elements,”in Proc.Powercon 7,1980,pp.E3/1–E3/15.

[6]X.Wang,H.Lin,H.She,and B.Feng,“A research on space vector

modulation strategy for matrix converter under abnormal input-voltage conditions,”IEEE Trans.Ind.Electron.,vol.59,no.1,pp.93–104, Jan.2012.

[7]M.Rivera, A.Wilson, C. A.Rojas,J.Rodriguez,J.R.Espinoza,

P.W.Wheeler,and L.Empringham,“A comparative assessment of model predictive current control and space vector modulation in a direct ma-trix converter,”IEEE Trans.Ind.Electron.,vol.60,no.2,pp.578–588, Feb.2013.

[8]S.Kouro,P.Cortes,R.Vargas,U.Ammann,and J.Rodriguez,“Model

predictive control,a simple and powerful method to control power con-verters,”IEEE Trans.Ind.Electron.,vol.56,no.6,pp.1826–1838, Jun.2009.

[9]D.Casadei,G.Serra,and A.Tani,“The use of matrix converters in direct

torque control of induction machines,”IEEE Trans.Ind.Electron.,vol.48, no.6,pp.1057–1064,Dec.2001.

[10]C.Ortega,A.Arias,C.Caruana,J.Balcells,and G.Asher,“Improved

waveform quality in the direct torque control of matrix-converter-fed PMSM drives,”IEEE Trans.Ind.Electron.,vol.57,no.6,pp.2101–2110, Jun.2010.

[11]K.-B.Lee and F.Blaabjerg,“Sensorless DTC-SVM for induction motor

driven by a matrix converter using a parameter estimation strategy,”IEEE Trans.Ind.Electron.,vol.55,no.2,pp.512–521,Feb.2008.

[12]J.Wang and J.Jiang,“Variable-structure direct torque control for induc-

tion motor driven by a matrix converter with overmodulation strategy,”in Proc.6th IEEE IPEMC,May2009,pp.580–584.

[13]D.Xiao and M.F.Rahman,“Sensorless direct torque and?ux con-

trolled IPM synchronous machine fed by matrix converter over a wide speed range,”IEEE https://www.wendangku.net/doc/533331816.html,rmat.,vol.9,no.4,pp.1855–1867, Nov.2013.

[14]C.Xia,Y.Yan,P.Song,and T.Shi.,“V oltage disturbance rejection for ma-

trix converter-based PMSM drive system using internal model control,”

IEEE Trans.Ind.Electron.,vol.59,no.1,pp.361–372,Jan.2012. [15]T.Shi,Y.Yan,H.An,M.Li,and C.Xia,“Improved double line volt-

age synthesis strategies of matrix converter for input/output quality en-hancement,”IEEE Trans.Ind.Electron.,vol.60,no.8,pp.3034–3046, Aug.2013.

[16]F.Gruson,P.Le Moigne,P.Delarue, A.Videt,X.Cimetiere,and

M.Arpilliere,“A simple carrier-based modulation for the SVM of the matrix converter,”IEEE https://www.wendangku.net/doc/533331816.html,rmat.,vol.9,no.2,pp.947–956, May2013.

[17]T.D.Nguyen and H.H.Lee,“A new SVM method for an indirect ma-

trix converter with common-mode voltage reduction,”IEEE Trans.Ind.

Informat.,to be published.

[18]M.Rivera,J.Rodriguez,J.R.Espinoza,and H.Abu-Rub,“Instantaneous

reactive power minimization and current control for an indirect matrix converter under a distorted ac supply,”IEEE https://www.wendangku.net/doc/533331816.html,rmat.,vol.8, no.3,pp.482–490,Aug.2012.

[19]E.Yamamoto,H.Hara,T.Uchino,M.Kawaji,T.J.Kume,J.-K.Kang,

and H.-P.Krug,“Development of MCs and its applications in industry,”

IEEE Ind.Electron.Mag.,vol.5,no.1,pp.4–12,Mar.2011.

[20]I.Takahashi and T.Noguchi,“A new quick response and high ef?ciency

control strategy for an induction motor,”IEEE Trans.Ind.Electron., vol.IE-22,no.5,pp.820–827,Sep.1986.

[21]G.S.Buja and M.P.Kazmierkowski,“Direct torque control of PWM

inverter-fed ac motors—A survey,”IEEE Trans.Ind.Electron.,vol.51, no.4,pp.744–757,Aug.2004.

[22]D.Casadei,F.Profumo,G.Serra,and A.Tani,“FOC and DTC:Two

viable schemes for induction motors torque control,”IEEE Trans.Power Electron.,vol.17,no.5,pp.779–787,Sep.2002.

[23]J.S.Lee,C.H.Choi,J.K.Seok,and R.D.Lorenz,“Deadbeat direct

torque and?ux control of interior permanent magnet machines with dis-crete time stator current and stator?ux linkage observer,”in Proc.IEEE Energy Convers.Congr.Expo.,2009,pp.2504–2511.

[24]H.Zhu,X.Xiao,and L.Yongdong,“Torque ripple reduction of the torque

predictive control scheme for permanent-magnet synchronous motors,”

IEEE Trans.Ind.Electron.,vol.59,no.2,pp.871–877,Feb.2012. [25]K.-K.Shyu,J.-K.Lin,V.-T.Pham,M.-J.Yang,and T.-W.Wang,“Global

minimum torque ripple design for direct torque control of induction mo-tor drives,”IEEE Trans.Ind.Electron.,vol.57,no.9,pp.3148–3156, Sep.2010.

[26]G.Abad,M.A.Rodriguez,and J.Poza,“Two-level VSC based predictive

direct torque control of the doubly fed induction machine with reduced torque and?ux ripples at low constant switching frequency,”IEEE Trans.

Power Electron.,vol.23,no.3,pp.1050–1061,May2008.[27]L.Zhong,M.Rahman,W.Hu,and K.Lim,“Analysis of direct torque

control in permanent magnet synchronous motor drives,”IEEE Trans.

Power Electron.,vol.12,no.3,pp.528–536,May1997.

[28]M.Hinkkanen and J.Luomi,“Modi?ed integrator for voltage model?ux

estimation of induction motors,”IEEE Trans.Ind.Electron.,vol.50,no.4, pp.818–820,Aug.2003.

[29]Z.Xu and M.F.Rahman,“An adaptive sliding stator?ux observer for a

direct-torque-controlled IPM synchronous motor drive,”IEEE Trans.Ind.

Electron.,vol.54,no.5,pp.2398–2406,Oct.2007.

[30]Z.Yin,C.Zhao,J.Liu,and Y.Zhong,“Research on anti-error per-

formance of speed and?ux estimator for induction motor using robust reduced-order EKF,”IEEE https://www.wendangku.net/doc/533331816.html,rmat.,vol.9,no.2,pp.1037–1046,May

2013.

Changliang Xia(M’08–SM’12)was born in

Tianjin,China,in1968.He received the B.S.degree

in electrical engineering from Tianjin University,

Tianjin,in1990,and the M.S.and Ph.D.degrees

in electrical engineering from Zhejiang University,

Hangzhou,China,in1993and1995,respectively.

He is currently a Professor with the School of

Electrical Engineering and Automation,Tianjin Uni-

versity,and also with the Tianjin Key Laboratory of

Advanced Technology of Electrical Engineering and

Energy,Tianjin Polytechnic University.In2008,he became a“Yangtze Fund Scholar”Distinguished Professor and is currently supported by the National Science Fund for Distinguished Young Scholars.His research interests include electrical machines and their control systems,power electronics,and control of wind

generators.

Jiaxin Zhao was born in Tianjin,China,in1984.

He received the B.S.degree from China Agricultural

University,Beijing,China,in2006.He is currently

working toward the Ph.D.degree in electrical engi-

neering in the School of Electrical Engineering and

Automation,Tianjin University,Tianjin.

His research interests include electrical machines

and motor drives,power electronics,and wind power

technology.

Yan Yan was born in Tianjin,China,in1981.She

received the B.S.and M.S.degrees in electrical

engineering from Tianjin University of Science and

Technology,Tianjin,in2004and2007,respectively,

and the Ph.D.degree in electrical engineering from

Tianjin University,Tianjin,in2010.

She is currently a Lecturer with the School of

Electrical Engineering and Automation,Tianjin Uni-

versity.Her research interests include the design

and control of matrix converters for electric drive

applications and power converters for wind power

generation.

Tingna Shi was born in Zhejiang,China,in1969.

She received the B.S.and M.S.degrees from Zhe-

jiang University,Hangzhou,China,in1991and

1996,respectively,and the Ph.D.degree from Tianjin

University,Tianjin,China,in2009.

She is currently a Professor with the School of

Electrical Engineering and Automation,Tianjin Uni-

versity.Her research interests include electrical ma-

chines and their control systems,power electronics,

and electric drives.

sciencedirect检索方法

一、进入全文库 直接输入网址 二、检索方法 用户可以通过检索和浏览两条途径获取论文。 (一)检索途径 1.简单检索 (Simple Search) 单击页面左侧的“Search” 按钮,进入简单检索界面。 简单检索界面分为上下两个区,即检索策略输入区和检索结果的限定区。检索策略可在输入区中选择“Search in any field(所有字段)"、“Search in title only(文章标题)”、“Search in abstract field(文摘)”、“Author`s Name(作者)”、“Journal Title(期刊名)”等字段输入,再利用限定区,限定检索结果的出版时间、命中结果数及排序方式,而后点击“Search the Collections”按钮,开始检索。 检索结果有两类信息。一类是期刊题名,在题名下有该刊目次页(table of contents)的超链接和搜寻相关文件按钮;另一类是期刊论文题录,排在靠后的部分,显示论文标题、出处、作者、相关性排序分(“Score”)和搜寻相关文件按钮,通过搜寻相关文件按钮可检索到与该文内容类似的文章。 单击期刊题名下的“table of contents”按钮,可浏览目次信息;单击论文题录下的“Abstract”,按钮,可浏览该文章的标题、作者、作者单位、关键词、文摘等进一步信息;单击Article Full Text PDF ”按钮,即可看到论文全文(PDF格式)。 说明: 系统默认各检索字段间为“AND(与)”的关系。系统默认的显示结果数为50个,且按相关性排列,用户也可以自选。 作者姓名的输入方法为:姓,名例:Smith m。 在论文的文摘页下方,有一个“Get Citation Export”按钮,输出的数据主要供图书馆员参考。 2.高级检索(Expanded Search) 如果需要进行更详细的检索,在简单检索的界面或检索结果的界面中,点击左侧的“Expanded” 或“Expanded search Form”进入高级检索界面。 高级检索除增加了“ISSN(国际标准刊号)”、“PII(Published Item Identifier,出版物识别码)”、“Search in author keywords(作者关键词)”、“Search in text only(正文检索)”等检索字段外,还增加了学科分类、文章类型、语种等限定条件,可进行更精确的检索。 说明:“正文检索”字段指的是在正文中检索而不是在参考文献中进行检索。 论文类型(article type)的限定中,“Article”表示只显示论文;“Contents”表示只显示期刊题名;“Miscellaneous”表示只显示其他题材的论文。 3.检索式的构成: 在同一检索字段中,可以用布尔逻辑算符AND(与)、OR(或)、NOT(非)来确定检索词之间的关系。系统默认各检索词之间的逻辑算符为“AND”。

安全监测管理数据平台

安全监测管理数据平台 第一部分系统简介 一、系统介绍 远程监控系统组态平台可将数据、图像、声音共一个平台集中监控,C/S+B/S 结构,可同时采用RS485技术及LONWORKS技术等多种技术,该组态平台软件可用于机房集中监控、变电站远程监控、楼宇控制、动力环境集中监控、安全防范监控、智能小区监控管理、智能大厦监控管理、工业控制、远程数据图像声音监控,已在海关、电力、保险、银行、政府机关、工厂、电信及移动等各行业大量使用。 整个监控系统均为模块化结构,组建十分灵活,扩展十分方便。可实现机房设备运行管理的无人值守,极大的提高了资源利用率和设备运行管理水平。二、系统主要特点 ◆系统采用分布集中监控方式,适合多层多级部门建立分布集中管理模式。 ◆报警方式包括屏幕报警、电话语音报警、modem语音报警、短信息及电子邮件. ◆强大的报警处理功能。可区分多级的报警级别,报警事件发生时系统自动按事件级别排 队报警,显示,处理,并将画面切换报警画面。 ◆系统支持各式各样的UPS、空调、电量仪、门禁、消防监控主机等设备直接监控,对新 设备新通讯协议的监控不需编程。 ◆界面:令操作人员一目了然。参数实时动态显示,界面完全汉化,场地布局,设备照片 或图片直接显示屏幕上,场景逼真,鼠标控制,操作简单。

第二部分服务器操作说明 一、启动运行服务端 A、运行“安装目录:\“:集中监控系统\服务端”目录下的“SERVER.EXE”. B、“开始”-》“程序”-》“集中监控系统”-》“监控服务器”。 C、桌面上点击“集中监控系统服务端”。 以上三种方式均可运行监控系统服务端程序,运行后界面如下: 用户名:登录系统的用户名称。系统默认:admin。 密码:此用户的密码,系统默认为空密码。 二、系统菜单说明 1)日常操作 启动:启动数据采集。 停止:停止数据采集。 退出:退出本系统。 2)系统配置 时间调度设置报警时间段及拨打报警电话、发送报警短信及报警EMAIL的时间调度。

信息系统项目可行性研究报告(范本)

1、 项目提出的背景和依据 信息系统项目可行性研究报告(建议书) 编制要求 (带*号的内容建议书不作要求) 第一章 项目概述 1 、 项目名称 2 、 项目建设单位及负责人、项目负责人 3 、 编制单位 4 、 编制依据 5 、 项目建设目标、规模、内容、建设期 6 、 项目总投资及资金来源 7 、 经济与社会效益* 8 、 相对项目建议书批复的调整情况* 9 、 主要结论与建议 第二章 项目建设单位概况 1、项目建设单位与职能 业务功能、业务流程、业务量、信息量等分析与预测 * 2、 项目实施机构与职责 第三章 项目建设的必要性 2、

3、信息系统装备和应用现状及存在主要问题和差距 4、项目建设的意义和必要性第四章总体建设方案 1、建设原则和策略 2、总体目标与分期目标 3、总体建设任务与分期建设内容 4、总体设计方案第五章本期项目建设方案 1、本期项目建设目标、规模与内容 2、标准规范建设内容 3、信息资源规划和数据库建设方案 4、应用支撑平台和应用系统建设方案 5、数据处理和存储系统建设方案 6、终端系统建设方案 7、网络系统建设方案 &安全系统建设方案 9、备份系统建设方案 10、运行维护系统建设方案 11、其它系统建设方案

12、主要软硬件选型原则和详细软硬件配置清单 13、机房及配套工程建设方案 14、建设方案相对项目建议书批复变更调整情况的说明*第六章项目招标方案* 1 招标范围* 、 2 招标方式* 、 3 招标组织形式* 、 第七章环保、消防、职业安全和卫生 1 环境影响分析* 、 2 环保措施及方案* 、 3 消防措施* 、 4 职业安全和卫生措施* 、 第八章节能分析* 1 用能标准及节能设计规范* 、 2 项目能源消耗种类和数量分析 、 3 项目所在地能源供应状况分析 、 4 能耗指标* 、 5 节能措施和节能效果分析等内容* 、 第九章项目组织机构和人员培训

项目可行性分析报告(模板)

项目可行性分析报告 第一部分:项目总论 一、项目概况 二、可行性研究结论 三、主要技术经济指标表 四、项目存在问题与建议 第二部分项目背景 一、项目提出背景 二、项目发展概况 三、项目投资的必要性 第三部分项目投资所在城市的基本概况 一、城市基本发展情况 二、城市地理位置、交通、 三、城市气候与生态环境 四、城市的人文环境 五、城市经济状况 六、城市的人口结构及人均经济状况 七、城市整体发展规划及功能布局 八、城市对项目的影响与建议措施 第四部分市场分析 一、整体房地产市场发展状况分析 二、项目区域市场分析 第五部分地块分析 一、地块概况 二、地块分析 三、土地价格 四、土地升值潜力初步评估 五、项目取得用地的法律及政策性风险分析

六、地块SWOT分析 七、项目评价 第六部分项目定位 一、项目目标设置 二、项目整体定位策略 三、项目定位建议 第七部分项目整体规划分析 一、项目规划设计可行性分析 二、项目规划设计的主题及概念 第八部分项目开发建设进度安排与销售节点 一、项目分期开发设置 二、工程计划 三、销售节点 第九部分投资估算与资金筹措 一、成本预测 二、税务分析 三、资金筹措 四、资金投放使用计划 第十部分销售收入测定 一、销售收入测算 二、销售利润测算 第十一部分财务与敏感性分析 一、项目盈利能力分析 二、项目盈亏平衡分析 三、项目敏感性分析 第十二部分综合评价 一、经济评价(定性) 二、社会评价(定性) 三、环境评价 四、市场预测

五、存在问题与建议 六、总体结论及建议 第十三部分竞拍和投标方式取得土地需要增加和完善的内容 一、主要指标测算 二、竞争对手分析 三、制定策略 第十四部分附件 第一部分:项目总论 一、项目概况

轻松进入sciencedirect的方法

轻松进入sciencedirect的方法(有问题联系:wmwman306@https://www.wendangku.net/doc/533331816.html,) 这种方法很好进入sciencedirect,也无须验证代理的有效性。步骤如下: 1.代理 查找及设置 https://www.wendangku.net/doc/533331816.html,/codeen/ (1)页面如图: (2)点击“status”,代理自动按照状态排序,选择“summary failed”的代理,如下图的第一个代理“139.19.142.3”,复制它.

(3)点击网页的“工具”--“internet 选项”--“连接”--“局域网设置”,选上“代理服务器”复选框,在“地址栏”输入刚才的代理“139.19.142.3”,在“端口”输入“3124”或“3127”或者“3128”,如下图我就输入“3128”。点击“确定”--“确定”,代理就这样设置完成了.

2.进入sciencedirect开始了,很关键,关键是网址变了 (1)在网页地址栏里的输入有三种选择好(呵呵,我只知道三种): https://www.wendangku.net/doc/533331816.html,/ 或者 https://www.wendangku.net/doc/533331816.html,/ 或者 https://www.wendangku.net/doc/533331816.html,/ (2)注意:初次进入可能进的不是sciencedirect主页,而是codeen介绍主页,这是你再输入刚才的网址刷新一下就好了 (3)进入主页如下图,有“Advanced Search ”字样的说明现在你能查阅它里边的文献了。点击“Advanced Search ”,就可以按照你的要求查阅相关文献了。

软件项目可行性研究报告【精品】

软件项目可行性研究报告 软件开发项目的实现在技术、经济和社会条件方面的可行性。下面整理了关于软件项目可行性研究报告。欢迎大家参考! 一、概述 简述项目提出的背景、技术开发状况、现有产业规模;项目产品的主要用途、性能;投资必要性和预期经济效益;本企业实施该项目的优势。 二、技术可行性分析 1、项目的技术路线、工艺的合理性和成熟性,关键技术的先进性和效果论述。 2、产品技术性能水平与国内外同类产品的.比较。 3、项目承担单位在实施本项目中的优势。 三、项目成熟程度 1、成果的技术鉴定文件或产品性能检测报告、产品鉴定证书。 2、产品质量的稳定性,以及在价格、性能等方面被用户认可的情况等。 3、核心技术的知识产权情况。对引进技术的消化、吸收、创新和后续开发能力。 四、市场需求情况和风险分析 1、国内市场需求规模和产品的发展前景、在国内市场的竞争优势和市场占有率。 2、国际市场状况及该产品未来增长趋势、在国际市场的竞争能力、产品替代进口或出口的可能性。 3、风险因素分析及对策。 五、投资估算及资金筹措 1、项目投资估算 2、资金筹措方案 3、投资使用计划 六、经济和社会效益分析

1、未来五年生产成本、销售收入估算。 2、财务分析:以动态分析为主,提供财务内部收益率、贷款偿还期、投资回收期、投资利润率和利税率、财务净现值等指标。 3、不确定性分析:主要进行盈亏平衡分析和敏感性分析,对项目的抗风险能力作出判断。 4、财务分析结论 5、社会效益分析 七、综合实力和产业基础 1、企业员工构成(包括分工构成和学历构成) 2、企业高层管理人员或项目负责人的教育背景、科技意识、市场开拓能力和经营管理水平。 3、企业从事研究开发的人员力量、资金投入,以及企业内部管理体系等情况。 4、企业从事该产品生产的条件、产业基础(包括项目实施所需的基础设施及原材料的、供应渠道等)。 八、项目实施进度计划 九、其它 1、环境保护措施 2、劳动保护和安全 3、必要的证明材料 (1) 特殊行业许可证(如食品、农药、医药、化肥产品生产许可证及批文);通信产品入许可证;公共安全产品生产许可证;压力容器生产许可证等。 (2) 可提供项目立项证明、高新技术企业证书、产品质量认证、环保证明;产品订货意向、合同等补充材料。 十、结论 软件可行性研究报告框架

常用国外数据库及检索介绍

常用国外数据库详细介绍(按国家分类) 一、美国 (1) Wiley InterScience(英文文献期刊) 主页:https://www.wendangku.net/doc/533331816.html,/ 简介:Wiley InterScience是John Wiely & Sons 公司创建的动态在线内容服务,1997年开始在网上开通。通过InterScience,Wiley公司以许可协议形式向用户提供在线访问全文内容的服务。Wiley InterScience收录了360多种科学、工程技术、医疗领域及相关专业期刊、30多种大型专业参考书、13种实验室手册的全文和500多个题目的Wiley学术图书的全文。其中被SCI收录的核心期刊近200种。期刊具体学科划分为:Business, Finance & Management (商业、金融和管理)、Chemistry (化学)、Computer Science (计算机科学)、Earth Science (地球科学)、Education (教育学)、Engineering (工程学)、Law (法律)、Life and Medical Sciences (生命科学与医学)、Mathematics and Statistics (数学统计学)、Physics (物理)、Psychology (心理学)。 (2)美国IEEE (英文文献期刊) 主页:https://www.wendangku.net/doc/533331816.html,/ 简介:IEEE(Institute of Electrical & Electronics Engineers)是电子信息领域最著名的跨国性学术团体,其会员分布在世界150多个国家和地区。据IEEE统计,IEEE会员总数2001年比2000年增加3.1%,达到377342人,其中学生会员为65669人,增长12.6%。 随着人们的信息越来越多地来自Internet,IEEE需要为会员提供更加完善和全面的电子信息产品和服务。IEEE应成为IEEE会员获得信息的首选之地。IEEE必须识别正确的信息,并提供对它们的访问方法。实现这个目标的重要一步是通过IEEE Xplore与IEEE/IEE Electronic Library (IEL)连接。IEL包括了1988年以来IEEE和IEE的所有期刊杂志和会议录,以及IEEE的标准,可以通过题目、关键词和摘要进行查阅。 (3)美国EBSCO(英文文献期刊) 主页:https://www.wendangku.net/doc/533331816.html, 简介:EBSCO公司从1986年开始出版电子出版物,共收集了4000多种索引和文摘型期刊和2000多种全文电子期刊。该公司含有Business Source Premier (商业资源电子文献库)、Academic Search Elite(学术期刊全文数据库)等多个数据库。 Business Source Premier收录了三千多种索引、文摘型期刊和报纸,其中近三千种全文刊。数据库涉及国际商务、经济学、经济管理、金融、会计、劳动人事、银行等的主题范围,适合经济学、工商管理、金融银行、劳动人事管理等专业人员使用。数据库中有较著名"华尔街日报"(The Walls Street Journal)、"哈佛商业评论"(Harvard Business Review)、"每周商务"(Business Week)、"财富"(Fortune)、"经济学家智囊团国家报告" (EIU Country Reports)、American Banker、Forbes、The Economist等报刊。该数据库从1990年开始提供全文,题录和文摘则可回溯检索到1984年,数据库每日更新。 学术期刊集成全文数据库(Academic Search Premier,简称ASP):包括有关生物科学、工商经济、资讯科技、通讯传播、工程、教育、艺术、文学、医药学等领域的七千多种期刊,其中近四千种全文刊。 EBSCO内含有两个免费数据库:

VOC在线监测管理系统

VOC在线监测管理系统 背景介绍 1、项目背景 随着经济的快速发展,污染源的种类日益增多,特别是化工区、工业集中区及周边环境,污染方式与生态破坏类型日趋复杂,环境污染负荷逐渐增加,环境污染事故时有发生。同时,随着公众环境意识逐渐增强,各类环境污染投诉纠纷日益频繁,因此对环境监测的种类、要求越来越高。 在“十二五”期间,政府着力打造以空气环境监测,水质监测,污染源监测为主体的国家环境监测网络,形成了我国环境监测的基本框架。“十三五”规划建议中已经明确“以提高环境质量为核心”,从目前环保部力推的“气,水,土三大战役”的初步效果来看,下一步对于环境质量的改善则是对于现有治理设施和治理手段的检验。而对于三个领域治理效果的检验,依赖于全面有效的环境监测网络。 国务院印发的《生态环境监测网络建设方案的通知》提出建设主要目标:到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络。 根据调研大部分企业具备简单治理技术,即将生产车间内生产工艺所产生的VOCs污染物通过管道集气罩收集后通过活性炭吸附装置处理以后进行排放,但园区内存在着有组织排放超标和无组织排放的问题,为督促企业改进生产工艺和治理装置,减少无组织排放,建议园区部署网格化区域监控系统。 系统部署可提高各工业工园区污染源准确定位能力,同时快速直观的分析出污染源周边的相关信息,通过整合各类地理信息资源和环境保护业务资源,建立统一的环境信息资源数据库,将空间数据与动态监测数据、动态监管数据、政策法规数据等业务数据进行无缝衔接。为管理者提供直观、高效、便捷的管理手段,提高环保业务管理能力,综合管理与分析的决策能力。同时根据业务应用的不同,对数据进行横向的层次划分,通过应用人员层次的不同,对数据进行纵向的层次划分,明晰信息的脉络,方便数据的管理。 2、建设依据 2.1相关政策、规划和工作意见 《国务院关于印发国家环境保护“十二五”规划的通知》(国发〔2011〕42号)

专利项目可行性研究报告(提纲)(1)

项目可行性研究报告 (提纲) 一、概述 1.申请项目的概述。应包括项目中专利的基本情况、项目的主要内容、技术水平,主要用途及 应用范围(限400字以内。)。 2.简述项目的社会经济意义、目前的进展情况、申请专利实施资金的必要性。 3.简述本企业实施项目的优势和风险。 4.项目计划目标 二、申报企业情况 包括企业基本情况、项目负责人及实施人员情况、企业转化能力、企业财务经济状况、企业管理情况、企业发展思路等。 三、技术可行性分析 1.详细说明本项目的基本原理及关键技术内容及项目涉及专利的情况。 2.国内外同类产品的专利检索情况(产品核心技术的专利情况),本项目产品技术性能水平与其的比较。 3.本企业及技术依托单位或合作单位的研究开发实力。 四、项目成熟程度 1.产品的专利侵权分析。 2.成果的技术鉴定文件或产品性能检测报告、产品鉴定证书。 3.产品质量稳定性和成品率情况等。 五、市场需求情况 1.国内市场状况及产品的发展前景,在国内市场的竞争能力和市场占有率。 2.国际市场状况及产品的发展前景,在国际市场的竞争能力,产品替代进口或出口的可能性。 六、投资估算及资金筹措 1.项目投资估算 2.资金筹措方案 3.投资使用计划

七、项目实施进度计划 八、经济和社会效益分析 1.生产成本估算、销售收入估算。 2.财务分析,以动态分析为主,提供财务内部收益率、贷款偿还期、投资回收期、投资利润率和利税率、财务净现值等指标。 3.不确定性分析,主要进行盈亏平衡分析和敏感性分析,对项目的抗风险能力作出判断。 4.财务分析结论。 5.社会效益分析。 九、结论 十、其它 1.项目实施所需的基础设施及原辅材料(包括燃料)的来源、供应渠道等情况。 2.环境保护措施。 3.劳动保护和安全。 4.必要的证明材料: (1)特殊行业许可证(如食品、医药、农药、化肥产品生产许可证及批文);通信产品入网许可证;公共安全产品生产许可证;压力容器生产许可证等。 (2)可提供项目立项证明、高新技术企业证书、产品质量认证、环保证明;产品订货意向、合同等补充材料。

项目可行性研究报告范本

项目可行性研究报告范本 第一章项目总论 第二章项目背景和发展概况 第三章市场分析与建设规模 第四章建设条件与厂址选择 第五章工厂技术方案 第六章环境保护与劳动安全 第七章企业组织和劳动定员 第八章项目实施进度安排 第九章投资估算与资金筹措 第十章财务效益、经济与社会效益评价 第十一章可行性研究结论与建议 第一章项目总论 总论作为可行性研究报告的首章,要综合叙述研究报告中各章节的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。总论章可根据项目的具体条件,参照下列内容编写。 §1.1 项目背景

§ 1.1.1 项目名称 企业或工程的全称,应和项目建议书所列的名称一致。 § 1.1.2 项目承办单位 承办单位系指负责项目筹建工作的单位(或称建设单位),应注明单位的全称和总负责 人。 §1.1.3 项目主管部门 注明项目所属的主管部门。或所属集团、公司的名称。中外合资 项目应注明投资各方所属部门。集团或公司的名称、地址及法人代表的姓名、国籍。 § 1.1.4 项目拟建地区、地点 § 1.1.5 承担可行性研究工作的单位和法人代表 如由若干单位协作承担项目可行性研究工作,应注明各单位的名称及其负责的工程名称、总负责单位和负责人。如与国外咨询机构合作进行可行性研究的项目,则应将承担研究工作的中外各方

的单位名称、法人代表以及所承担的工程、分工和协作关系等,分别说明。 §1.1.6 研究工作依据 在可行性研究中作为依据的法规、文件、资料、要列出名称、来源、发布日期。并将其中必要的部分全文附后,作为可行性研究报告的附件,这些法规、文件、资料大致可分为四个部分: (1)项目主管部门对项目的建设要求所下达的指令性文件;对项目承办单位或可行性研究单位的请示报告的批复文件。 (2)可行性研究开始前已经形成的工作成果及文件。 (3)国家和拟建地区的工业建设政策、法令和法规。 (4)根据项目需要进行调查和收集的设计基础资料。 §1.1.7 研究工作概况

项目可行性研究报告提纲

项目可行性研究报告提纲 一、概述 1.申请项目的概述。应包括项目中专利的基本情况、项目的主要内容、技术水平,主要用途及应用范围。 2.简述项目的社会经济意义、目前的进展情况、申请专利实施资金的必要性。 3.简述本企业实施项目的优势和风险。 4.项目计划目标 二、申报企业情况 包括企业基本情况、企业人员及开发能力论述、企业财务经济状况、企业管理情况、企业发展思路等。 三、技术可行性分析 1.详细说明本项目的基本原理及关键技术内容及项目涉及专利的情况。 2.产品技术性能水平与国内外同类产品的比较。最好附性能指标,可以与同类产品比较。 3.本企业及技术依托单位或合作单位的研究开发实力。 四、项目成熟程度 1.成果的技术鉴定文件或产品性能检测报告、产品鉴定证书。 2.产品质量稳定性和成品率情况等。

3.对于引进技术项目,需提供消化、吸收、创新和有关知识产权的文件。 五、市场需求情况 1.国内市场状况及产品的发展前景,在国内市场的竞争能力和市场占有率。 2.国际市场状况及产品的发展前景,在国际市场的竞争能力,产品替代进口或出口的可能性。 六、投资估算及资金筹措 1.项目投资估算 2.资金筹措方案 3.投资使用计划 七、经济效益分析 1.生产成本估算、销售收入估算。 2.财务分析,以动态分析为主,提供财务内部收益率、贷款偿还期、投资回收期、投资利润率和利税率、财务净现值等指标。 3.不确定性分析,主要进行盈亏平衡分析和敏感性分析,对项目的抗风险能力做出判断。 4.财务分析结论。 八.社会效益发析 社会效益是指本产品、本技术给使用单位带来的经济效益,以及在环保、节能、就业、安全等方面的综合效益。

项目管理复习资料完整版

第一讲: 项目的定义:某一主体(个人或组织)为了完成特定的目标,在一定的资源约束下,有组织地开展由一系列基本活动构成的非重复性的有独特成果的活动。 项目的特征:总体性,一次性,物别性,组织的开放性和临时性。 项目质量:质量是反映实体(产出物和工作过程)满足用户明确的或隐含的需要的能力特性总和。主要为功能的实现程度和寿命长度。 项目成本:项目所消耗的资源的货币体现。 项目时间(周期):项目从开始到结束所经历的时间段。这个时间段也被定义为项目的生命周期,它分为项目启动、计划、实施和收尾四个阶段。 P= f (C,T,S) Performance: 绩效,所完成工作的质量。 Cost: 成本,项目工作的成本,与项目使用的人力资源和自然资源直接相关。 Time: 时间,项目必须满足的进度要求。 Scope:范围,要执行的任务的幅度。 时间、成本和质量是一个项目的3个主要变量,三者是相互制约的。如果其中一个或两个变量发生变化,那么其他的变量也会随之变化。 项目资源需求度:项目在各个阶段对各种资源的需求程度。 项目风险度:项目的成功概率和不确定程度。 项目干系人影响力:项目干系人对项目目标、质量、进度等的影响程度;项目资源需求随着项目周期阶段的推进呈现低-高-低的状态;项目面临风险程度随时间推移下降;项目干系人影响力随时间沿着项目阶段下降。

第二讲: 项目管理的概念:项目管理是通过运用知识、技能、工具和技术等资源,以满足项目干系人对项目的需求和期望为目的,对项目活动所开展的各项管理职能活动的总称。 项目管理的特征:(1)普遍性(2)创新性(3)独特性(4)复杂性(5)目的性 项目生命周期:项目从开始到结束可以划分为若干阶段,这些不同的阶段先后衔接起来便构成了项目的生命周期。 项目生命周期一般划分为四个阶段:1、启动阶段(或定义阶段)2、规划阶段(或计划阶段)3、实施阶段(或执行阶段)4、收尾阶段(或交付阶段) 项目管理过程:为了更好地完成项目实施过程中每个阶段的各项工作和活动,需要开展一系列有关项目计划、决策、组织、沟通、协调和控制等方面的管理活动。 内容:(1)输入:这是一个项目管理具体工作过程从上一个管理具体工作过程所获得

可行性研究文献综述

可行性研究文献综述 一、可行性研究简介 可行性研究一词源于英语feasibility study,字义是行得通,有可能成功的意思。自20世纪30年代作为一种组织管理方法对工程项目进行评价,使美国田纳西河流域开发项目获得成功之后,可行性研究这种仅限于经济评价的报告在工业发达国家成为建设项目开发程序的一个环节。 工业项目可行性研究是投资工业项目决策前的活动,是在事件没有发生之前的研究,是对事务未来发展的情况、可能遇到的问题和结果的估计,具有预测性。因此,必须进行深入的调查研究,充分的占有资料,运用切合实际的预测方法,科学的预测未来前景。 对于投资额较大,建设周期较长,内外协作配套关系较多的建设项目,可行性研究的工作期较长,为了节省投资,减少资源浪费,避免对早期就应淘汰的项目做无效研究,一般将可行性研究分为机会研究、初步可行性研究、可行性研究(有时也叫详细可行性研究)和项目评价决策四个阶段。机会研究证明效果不佳的项目,就不再进行初步可行性研究;同样,如果初步可行性研究结论不可行,则不必再进行可行性研究。 随着科学技术、市场经济和管理科学的高度发展,在不断总结过去经验的基础上,可行性研究理论也得到了不断的完善和发展,至今已成为世界公认的项目评价方法。在项目投资决策之前进行可行性研究,不但有助于减少或避免项目投资失误,而且有助于项目的顺利实施和推进,总的说来,可行性研究对于项目投资决策有着以下非常重要的作用:作为项目建设立项的依据,作为向银行申请贷款或筹资的依据,作为工程设计和建设的依据,作为向当地政府和环保部门申请建设执照的依据,作为本工程建设补充基础资料的依据,作为项目与各有关部门签订合同或协议的依据,作为核准采用新技术、新设备研制计划的依据,作为企业安排项目计划和实施的依据。 二、国外可行性研究的发展历史 西方最早推行可行性研究方法的是美国,通过采用这套方法,实现了对河流流域地区良好的开发和综合利用,二战后,随着现代科学技术和管理科学的高度发展,技术经济问题越来越复杂,为了开发新产品,减少投资风险,需要采用科学方法对项目实施进行预测、分析、论证。因此20世纪60年代以来,可行性研究迅速成为投资决策前的一个普遍工作阶段,并且形成了一整套系统理论的科学方法。这种方法在以世界银行为代表的国际经济组织对发展中国家的贷款或援助项目中迅速推广。 在19世纪至20世纪50年代中期,国外主要是运用简单的财务评价方法通过对项目的收入和支出进行比较来判断项目的优劣。随着社会的发展,简单的财务评价已不能满足社会、政府和企业对项目投资决策的多元化需求。于是,法国工程师让尔·杜比提出了“消费者剩余”的思想并在1844年发表了“公共工程效用的评价”一文。之后英国经济学家A·马歇尔正式提出了“消费者剩余”的概念,这种思想发展成为现在费用-效益分析的基础,构成

数据资源管理平台

1 数据资源管理平台设计 1.1 需求分析 1.1.1 数据需求 1.1.1.1 数据分析 XX省水资源管理系统业务涉及的信息资源包括信息采集和信息共享。信息采集按获取方式应分为仪器自动在线监测和非在线监测两种采集范畴。以共享方式获取的其他信息获取(包括水文、水资源保护部门负责采集的实时水雨情、水质监测数据),属于信息共享范畴。 信息采集传输应充分利用现代化科技成果,通过对信息采集和传输基础设施设备的改造和建设,配置适合当地水资源特性的仪器设备。信息采集传输的设备选型与配置应充分考虑当地的水文、气候特征、供电条件和环境安全等因素。 (1)在线监测信息对象 在线监测信息对象包括:水源地、取用水、行政边界河流控制断面、地下水超采区以及水功能区水量水质信息。监测规模、监测手段和监测代价的衡量要应充分考虑当地的经济发展水平、经济承受能力、设站技术可行性和运行维护便捷性。 水源地监测:包括地表水水源地(水库、江河、湖泊等水体)和地下水水源地。应按照先列入水利部公布的全国重要饮用水水源地名录的水源地、大中型水库水源地,后其它饮用水水源地的顺序安

排布设。 取用水监测:包括重点取水口水量水质监测。按照先取水环节后排水环节、先集中用水户后分散用水户顺序安排;取水量级考虑先重点用水户后一般用水户、同等取水量级先第二、三产业用水户后第一产业用水户顺序安排;同时兼顾设站条件通盘考虑。 水资源管理单元出入断面监测:包括省际、地市际以及县际边界河流控制断面。按照先地市际边界河流控制断面监测后县际边界河流控制断面的监测,水资源管理单元逐级细化、控制能力逐步加强的思路顺序建设。 水功能区监测:按照《XX省水功能区规划》的部署,按照先保护、保留、缓冲、饮用水源等重要水功能区水质监测、后其余水功能区水质监测、入河排污口监测的原则布设。 地下水超采区监测:包括地下水水位、水质监测。按照先禁采区限采区、后地下水集中开采区、先平原区后山丘区的顺序安排布设。 水生态监测:重点区域和水域水生态监测。按照先水利部水生态系统保护与修复试点后其它区域的顺序安排布设。 社会用水户、水源地、水资源管理单元出入断面、水功能区、地下水水量水质监测点的布设应在充分利用既有水文观测站网络的基础上统筹规划,有些观测面监测可通过上下游监测点观测数据内插方式满足,有些可通过既有测站增加观测项的方式满足。 (2)新设监测点的工作方式

数据库管理系统的设计与实现

数据库管理系统的设计与实现 1.DBMS的目标 (1)用户界面友好对一个实用DBMS来说,用户界面的质量直接影响其生命力。DBMS的用户接口应面向应用,采用适合最终用户的交互式、表格式、菜单式、窗口式等界面形式,以方便使用和保持灵活性。一般地说,用户界面应具有可靠性、简单性、灵活性和立即反馈等特性。 (2)功能完备DBMS功能随系统的规模的大小而异。大型DBMS功能齐全,小型DBMS功能弱一些。DBMS主要功能包括数据定义、数据库数据存取、事务控制、数据库组织和存储管理、数据库安全保护等等。我们在下面讨论这些功能的内容。 (3)效率高系统效率包括三个方面:一是计算机系统内部资源的使用效率。能充分利用资源(包括存储空间、设备、CPU等),并注意使各种资源负载均衡以提高整个系统的效率,二是DBMS本身的运行效率。三是用户的生产率。这是指用户学习、使用DBMS和在DBMS基础上开发的应用系统的效率。 2.DBMS的基本功能 (1)数据库定义对数据库的结构进行描述,包括外模式、模式、内模式的定义;数据库完整性的定义;安全保密定义(如用户口令、级别、存取权限);存取路径(如索引)的定义。这些定义存储在数据

字典(亦称为系统目录)中,是DBMS运行的基本依据。为此,提供数据定义语言DDL。 (2)数据存取提供用户对数据的操纵功能,实现对数据库数据的检索、插入、修改和删除。一个好的DBMS应该提供功能强易学易用的数据操纵语言(DML)、方便的操作方式和较高的数据存取效率。DML有两类:一类是宿主型语言,一类是自含型语言。前者的语句不能独立使用而必须嵌入某种主语言,如C语言、COBOL语言中使用。而后者可以独立使用,通常以供终端用户交互使用和批处理方式两种形式使用。 (3)数据库运行管理这是指DBMS运行控制、管理功能。包括多用户环境下的并发控制、安全性检查和存取权限控制、完整性检查和执行、数据加密、运行日志的组织管理、事务的管理和自动恢复(保证事务的正确性),这些功能保证了数据库系统的正常运行。 (4)数据组织、存储和管理DBMS要分门别类地组织、存储各类数据,包括数据字典(亦称系统目录)、用户数据、存取路径等等。要确定以何种文件结构和存取方式在存储级上组织这些数据,如何实现数据之间的联系。数据组织和存储的基本目标是提高存储空间利用率,选择合适的存取方法确保较高存取(如随机查找、顺序查找、增、删、改)效率。 (5)数据库的建立和维护包括数据库的初始建立、数据的转换、数据库的转储和恢复、数据库的重组织和重构造以及有性能监测分析等功能。

项目可行性研究报告大纲

项目可行性研究报告 公司名称: 编制人员:

目 录 第一部分:项目总论 1.1项目背景 1.2项目概况 1.2.1项目名称 1.2.2项目建设单位概况 1.2.3项目地块位置及周边现状 1.2.4项目规划控制要点 1.2.5项目发展概况 1.3可行性研究报告编制依据 1.4可行性研究结论及建议 第二部分:市场研究 2.1宏观环境分析 2.2全国房地产行业发展分析 2.3本市房地产市场分析 2.3.1本市房地产市场现状整体竞争格局,供求现状 2.3.2本市房地产市场发展趋势 2.4板块市场分析 2.4.1区域住宅市场成长状况 2.4.2区域内供应产品特征 2.4.3区域市场目标客层研究 2.5项目拟定位方案

2.5.1可类比项目市场调查 2.5.2项目SWOT分析 2.5.3项目定位方案 第三部分:项目开发方案 3.1项目地块特性与价值分析3.1.1地块特征分析 3.1.2土地价值分析 3.1.3土地升值潜力初步评估3.1.4土地法律性质评估 3.2规划设计分析 3.2.1初步规划设计思路 3.2.2规划设计的可行性分析3.3产品设计建议 3.3.1综合楼 3.3.2住宅 3.3.3停车场 3.4项目实施进度 3.5营销方案 3.6机构设置 3.7合作方式及条件 第四部分:投资估算与融资方案4.1投资估算 4.1.1投资估算相关说明

4.1.2分项成本估算 4.1.3总成本估算 4.1.4单位成本 4.1.5销售收入估算 4.1.6税务分析 4.1.7项目资金预测 4.1.8现金流量表 4.1.9自有资金的核算 4.2融资方案 4.2.1项目融资主体 4.2.2项目资金来源 4.2.3融资方案分析 4.2.4投资使用计划 4.2.5借款偿还计划 第五部分:财务评价 5.1财务评价基础数据与参数选取5.2财务评价 5.2.1财务盈利能力分析 5.2.2静态获利分析 5.2.3动态获利分析 5.2.4偿债能力分析 5.2.5综合指标表 5.3财务评价结论

企业的设备状态监控和数据库管理系统

企业的设备状态监控和数据库管理系统 项目简介: 现代工业生产和企业管理过程中,由于生产过程控制要求的高环境适应性、高实时性、和高可靠性等特点,远程实时监控系统及大数据量的数据库管理系统成为必然发展趋势。基于GPRS所具有的实时数据传输高速性和使用成本低廉性,当前对其在无线监控方面的开发和应用已经成为业内研究热点。基于.NET框架构建网络数据库管理系统是解决当前大型生产企业数据量庞大、数据关系复杂、各独立部门缺乏联系等存在问题的最佳途径。以上两种技术相结合,必然使企业生产过程监控和数据管理水平上一个全新的水平。 技术背景: 前期已完成多个企业的设备状态监控系统和数据库管理系统的研发工作,包括:“生产设备实时监测与故障诊断系统”、“水泥生产数据库管理系统”,工程机械集团“振动压路机运行综合测试系统”,矿务局“煤矿皮带输送系统实时监测与保护系统”等。以上系统均采用局域网等手段将不同监测点的数据传输到总控制机,利用分布式数据库完成数据的保存和管理。通过以上项目的开发工作,已经掌握了针对大型工业企业生产过程实时监控及数据库管理的基本实施办法和系统搭建方案。 系统功能: 通过计算机技术、网络技术、多媒体技术,实现全厂生产过程和设备运行状态实时信息共享,在任一个允许的站点都能实时监视各个设备现场运行状况(如温度、压力、振动、电流、流量等参数)及整个生产过程状态(如投入、产出、有无异常现象等)并能回顾前段时间(几小时,甚至几天前)各生产单元和机组运行情况。这样,通过对生产过程的实时、连续监测,可及时发现生产过程中的异常现象,为生产管理和调度指挥提供决策依据。 其主要的功能如下: 1)数据采集:各数据采集站自动从各种常规仪表、传感器等现场控制设备实时采集工况参数,并进行规范化处理。 2)数据通讯及存储:通过网络等技术将采集的实时数据传输到总机,并存入数据库,并根据需要传送到监测的客户端。 3)调度监测管理:监测端用户可通过良好的人机界面实现各种监测画面的快速查询和组态。 4)实时数据的监测:以流程图、仪表指示棒图、报警指示、实时曲线、数据列表等多种显示画面监测实时数据。以历史趋势图、记录报表等方式显示历史记录数据和统计数据。 5)生产报表管理:具有日报、周报、旬报、月报处理功能。数据来源有自动采集的数据和手工输入数据。 6)故障监测和报警:当某些点的采集值超过了参数的正常范围时,监测系统应该及时做出报警反映,通知监测者及时采取措施排除故障。 另外,还可以在以上基本功能外添加其他管理信息系统的功能,如投入产出分析、优化控制和生产管理等等。技术要求及特点: 1)要求有高实时性与良好的时间确定性; 2)传送信息多为短信息,且信息交换频繁; 3)容错能力强,可靠性、安全性好;4)网络结构分散(监测点、采集点位于全厂各个角落)

环境监测总站数据管理系统软件

环境监测总站数据管理系统软件 1、技术要求: 1.1软件设计满足国家有关标准和规范要求; 1.2软件基于环境监测站统一的网络环境和数据库服务器运行,并且不受节点限制; 2、功能要求 2.1业务范围 2.1.1空气监测:大气监测、降水监测、降尘监测 2.1.2水质监测:河流监测、湖库监测、饮用水监测 2.1.3噪声监测:区域噪声、功能区噪声、道路交通噪声 2.1.4污染源监测:工业污染源(废水、废气)、污水处理厂 2.2功能要求 2.2.1监测数据录入 2.2.1.1数据录入 在选择点位信息后,录入手工监测数据。要求系统在录入过程中对录入的数据进行检查和核对,确保数据的合理性、逻辑性、一致性。 2.2.1.2数据修改 系统可以对已经录入的监测数据进行检查修改,确保录入数据的准确性、完整性。 2.2.1.3审核未通过的数据 可以对未能通过审核退回的数据进行查询、修改,确认无误后再次提交审核。 2.2.1.4审核提交 对录入的数据进行审核,在审核过程中可以通过超标检查、突变检查等方式对数据的正确性、逻辑性进行检查,通过审核的数据提交至上级监测站审核。 2.2.1.5审核日志 系统自动记录每次录入审核提交的内容、审核时间等,并可查询历史审核记录。 2.2.2数据导入

2.2.2.1监测数据导入 2.2.2.2污染源数据导入 跟国家总站污染源监测信息管理系统的接口,可以与国家总站的污染源系统进行数据的交互。 2.2.2.3审核提交 对导入的数据进行审核,在审核过程中可以通过超标检查、突变检查等方式对数据的正确性、逻辑性进行检查,通过审核的数据保存至数据库中。 2.2.2.4审核日志 系统自动记录每次导入审核提交的内容、审核时间等,并可查询历史审核记录。 2.2.3数据查询 系统提供以模板方式对数据进行查询,查询结果可以以文件方式导出。 2.2.4统计评价 监测数据统计评价是按照专业要求和格式,对监测数据进行统计分析,形成监测成果表及特征值统计表,提供给管理部门或向社会发布,统计分析是本系统重要组成部分,各环境要素和污染源都需要对监测信息进行分析与对比,分析的结果可以按表格、统计直方图、柱形图、饼图等形式直观地输出显示,使管理者对专业信息有直观的了解,便于决策使用。 2.2.5标准管理 对污染源系统的企业污染源和污水处理厂的标准进行编辑维护,包括国标、地标等信息。 2.2.6系统管理 2.2.6.1数据维护 系统能够对基础信息和监测数据提供统一的管理,保持基础信息的一致性和完整性。在此模块中能够方便各类基础信息的维护和管理,例如能够进行标准和监测项目的录入,修改,删除和查询。 2.2.6.2空间分组 系统能够对针对点位或者断面,实现自定义空间分组功能。 2.2.6.3城市管理 系统能够对本市所辖各区县信息进行添加、编辑。

建设项目可行性研究概述jz2-1知识讲解

建设项目可行性研究概述 一、建设项目可行性研究的目的和任务 (一)可行性研究的目的 可行性研究是我国于20世纪70年代末从国外引进的。它是工程建设项目投资决策前运用多种科学成果进行技术经济论证的综合性学科。 具体地讲,就是在工程项目投资决策前,对与项目有关的社会、经济和技术等各方面的情况进行深入细致的调查研究;对各种可能拟定的建设方案和技术方案进行认真的技术经济分析、比较和论证;对项目建成后的经济效益进行科学的预测和评价;在此基础上,综合研究建设项目的技术先进性和适用性、经济合理性以及建设的可能性和可行性。由此确定该项目是否应该投资和如何投资等结论性的意见,为决策部门最终决策提供科学的、可靠的依据,并作为开展下一步工作的基础。 (二)可行性研究的任务 可行性研究是进行工程建设的首要环节,是决定投资项目命运的关键。可行性研究一般应回答以下七个方面的问题: (1)该项目在技术上是否可行? (2)该项目经济上是否有生命力? (3)该项目财务上是否盈利?盈利多少? (4)建设该项目需要多少投资? (5)这些投资通过哪些渠道筹集? (6)建设的工期多长? (7)建设和维持该项目的生存发展需要多少人力、物力资源(包括建设时期和投产后的需要)? 上述七个问题概括起来有三个范畴:工艺技术;市场需求;财务经济状况。其中,市场需求是前提,工艺技术是手段,财务经济状况是核心。 二、建设项目可行性研究的阶段和内容 (一)可行性研究的阶段 生产性工程建设项目,从筹备建设到建成投产,直至报废,其发展过程大体可以分为三个时期,即建设准备时期(规划时期,亦称投资前期)、建设时期(亦称投资时期或实施阶段)、生产时期。建设项目可行性研究可分为机会研究、初步可行性研究、最终可行性研究和项目评估决策四个阶段。现分述如下: 1.机会研究 该阶段的主要任务是为工程建设项目投资方向提出建议,即在一定的地区和部门内,以自然资源和市场的调查预测为基础,寻找最有利的投资机会。 机会研究又分为一般机会研究和特定项目的机会研究。前者又分三种:地区研究;分部门研究;以资源为基础的研究。后者是要选择确定项目的投资机遇,将项目意向变为概略的投资建议。 机会研究比较粗略,主要依靠笼统的估计而不是依靠详细的分析。该阶段投资估算的精确度为±30%,所需费用约占投资总额的0.2%~1.0%。 如果机会研究证明投资项目是可行的,就可以进行下一阶段的研究。 2.初步可行性研究 亦称“预可行性研究”或“前可行性研究”。是在机会研究的基础上,进一步对项目建设的可能性与潜在的效益进行论证分析。其主要解决:

相关文档
相关文档 最新文档