文档库 最新最全的文档下载
当前位置:文档库 › 信号与系统在生物医学中的应用

信号与系统在生物医学中的应用

信号与系统在生物医学中的应用
信号与系统在生物医学中的应用

信号与系统论文

题目:信号与系统在生物医学中的应用

学号:121417010133

班级:生医121班

姓名:张小鲜

信号与系统在生物医学中的应用

摘要

随着计算机技术和现代信息技术的飞速发展,信号与系统在实际生活中的应用越来越广泛,本文在信号与系统中占有重要分量的数字信号处理技术为例,讨论其在生物医学中的应用,从而阐述信号与系统在生物医学中的应用。数字信号处理(Digital Signal Processing DSP)是利用计算机或专用处理芯片,以数值计算的方法对信号进行采集、分析、变换和识别等加工处理,从而达到提取信息和便于应用的目的。

数字信号处理技术一诞生就显示了强大的生命力,展现了极为广阔的应用前景。接下来主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。

关键词:生物医学;信号与系统;数字信号处理;小波分析;人工神经网络;维格纳分布

1 引言

自20世纪60年代以来,随着计算机和信息学科学的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(DigitalSignalProcessing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。

1.1生物医学信号特性

人体中每时每刻都存在着大量的生命信息,在不断地实现着物理的、化学的及生物的变化,因此所产生的信息是极其复杂的。

我们可以把生命信号概括为两大类:化学信息和物理信息。化学信息是指组成人体的有机物在发生改变时所给出的信息,它属于生物化学研究的范畴。物理信息则是指人体各器官运动时所产生的信息。物理信息表现出来的信号又可分为电信号和非电信号两大类。人体电信号,如体表心电(ECG)信号、脑电(EEG)、肌电(EMG)、眼电(EOG)和胃电(EGG)等,在许多领域取得了不同程度的应用。4钟典型的生物医学信号参见图1。

人体磁信号检测,近年来也引起了国内外研究者和临床的高度重视。我们把磁信号也归为人体信号。人体非电信号,如体温、血压、心音、心输出量及肺潮气量等,通过相应的传感器,即可转变成电信号。电信号是最便于检测、提取和处理的信号。

图1 生物医学信号(a心电,b肌电,c血细胞信号,d心率信号)

上述信号是由人体自发产生的,称为“主动性”信号。另外,还有一种“被动性”信号,即人体受到外界施加某种刺激或某种物质时所产生的信号。如诱发响应信号,即是在刺激下所产生的电信号,在超声波及X射线作用下所产生的人体各部位的超生图像、X射线图像等,也是一种被动信号。通常所研究的生物医学信号,即是上述包括主动的、被动的、电的和非电的人体物理信息或化学信息。

1.2信号处理

信号处理是对信号进行运算和变换提取信息的过程,处理项主要包括滤波、变换、频谱分析、压缩、识别和合成等[3]。

信号处理有着悠久的历史,在各个不同的领域,如生物医学工程、声学、声纳、雷达、地震学、语音通信、数据通信和核科学等领域,都充分显示出它的重要性。在许多应用场合下,例如脑电图与心电图分析,或语音传输与语音识别系统中,我们可能希望提取某些特征参数。另外,我们希望剔除混在信号中的噪声和干扰,或者是把信号转换成专业人士更易理解的形式。又例如信号在甜心信道上传输时,会受到各种干扰,其中包括信道失真、衰落、和混入背景噪声,接收机的任务之一,就是要补偿掉这些干扰。在上述每种情况下,都要对信号进行处理。

数字信号处理过程必定涉及数字化处理系统,由数字化处理器或程序完成对数字信号的处理。数字化处理系统不是孤立的数字系统,一般是以数字处理系统为核心,结合ADC和DAC转换器、滤波和放大器等子系统构成,如图2所示。

图2 典型数字信号处理系统

数字信号处理技术主要是通过计算机算法进行数值计算,与传统的模拟信号处理相比,具有算法灵活、运算精确、抗干扰性强、速度快等特点。此外,数字系统还具有设备尺寸小,造价低,便于大规模集成,便于实现多维信号处理等突出优点。在生物医学信号处理领域,数字信号处理技术发挥着极其重要的作用。

生物医学信号处理是根据生物信号的特点,应用信息科学的基本理论和方法,研究从被干扰和噪声淹没的信号中提取各种生物医学信息中所携带的信息,并对它们进行分析、解释、分类和应用。

综上所述,我们简要介绍了生物医学信号处理的典型基本方法。当然,信号处理的内容非常丰富,例如多采样率信号处理、非平稳信号的时频分布、同态滤波、自适应滤波、小波变换、人工神经网络、混沌与分形等方法,在生物医学信号处理领域皆得到应用。

2 数字信号处理在生物医学工程中的应用

2.1 小波分析在生物医学工程中的应用

近年来,小波的研究受到数学家,理论物理学家和工程学家们的关注,特别是在信号处理,图象处理,语音分析,模式识别,量子物理及众多非线性科学等应用领域,被认为是近年来在工具及方法上的重大突破。所谓的小波变换是指把某一被称为基本小波(motherwavelet)的函数ψ(t)作位移τ后,再在不同尺度α下与待分析信号x(t)作内积结合傅里叶变换处理可知小波变换必须具有带通性质。本来满足允许条件的ψ(t)便可作为基本小波,但考虑到频域上的局域要求,条件就更苛刻一些:即要求小波在频域上局域性能好,应要求ψ(t)的前n 阶矩为零,且n越大越好。在频域上这相当于要求Ψ(ω)在ω=0处有n阶零点。

小波分析方法具有以下特点:

(1)时频局部化特点,即可以同时提供时域和频域局部化信息。

(2)多分辨率,即多尺度的特点,可以由粗到细逐步观察信号。

(3)带通滤波的特点,可以根据中心频率的变化调节带宽,中心频率的高低与带宽成反向变化,可以观测出信号的低频缓变部分和高频突变部分。

这种变焦特性决定了它对非平稳信号处理的特殊功能。在生物医学工程中的信号处理,信号压缩,医学图象处理中,小波变换均有用武之地。适当地选择小波基,可以方便地检测出信号的奇异点,观测信号的瞬态变化以及时域分析中信号不见的信息;此外利用带通特性,将信号分解成不同频带低频分解波和高频分解波,并提取出信号中的非平稳信号。在生物医学工程中的人体电信号,如心电信号(ECG),脑电信号(EEG),肌电信号(MUAP),视觉诱发电位信号(VEP)等均为非平稳的弱电信号,但对于这些信号的提取常因各信号的频谱相互交迭,以及信噪比较低加之工频及谐波干扰严重等而产生困难,而小波对非平稳信号的突出的处理能力,给人体电信号的提取带来了较以往各种滤波方法更为方便的手段。

图3 心电信号图 4 脑电信号

图5 肌电信号图6 视觉信号

此外,在CT成象方面,如何既增强边缘又平滑噪声一直是图象处理的难题,而小波变换,由于它可以同时在时域和频域内局部化,因而可以较好地处理图象局部细节,提高边缘分辨度,因此小波方法的出现给生物医学工程中信号图象分析提供了有力的手段。

2.2 人工神经网络(ANN)在生物医学工程中的应用

人工神经网络是指由大量简单元件(即神经元,可以用电子元件,光学元件等模拟)广泛相互连接而成的复杂网络系统。神经网络有很多具体模型,其共同的基本特征是:(1)以大规模并行处理为主;(2)采用分布式存储,具有很强的容错性和联想功能;(3)强调自适应过程和学习(训练)过程。人工神经网络的最新发展使其成为信号处理的强有力工具,对于那些用其它信号处理技术无法解决的问题,人工神经网络的应用开辟了新的领域,许多ANN的算法和它们的应用已广泛的在自然科学的各个领域被报道,在这些网络模型中,多层感知器被认为是最有用的学习模型,广泛应用于脑电信号,心电信号的处理中。

20世纪80年代末,90年代初,神经网络的研究在国际上形成一股热潮,其原因是由于神经网络可将人脑的智能原理应用来解决工程技术及社会管理的许多复杂问题。生物医学工程工作者采用神经网络的方法来解释许多复杂的生理、病理现象,例如:心电、脑电、肌电、胃肠电等信号的识别,心电信号的压缩,医学图像的识别和处理等。人工神经网络是由大量的简单处理单元连接而成的自适应动力学系统,具有巨量并行性,分布式存贮,自适应学习的自组织等功能,可以用来解决生物医学信号分析处理中,用常规方法难以解决或无法解决的问题,神经网络在生物医学信号检测与处理中的应用主要集中在对脑电信号的分析,听觉诱发电位信号的提取;用于Holter系统的心电信号数据的压缩算法;医学图像的数据压缩算法等等。这些应用大多数都是基于神经网络的多层前馈网

络反向传播算法(即BP算法)训练三层网络,该方法能解决许多信号处理中的难题,如语言合成与识别,视觉模式识别。由于神经网络可以把专家知识和先验知识结合进一个数学框架来完成提取特征和分类识别等功能,而不需要任何对数据和噪声的先验统计假设,也不需要把专家知识和经验归纳成严密清晰的条文,所以最适应于研究和分析生物医学信号。

2.3 维格纳(Wigner)分布在生物医学工程中的应用

1932年Wigner描述了一个函数Wigner分数,为加强时域函数重建为时域图提供了最佳途径。Wigner分布同时提供信号时域及频域特征,更适合分析随时间变化的能量和。Wigner分析不需要假设信号是静止的,比FFT及AR分析有更高的分辨率。限制Wigner分布分析应用的不利特征为它只适用于单一成分的信号,如果信号中两种或者多种成分同时存在,函数中将产生伪峰,成为交叉项。对于确定性的连续时间复值函数,经过应用数学界几十年的努力,维格纳分布的理论已逐步趋于成熟。进入20世纪80年代以来,许多学者采用维格纳分布对多种非平稳信号进行了分析。由于生物医学信号的非平稳性比较突出,因近年来国内外都有人希望采用维格纳分布来较好地表现它们的频率特性随时间的变化,特别对较微弱的电生理信号。维格纳分布在生物医学信号分析中的应用及发展主要包括生理节律、心电信号、血流速率波信号、体感诱发电位、超声多普勒信号、听神经电活动信号、声音信号、脑电信号、第一心音、心室晚电位、心率,血压和呼吸信号等方面。目前国内有许多研究机构从事这方面工作。他们的研究对象大部分是高频心电图,心室晚电位和心音信号,已有的结论表明:维格纳分布对这几种信号的特异性和灵敏度较为显著。维格纳分布在应用中的主要困难是由于它的加法性质而引入的交叉项干扰。有人在利用DPWD对高频心电图和心室晚电位进行分析时,采用了在时轴上作滑动平均的方法来抑制交叉项干扰,取得比较好的效果。另外,对信号进行迭加平均预处理和高通滤波将会取得更好的效果。

维格纳分布在多种非平稳信号分析中所表现的特异性和灵敏度已经得到证明。但到目前为止,各种信号的维格纳分布的分析结果还只停留在定性的特征上,进一步提取能作为诊断的定量特征指标将是今后的主要研究方向。

大量研究表明,维格纳分布是分析非平稳信号的有效手段。它的直观的时域

分布和良好的频域分辨率能够较好地满足各种生物医学信号分析的要求,维格纳分布将在生物医学信号分析领域得到更广泛而有效的应用和发展。

3前景展望

数字信号处理技术的产生和发展时间并不长,但由于其处理问题的特殊技巧和特殊效果已成为理论研究和工程实际应用中强有力的工具。生物医学信号是一种相当复杂的信号,其主要特点是随机性和噪声背景都比较强,随机性强是因为影响生物信号的因素很多。生物信号作为随机信号的显著特点是它的非平稳性,也即信号的统计特征随时间而变,这是因为生物系统在外因素的影响下具有适应力,使得信号的统计特征自动变化。背景强噪声是生物医学电信号的另一特点,从强背景噪声中提取有用信息并对信号的某些部分进行局部定位是医学分析和诊断所提出的要求,而数字信号处理技术的特殊处理能力使其在生物医学电信号的检测、分析和处理中显示出极大的优越性。我们相信随着数字信号处理技术的飞速发展,数字信号处理这一新兴的理论也将不断地丰富和完善各种新算法、新理论将不断地被提出,可以预计,在以后的时间里,数字信号处理在生物医学工程中的应用将得到更快的发展。

综上所述,信号处理将成为生物医学工程中不可忽视的技术,只要深入研究,将会对生物医学领域有卓越贡献。

参考文献:

[1]刘百芬、张利华主编;《信号与系统》,人民邮电出版社,2012。

[2]崔锦泰(美);《小波分析导论[M]》,西安交通大学出版社,1995。

[3]李世雄,刘家琦;《小波变换和反演数学基础[M]》,地质出版社,1994。

[4]秦前清,杨宗凯;《实用小波分析[M]》,西安电子科技大学出版社,1994。

[5]张晓平等;《从时频分布到连续小波变换》,电子科学学刊,1994。

[6]杨福生;《信号的时频域分析》,清华大学电机,1994。

光电技术在生物医学中的应用一现状与发展

论文题目: 光电技术在生物医学中的应用——现状与发展 学院 专业名称 班级学号 学生 2013年12月19日

摘要: 简要介绍光电技术在生物医学应用中的发展概况,从基因表达与蛋白质——蛋白质相互作用研究方面,重点讨论了生物分子光子技术的特点与优势,阐明基于分子光学标记的光学成像技术是重要的实时在体监测手段,最后简要讨论了医学光学成像技术在组织功能成像和脑功能成像中的应用原理。 关键词:光电技术,医学诊断与治疗,分子光子学,医学成像

1.生物医学光子学发展简介 光电技术在生物医学中的应用实质上就是生物医学光子学的研究畴。生物医学光子学是近年来受到国际光学界和生物医学界广泛关注的研究热点。在国际上一般称为生物医学光子学或生物医学光学。 光子学以量子为单位,研究能量的产生、探测、传输与信息处理。光子技术在生物与医学中的应用即定义为生物医学光子学,其相应产业涉及人类疾病的诊断、预防、监护、治疗以及保健、康复等。研究容包括:光子医学与光子生物学,X-射线成像,MRI ,PET等。近年来,生物医学光子学在生物活检、光动力治疗、细胞结构与功能检测、对基因表达规律的在体观测等问题上取得了可喜研究成果,目前正在从宏观到微观多层面上对大脑活动与功能进行研究。美国《科学》杂志在最近儿年已发表相关论文近20篇。随着光子学技术的发展,生物医学光子学将在多层次上对研究生物体特别是人体的结构、功能和其他生命现象产生重要影响。 在国际上已经成立了国际生物医学光学学会(International Biomedical Optics Society),简称IBOS。IBOS每年与国际光学工程学会(SPIE)联合举办学术会议。国外 学术交流方面,作为生物医学工程和光学工程领域重要国际会议的“生物医学光学国际学术研讨会”(International BiomedicalOptics Symposium,简称BIOS)每年在美国和欧洲各举办一次。在国,国家自然科学基金委员会生命科学部与信息科学部联合发起并承办的全国光子生物学与光子医学学术研讨会已经举办了六届。在第六届学术会议上发表学术论文75篇,论文摘要27篇。 从光电技术(或光子技术)在生物医学中的应用现状可以看到,光子医学与光子生物学的研究和应用围是广泛而且深入的,并正在形成有特色的学科和产业。例如,由于生物超微弱发光与生物体的细胞分裂、细胞死亡、光合作用、生物氧化、解毒作用、肿瘤发生、细胞和细胞间的信息传递与功能调节等重要的生命过程有着密切的联系,基于生物超微弱发光的生物光子技术在肿瘤诊断、农业、环境监测、食品监测和药理研究等方面己经得到应用。 下面主要从生物分子光子技术和医学光学成像技术两个方面介绍当前的研究现状 与发展趋势。

数字信号处理在生物医学的应用

数字信号处理在生物医学领域的应用 作者:张春强 安徽农业大学工学院 车辆工程 13720482 摘要:在生物医学研究中有各种各样待提取和处理的信号,信号处理立即成为解决这些问题的有效方法之一。主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(Digital Signal Processing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。 而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 2 数字信号处理在生物医学工程中的应用 2.1 信号处理在DNA 序列中的应用 生物序列数据在数学上以字符串表示,每个字符对应于字母表中的一个字母。如 DNA 序列中,用 A,T,C,G 四个字母代表组成 DNA 序列的四种碱基。对数值化后的DNA 序列进行频谱分析发现基因序列蛋白质编码区存在周期 3行为,即其功率谱在1/3频率处有一谱峰。用傅利叶变换来分析基因序列的功率谱可以发现其蛋白质编码区,可以预测基因位置和真核细胞基因中独特的外显子。 1.1 DFT 求 DNA 序列功率谱 在对基因组序列进行计算分析之前,先将其转化为数值序列。设字母表Λ = {A ,C ,G ,T } ,取长度为N 的DNA 序列x[n],对于Λ中每个不同的字母都形成一个指示器序列[]n x α(0≤n ≤N-1,α∈Λ),在序列[]n x α中的某一个位置i 有: []其他)(01i n x ααα=???=(位置i 处的碱基为α) 该指示器的DFT 变换为 [][]n jw N n DFT k e n x k X --=∑=1 0αα,)10(-≤≤N k (1) 于是可以求得DNA 序列的功率谱:

生物医学信号处理历年精彩试题_电子科大_饶妮妮

生物医学信号处理试卷集 试卷一答案和评分标准: 一、假设有两个离散平稳随机过程)(),(n y n x ,m x m R 6 .0)(=, m y m R 8 .0)(=,它们统计独立,求这 两个随机过程的乘积的自相关函数和功率谱密度。(14分) 解: 设z=xy , m y x z m R m R m n y n y E m n x n x E m n y m n x n y n x E m n z n z E m R 48 .0)()()]()([)]()([)]()()()([)]()([)(==++=++=+=(6分) ∑==+∞ -∞ =-m m j m z j z e m R DTFT e P ωω48.0)]([)((4分) =ωcos 96.02304.17696 .0-(4分) 二、设线性系统如图所示,已知 n n n s ,相互独立,且ωω2 sin )(=j s e S , 21 )(= ωj n e S 。要求设计一 个滤波器ωω2 sin )(c e H j =,试确定c 使得滤波后的输出n s ?与真实信号n s 的均方误差最小,即 ])?[(2n n s s E -最小。(14分) 解答: 设误差为n n n s ? s e -=其自相关为: )m (R )m (R )m (R )m (R )]s ?s )(s ?s [(E )e e (E )m (R s ?s s ?s ?s s m n m n n n m n n e +--=--==+++(2分) 做傅立叶变化: )()()()()(???ω ωωωωj s j s s j s s j s j e e S e S e S e S e S +--=(4分) ω ωωωωωωω4262j n j s 2j j x 2j ?sin 21 sin ])(e S )(e S [)e (H )(e S )e (H )(c c e S j s +=+== (2分) ωωωωωω4i s i i sx i ?sin )e (S )e (H )e (S )e (H )(c e S j s s === ωωωωωω4i s i i xs i s ?sin )e (S )e (H )e (S )e (H )(c e S j s ===** (2分) 2 2 14321 c c +-=ξ (3分)

生物技术在医学领域的应用

微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物

合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。

生物医学信号检测作业

Formulate firing rate at input )2cos()(0θπ++=t f A m t m m Solution: Obviously , m m f πω2=,i i t t T -=+1,firing rate T r 1 = With the formula dt t m m V i i t t th ?++=1))((10,we can obtain: ) cos() cos()2)(cos(2)2sin( ) 2sin()2)(cos(2)]sin()[sin()()2cos()(001010110011 1θωθωθωωωωθωωθωθωωθπ++=?++=++?? +=+++=+-++ -=++==→+++++++??i m th i m t t when i i m m m m i i m m i m i m m i i m t t t t th t A m V T t AT T m t t T T AT T m T t t A T m t t A t t m dt t f A m dt t m V i i i i i i So, the firing rate th m V t A m T r ) cos(10θω++==

MATLAB m0=1; A=1; w=2*pi/5; l=pi; t=0:0.002:12; v1=1; v2=2; v3=3; y1=(m0+A*cos(w*t+l))/v1; y2=(m0+A*cos(w*t+l))/v2; y3=(m0+A*cos(w*t+l))/v3; figure(1); plot(t,y1,t,y2,'g',t,y3,'r','linewidth',2) legend('Vth=1','Vth=2','Vth=3',0) grid; axis([0 12 0 2.3]); xlabel('t(s)'),ylabel('Firing Rate(pps)'); title('The Firing Rate Under Different Vth')

1生物医学信号概述

第一章生物医学信号概述 第一节学习生物医学信号处理的理由生物医学工程是一个应用性的研究领域,生物医学信号处理自然应该成为该专业的主干课程之一,使学生掌握处理信号和系统的方法。 信号处理的含义比纯粹的数学运算更深更广。生物医学信号处理以严谨的组织行为方式为分析和概念化物理行为提供了一个基础框架,不管这种行为是一个电子控制系统的输出还是一次种植与周围组织的反应。 对信号/系统进行计算能够获得较精确的分析结果,但对分析过程的理解(定性的)也十分重要。例如,一名学生建议用小波来检测心电图信号中的异常,则他/她必须理解小波变换的数学概念。另一名具有神经生理学兴趣的学生希望研究全身振动对视觉功能的影响,则他/她需要理解共振的概念(即使他/她已经忘记了量化这种现象的二阶差分方程)。类似地,一名要研究心率的神经中枢控制的学生,不管他/她用哪种方法来描述心率,都需要理解记忆或相关的概念以及在能量记录中瞬时变化的原因。简言之,作为一名生物医学工程师应该掌握信号处理的定性描述并具备应用定量分析方法解决生物医学问题的技能。通过学习《生物医学信号处理》课程,学生可以达到上述要求。 更具体地说,生物医学信号处理将教给学生两种主要技能:(1)为了提取原始的生物医学信息,获取和处理生物医学信号的技能;(2)解释处理结果性质的技能。为此,《生物医学信号处理》课程应该包含以下四个重要内容: (1)测量生物医学信号,即量化和校正测量仪器对待测信号的影响。 (2)操作(即滤波)生物医学信号,即识别和分离信号中的有用成份和无用成份。 (3)定量描述生物医学信号,即揭示产生生物医学信号的本质,根据第二步得出的结果预测信号未来的行为。 (4)探测生物医学信号源,即描述一个生物医学物理系统的输入与输出信号之间内在联系。 大多数信号处理教材都很强调计算和算法。对于生物医学工程专业的学生来说,如果在生物医学信号处理课程中仍选用大量信号处理的内容,则可能是熟悉知识的枯糙重复。本教材的宗旨是通过许多具体生物医学信号处理实例,将真实世界与理论研究联系起来,并指导学生如何应用一项理论去解决一个具体的生物医学问题。 第二节信号及其类型 信息是一个过程产生的能量的测量,而信号则是信息的一种表达形式。来自于真实世界的信号各不相同,但大致可分为四种类型:(1)确定性信号;(2)随机信号;(3)分形信号;(4)混沌信号,如图1-1(a)、(b)、(c)和(d)分别是四种类型信号的一个例子。 确定性信号在教材中常作为例子给出,是学生最熟悉的一类信号,但这类信号在真实世界中则较少出现。所谓确定性信号是指在已知足够过去值的条件下,能够准确预测该信号未来值的一类信号。例如,正弦波信号A Sinωt。换句话说,只要能够用数学封闭表达式来表达的一类信号就是确定的信号。 既使信号的全部过去值已知,也不能准确预测其未来值的一类信号称为随机信号。随机信号

浅谈免疫学在生物学、医学、药学等领域的应用

浅谈免疫学在生物学、医学、药学等领域的应用 摘要:免疫学技术在国内外的应用已是日趋广泛。近年来,由于任何有关抗原抗体的研究均可使用免疫技术,使免疫学技术早已超越了医学领域,广泛应用于植物学、动物学、药学、生物学等其他科学领域,免疫学技术本身也在迅速发展。免疫学是生命科学及医学领域中的前沿学科,本文仅就免疫学在某些领域的具体应用做简要的评述。 关键词:免疫酶;免疫检测;免疫和中医药 一、免疫学在分子生物学中的应用 免疫学技术已从早年应用于微生物学发展到应用于分子生物医学研究的许多方面。目前,它已成为兴学科生物学研究的重要工具之一。在此次免疫技术涉及的分子生物学应用中,我们所涉及到免疫电泳技术、放射免疫技术、免疫酶技术、免疫荧光定位技术等等,我们就免疫酶技术做一概述。 免疫酶技术是一项定位,定性和定量的综合性技术,已是将一定的酶通过共价桥而标记抗体,在抗原抗体结合时,酶与底物作用,产生有色物质,对后者可进行定位或定量检测。现已有酶免疫测定法,酶联免疫吸附试验和均向酶免疫测定等方法。后一种方法是利用游离抗原与标记抗原竞争结合抗体,如果游离抗原浓度高,就会抢去抗体,使供氢体得以接触酶而使酶的活性增加。用分光光度记可测出反应前后酶活性的变化。免疫酶技术如与新技术进一步结合,可提高其灵敏度和可靠性。

二、免疫学在医学中的应用 免疫学在医学中广泛应用于传染病预防,疾病治疗,免疫诊断。现代免疫学认为,机体的免疫功能是对抗原刺激的应答,而免疫应答又表现为免疫系统识别自己和排除非己的能力。免疫功能根据免疫识别发挥作用。这种功能大致有对外源性异物(主要是传染性因子)的免疫防御;去除衰退或损伤细胞的免疫,以保持自身稳定;消除突变细胞的免疫监视,即免疫防御,免疫自稳,免疫监视。 免疫学细胞免疫测定。 近代免疫学广泛采用了细胞生物学、免疫血清学、免疫标记、免疫组化等多方面技术,不断发展和完善了一系列细胞免疫检测技术,用于检测各类免疫细胞的表面标志(包括抗原及受体)、细胞的活化、增殖、吞噬、杀伤功能、各种细胞因子的活性或含量等方面。这些技术为深入研究和认识机体免疫系统的生理、病理改变,阐明某些疾病的发病机制和临床诊治提供了有用的手段。随着细胞免疫学的迅猛发展,时有新的细胞免疫检测技术出现。近年来,新发展的项目集中在对有关细胞因子以及细胞受体方面的检测。我们以此为例简述淋巴细胞转化试验。 淋巴细胞转化试验:人类淋巴细胞在体外与特异性抗原(如结核菌素)或非特异性有丝分裂原(如植物血凝素,PHA)等一起孵育,T细胞即被激活而向淋巴母细胞转化。T细胞转化过程可伴随有DNA、RNA、蛋白质的合成增加,最后导致细胞分裂。在光学显微镜下可计数转化后

生物医学信号处理的方法

生物医学信号处理的方法 生物医学仪器包括了诊断仪器和治疗仪器两大类。在诊断仪器中要寻找对诊断有意义的具有某种特征的信号或信号的某种特征量。在治疗仪器中同样需要确定特征信号的存在或信号特征量的大小去控制治疗部分的工作。一般说来,信号并不能直接提供这些信息,它们需要应用信号处理方法去提取。例如,临床的常规脑电图检查可为脑损伤、脑血栓、内分泌疾病等的诊断、预防和治疗提供信息。另外脑电图也常用来作睡眠、麻醉深度的监护。但是白发脑电图的时域波形很不规则。不但它的节律随精神状态变化而改变,而且在基本节律的背景下还会不时地发生一些瞬态变化。传统的分析方法是用领域分析方法,用它的基本节律作为脑电图的基本特征量。 从信号中提取特征量的常用方法有谱分析、波形分析、建立模型等多种。有了特征量,就要根据它们进行诊断。诊断就是分类。现用的模式分类方法有统计模式识别、句法分析、模糊模式识别等。上述这些内容正是信号处理学科的主要研究对象,实际上这些方法现在也并不成熟。对于生物医学信号中大量存在的非线性、非平稳、多变量等问题的分析还很初步,还需深入地研究和探讨。 由于干扰的影响,生物医学信号往往埋藏在噪声中,因此造成信息丢失或产生虚假信息,所以通常在进行生物医学信号处理以前,要对信号施加某种处理来降低噪声、增强信息。例如,在研究大脑感觉机制,提取诱发响应时,常常采用重复刺激方法和相干平均技术来克服自发脑电活动,增强有用信息。污染信号的噪声可以是加性的(即观测等于信号的噪声之和)、相乘性的(即观测等于信号与噪声的积);也可能有用的信息仅与信号的一部分有关,而与有用信息非相关部分也被看成噪声。总之,噪声的性质是多种多样的。数字滤波器是增强信息、抑制噪声的常用方法,然而它对于频带重叠的信号与噪声无能为力。因此消噪问题是生物医学信号处理研究的又一个重要内容。 目前生物医学信号处理中应用的抑制噪声和信号增强技术,常需要信号与噪声统计特性的先验知识,先验知识越完整,增强信号的效果越显著。然而得到这些先验知识常常又是困难的,这种要求限制了诸如维纳滤波、卡尔曼滤波等技术的应用。自适应方法可以自动调节参数来适应信号统计特性而不依赖先验知识,因而引起了广泛的注意。 在某种情况下,需要将信号从一个地点传送到另一个地点。有不少突发性疾病对患者威胁极大,例如,猝死和呼吸障碍,为了及时抢救,在患者家里安装监护系统,监护系统采集的信息经电话电路传到监护中心,使患者处于医护人员的监护之下。为了保证传输效率,或为了方便地保存、记录患者病历,需要尽量减

电子学在医学上的应用

生物医学电子学是应用电子技术解决生物医学中的问题,从生命体本身的特殊性出发,来研究生物医学信号的检测、处理、显示与记录等电子学在生物医学应用中的理论、方法与手段。 生物医学电子学作为一个独立学科是从二十世纪五十年代确立并逐步发展起来的。但是在生物医学领域中,大量的电子学的科学技术知识和成果已经获得广泛应用,激发了生物医学欧诺工作着与工程师或物理学家之间的密切合作。生物医学电子学发展十分迅速,研究领域不断括宽,地位日益重要,展示了越来越广阔的发展前景。生物医学电子学综合应用电子学和有关工程技术的理论和方法,从工程科学的角度研究生物、人体的结构和功能以及功能与结构之间的相互关系。[1] 电子学由产生的那刻,就注定是为其他学科服务,也与其他学科共同发展。特别是在生物电被发现后,生物医学和电子学更是一拍即合,相互扶持,共同为人类的健康服务和发展着。 1676年,光学显微镜的发明,使人类进入了微观的世界,推动着医学的发展。1895年,X射线的发现,使得医学更上一层楼。上世纪三十年代,电子显微镜的产生推动着微生物学的发展,也因此使医学更进入了更精微的世界。 随着生物医学电子学的发展,电子技术逐步深入医学领域:医学的电子设备、人造器官等等。如果这些技术和设备消失了,那么,很多的医疗技术也会随之消失,甚至很多小毛病也会因此没检查出来结果变大病然后死亡。 说到医疗的电子设备,很多人都了解,例如呼吸机、CT、心电图仪器等。下面,就详细讲解心图仪器: 心电图是一种经胸腔的以时间为单位记录心脏的电生理活动,并通过皮肤上的电极捕捉并记录下来的诊疗技术。这是一种无创性的记录方式

人体心脏工作产生的生物电流在身体表面不同部位产生不同电势,并且随心跳的节律呈现规律性的升降变化,通过电极将变化着的电位差检测并记录下来就是心电图(ECG)。心电信号是一种带宽为至100Hz(有时高达1kHz),幅度在10μV~5mv 的微弱交流信号,并且混杂有人体生物电干扰以及各种外部电磁干扰。如何从环境噪声中提取微弱的心电信号是设计的难点和要点。[2] 低成本低功耗便携式简易心电图仪是设计的最大考量。它顺应了保健电子产品设计的发展趋势。系统采用常见电池供电,能采集标准导联方式I或II心电信号,通过放大、滤波得模拟心电信号(ECG),并能利用液晶实时显示或存储回放ECG波形。 分析可知,简易心电图仪系统主要包括输入回路、前置放大模块、后级放大模块、滤波网络模块以及存储回放等模块。设计重点在于前置放大模块,和滤波网络模块和数字化存储回放部分。 在未来,可植入式的装置可能会应用于相性心电图的记录和诊断。这些装置还有可能通过兴奋某些神经(如,迷走神经)的方式来防止心律失常的发生。此外,这些装置还可能释放药物,如β受体阻断剂,甚至可以直接对心脏进行除颤。 作为交叉科学,生物医学电子学的研究是双向的:一方面将电子学用于生物和医学领域,使这些领域的研究方式从定性提高到定量、从宏观到微观、从静态到动态、从单向信息到多项信息;另一方面生命过程中揭示出的许多规律,特别是经过亿万年进化而形成的生物信息处理的优异特性将会给电子学科以重要的启示,这不仅会推动电子学的发展,还将会使信息科学发生革命性的变革。 参考文献: [1]李刚.生物医学电子学[M].北京:电子工业出版社,2008 [2]易淑华,胡苗苗,曹鹏.简易心电图仪[DB/OL].,2010-08-17/2012-05-24

信号与系统在生物医学中的应用

信号与系统论文 题目:信号与系统在生物医学中的应用 学号:121417010133 班级:生医121班 姓名:张小鲜

信号与系统在生物医学中的应用 摘要 随着计算机技术和现代信息技术的飞速发展,信号与系统在实际生活中的应用越来越广泛,本文在信号与系统中占有重要分量的数字信号处理技术为例,讨论其在生物医学中的应用,从而阐述信号与系统在生物医学中的应用。数字信号处理(Digital Signal Processing DSP)是利用计算机或专用处理芯片,以数值计算的方法对信号进行采集、分析、变换和识别等加工处理,从而达到提取信息和便于应用的目的。 数字信号处理技术一诞生就显示了强大的生命力,展现了极为广阔的应用前景。接下来主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:生物医学;信号与系统;数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科学的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(DigitalSignalProcessing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 1.1生物医学信号特性

生物医学信号处理

1、生物医学简述 1、1生物医学信号概述 生物医学信号就是人体生命信息得体现,就是了解探索生命现象得一个途径。因此,深入进行生物医学信号检测与处理理论与方法得研究对于认识生命运动得规律、探索疾病预防与治疗得新方法以及发展医疗仪器这一高新技术产业都具有极其重要得意义。国内外对于生物医学信号检测处理理论与方法得研究都给予极大得重视。人体给出得信号非常丰富,每一种信号都携带着对应得一个或几个器官得生理病理信息。由于人体结构得复杂性,因此可以从人体得不同得“层次”得到各类信号,如器官得层次、系统得层次以及细胞得层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。 1、2生物医学信号得特点 生物医学信号属于强噪声背景下得低频微弱信号,它就是由复杂得生命体发出得不稳定得自然信号,从信号本身特征、检测方式到处理技术,都不同于一般得信号。 ⑴信号弱,如心电信号在mV级,脑电信号在μV级,而诱发电位信号得幅度更小。 ⑵噪声强,人体就是电得导体,易感应出工频噪声;其次就是信号记录时受试者移动所产生得肌电噪声,由此引起电极移动所产生得信号基线漂移。另外,凡就是记录中所含有得不需要成分都就是噪声,如记录胎儿心电时混入得母亲得心电。 ⑶随机性强且一般就是非平稳信号,由于生物医学信号要受到生理与心理得影响,因此属于随机信号。 ⑷非线性,非线性信号源于非线性系统得输出,人体体表采集到得电生理信号都就是细胞膜电位通过人体系统后在体表叠加得结果,因此这些信号严格地说都就是非线性信号,但目前都就是把她们当作线性信号来处理[2]。 2、生物医学信号得检测 生物医学信号检测就是对生物体中包含地生命现象、状态、性质与成分等信

免疫学在生物学、医学、药学等领域的应用

浅谈免疫学在生物学、医学、药学等领域得应用 摘要:免疫学技术在国内外得应用已就是日趋广泛。近年来,由于任何有关抗原抗体得研究均可使用免疫技术,使免疫学技术早已超越了医学领域,广泛应用于植物学、动物学、药学、生物学等其她科学领域,免疫学技术本身也在迅速发展。免疫学就是生命科学及医学领域中得前沿学科,本文仅就免疫学在某些领域得具体应用做简要得评述。 关键词:免疫酶;免疫检测;免疫与中医药 一、免疫学在分子生物学中得应用 免疫学技术已从早年应用于微生物学发展到应用于分子生物医学研究得许多方面。目前,它已成为兴学科生物学研究得重要工具之一。在此次免疫技术涉及得分子生物学应用中,我们所涉及到免疫电泳技术、放射免疫技术、免疫酶技术、免疫荧光定位技术等等,我们就免疫酶技术做一概述。 免疫酶技术就是一项定位,定性与定量得综合性技术,已就是将一定得酶通过共价桥而标记抗体,在抗原抗体结合时,酶与底物作用,产生有色物质,对后者可进行定位或定量检测。现已有酶免疫测定法,酶联免疫吸附试验与均向酶免疫测定等方法。后一种方法就是利用游离抗原与标记抗原竞争结合抗体,如果游离抗原浓度高,就会抢去抗体,使供氢体得以接触酶而使酶得活性增加。用分光光度记可测出反应前后酶活性得变化。免疫酶技术如与新技术进一步结合,可提高其灵敏度与可靠性。

二、免疫学在医学中得应用 免疫学在医学中广泛应用于传染病预防,疾病治疗,免疫诊断。现代免疫学认为,机体得免疫功能就是对抗原刺激得应答,而免疫应答又表 现为免疫系统识别自己与排除非己得能力。免疫功能根据免疫识别发挥作用。这种功能大致有对外源性异物(主要就是传染性因子)得免疫防御;去除衰退或损伤细胞得免疫,以保持自身稳定;消除突变细胞得免疫监视,即免疫防御,免疫自稳,免疫监视。 免疫学细胞免疫测定。 近代免疫学广泛采用了细胞生物学、免疫血清学、免疫标记、免疫组化等多方面技术,不断发展与完善了一系列细胞免疫检测技术,用于 检测各类免疫细胞得表面标志(包括抗原及受体)、细胞得活化、增殖、吞噬、杀伤功能、各种细胞因子得活性或含量等方面。这些技术为深入研究与认识机体免疫系统得生理、病理改变,阐明某些疾病得发病机制与临床诊治提供了有用得手段。随着细胞免疫学得迅猛发展,时有新得细胞免疫检测技术出现。近年来,新发展得项目集中在对有关细胞因子以及细胞受体方面得检测。我们以此为例简述淋巴细胞转化试验。 淋巴细胞转化试验:人类淋巴细胞在体外与特异性抗原(如结核菌素)或非特异性有丝分裂原(如植物血凝素,PHA)等一起孵育,T细胞即被激活而向淋巴母细胞转化。T细胞转化过程可伴随有DNA、RNA、蛋白质得合成增加,最后导致细胞分裂。在光学显微镜下可计数转化后得

生物医学信号实验报告

生物医学信号处理 实验报告 班级:111100402 姓名、学号:云莉11110040230 张素丽11110040231 张宇11110040232 赵倩男11110040233 钟茂娇11110040234 指导老师:崔建国、王洪

实验名称:模拟滤波器、ECG放大器及QRS检测器 一、实验目的:1、学习四种模拟滤波器:低通、高通、带通 和带阻滤波器的特性;2、将这些滤波器用于ECG放大器 中,学会如何在QRS检测电路中应用这些滤波器。 实验仪器:双踪示波器、信号发生器、ECG电极、记录 仪、ECG放大器和QRS探测电路板、模拟滤波器板。 二、实验原理步骤:采用集成四个运算放大器的LM324可构成 上述的所有电路。电路图如书上所示。 1、低通滤波器 (1)打开滤波器板上的电源。将信号发生器产生的10HZ的正弦波信号以尽可能小的幅值送到积分器的输入端,同时用滤波器观察输入和输出,计算增益。 (2)从10HZ开始,以10HZ为单位逐渐增加频率,直至200HZ位置,记录每个频率点的输出。用这些只画出幅频特性图,然后找到输出值为10HZ处输出值的0.707倍的频率点,记录这个频率值。 (3)通过观察输入输出的相移来验证低通滤波器在高频段的积分作用,记录在高端转折频率处的相移。 2、高通滤波器 (1)将信号发生器产生的最小幅值的200HZ正弦信号送到差分放大器输入端,同时用示波器观察输入和输出, (2)从200HZ频率点开始,一枚20HZ为单位逐渐减小频率,直至接近主频率为止,记录每个频率点的输出,然后找出在什么频率处的幅值喂200HZ处幅值的0.707杯,这是低端频率的3DB 点,记录下这个值。 (3)通过观察输入、输出的相移,验证噶奥通滤波器再低频段的差分结果。

分子生物学在医药中的研究进展及应用

分子生物学在医药中的研究进展及应用 ——韩静静 摘要 分子生物学是对生物在分子层次上的研究。这是一门生物学和化学之间跨学科的研究,其研究领域涵盖了遗传学、生物化学和生物物理学等学科。分子生物学主要致力于对细胞中不同系统之间相互作用的理解,包括DNA,RNA和蛋白质生物合成之间的关系以及了解它们之间的相互作用是如何被调控的。分子生物学主要研究遗传物质的复制、转录和翻译进程中的分子基础。分子生物学的中心法则认为“DNA 制造 RNA,RNA 制造蛋白质,蛋白质反过来协助前两项流程,并协助 DNA 自我复制”。 分子生物技术也称之为生物工程,是现代生物技术的主要标志,它是以基因重组技术和细胞融合技术为基础,利用生物体或者生物组织、细胞及其组分的特性和功能,设计构建具有预期性状的新物种或新品种.以便与工程原理相结台进行生产加工.为社会提供商品和服务的一个综合性技术体系,其内容包括基因工程技术、细胞工程技术、DNA测序技术、DNA芯片技术、酶工程技术等。现代分子生物技术的诞生以70年代DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志.迄今已走过了30多年的发展历程。实践证明在解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景。受到了各国政府和企业界的广泛关注。是21世纪高新技术产业的先导。 二十世纪生物医学发展的主要特点之一是对生命现象和疾病本质的认识逐渐向分子水平深入。DNA双螺旋结构的发现为分子医学和基因医学的发展奠定了基础。人们逐渐认识到,无论健康或疾病状态都是生物分子及其相互作用的结果,生物分子中起关键性作用者为基因及其表达产物蛋白质,因此从本质上说,所有的疾病都可以被认为是“基因病”。近十年来,分子生物技术已成为医学领域最有力的研究工具,以下从基因工程技术、人类基因组计划与核酸序列测定技术、基因诊断与基因体外扩增技术、生物芯片技术在医学研究中为了解疾病的发生发展机制,诊断和药物研制、开发中的应用。 关键词:分子生物学分子生物技术医药基因芯片蛋白质组学

生物医学信号处理

1.生物医学简述 1.1生物医学信号概述 生物医学信号是人体生命信息的体现,是了解探索生命现象的一个途径。因此,深入进行生物医学信号检测与处理理论与方法的研究对于认识生命运动的规律、探索疾病预防与治疗的新方法以及发展医疗仪器这一高新技术产业都具有极其重要的意义。国内外对于生物医学信号检测处理理论与方法的研究都给予极大的重视。人体给出的信号非常丰富,每一种信号都携带着对应的一个或几个器官的生理病理信息。由于人体结构的复杂性,因此可以从人体的不同的“层次”得到各类信号,如器官的层次、系统的层次以及细胞的层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。 1.2生物医学信号的特点 生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。 ⑴信号弱,如心电信号在mV级,脑电信号在μV级,而诱发电位信号的幅度更小。 ⑵噪声强,人体是电的导体,易感应出工频噪声;其次是信号记录时受试者移动所产生的肌电噪声,由此引起电极移动所产生的信号基线漂移。另外,凡是记录中所含有的不需要成分都是噪声,如记录胎儿心电时混入的母亲的心电。 ⑶随机性强且一般是非平稳信号,由于生物医学信号要受到生理和心理的影响,因此属于随机信号。 ⑷非线性,非线性信号源于非线性系统的输出,人体体表采集到的电生理信号都是细胞膜电位通过人体系统后在体表叠加的结果,因此这些信号严格地说都是非线性信号,但目前都是把他们当作线性信号来处理[2]。 2.生物医学信号的检测 生物医学信号检测是对生物体中包含地生命现象、状态、性质和成分等信息进行检测和量化地技术,涉及到人机接口技术、低噪声和抗干扰技术、信号拾取、分析与处理技术等工程领域。绝大部分生物医学信号都是信噪比很低地微弱信号,

生物医学信号处理习题集第一章生物医学信号概论

生物医学信号处理习题集 第一章 生物医学信号概论 1. 生物医学信号处理的对象是什么信号? 解答: 包括生理过程自发产生的信号,如心电、脑电、肌电、眼电、胃电等电生理信号和血压、体温、脉搏、呼吸等非电生理信号;还有外界施加于人体的被动信号,如超声波、同位素、X 射线等。 2. 生物信号的主要特点是什么? 解答: 随机性强,噪声背景强。 第二章 数字信号处理基础 You can use Matlab where you think it’s appropriate. 1.FIR 滤波器和IIR 滤波器的主要区别是什么? 解答: FIR 滤波器的单位脉冲响应是有限长的序列,该滤波器没有极点,具有稳定性。 IIR 滤波器的单位脉冲响应是无限长的序列,该滤波器有极点,有可能不稳定。 2.两个滤波器级联,第一个的传递函数为2-11z 2z 1)z (H -++=,第二个为-1 2z 1)z (H -=,当输入为单 位脉冲时,求输出序列,画出级联滤波器的频率响应。 解答: )z 1)(z 2z 1()z (H 12-1---++==32-1z z z 1----+ h(n)=[1,1,-1,-1],n=0,1,2,3。即输入单位脉冲时的输出序列值。 freqz(h,1)

3.A 3rd-order lowpass filter is described by the difference equation: )3 n( 2781y .0 )2 n( 1829y .1 )1 n( 76y .1 )3 n( 0181x .0 )2 n( 0543x .0 )1 n( 0543x .0 )n( 0181x .0 )n(y - + - - - + -+ - + - + = Plot the magnitude and the phase response of this filter and verify that it is a lowpass filter. 解答: b = [0.0181, 0.0543, 0.0543, 0.0181]; a = [1.0000, -1.7600, 1.1829, -0.2781]; m = 0:length(b)-1; l = 0:length(a)-1; K = 500; k = 1:1:K; w = pi*k/K; % [0, pi] 分成501个点. num = b * exp(-j*m'*w); % 分子计算 den = a * exp(-j*l'*w); % 分母计算 H = num ./ den; magH = abs(H); angH = angle(H); subplot(1,1,1); subplot(2,1,1); plot(w/pi,magH); grid; axis([0,1,0,1]) xlabel(''); ylabel('|H|'); title('幅度响应'); subplot(2,1,2); plot(w/pi,angH/pi); grid on; axis([0,1,-1,1]) xlabel('以pi为单位的频率'); ylabel('以pi弧度为单位的相位'); title('相位响应');

哈工大生物医学信号实验报告

实验报告 课程名称:生物医学信号 姓名: 专业:信息与通信工程 学号: 日期:2017年10月20日

Lab 1 心电及脉搏信号采集处理实验信号波形图:(一张) Analyzing and Report: 1、简述脉搏信号的采集原理。 答:脉搏波是以心脏搏动为动力源,通过血管系的传导而产生的容积变化和振动现象。发光二极管发出的光照射到手指上,被手指组织的血液吸收和衰减后由光敏二极管接收,由于手指动脉血在血液循环过程中呈周期性的脉动变化,它对光的吸收和衰减也是周期性脉动的,于是光敏二极管输出信号的变化也就是周期性变化,反映了动脉血的变化。 2、请回答试验中的仪器采集的是何种导联,写出完整名称即可。 答:试验中的仪器采集的是肢体导联。

LAB2连续动态血压测量 完成下列表格: 选取一个时间点,查询并填写表格。 表2-1 SYMBOL Systolic pressure Diastolic pressure Mean arterial pressure 名称数值单位收缩压 138 mmHg 舒张压 65 mmHg 平均动脉压 89 mmHg SYMBOL Cardiac output HR Stroke volume 名称数值单位心输出量 6.12 1/min 心率 75 bpm 每搏输出量 81.6 ml 回答问题 1、血压的正常范围是什么? 答:一个成年人血压的正常范围是:舒张压在60~90mmHg之间,收缩压在90~140mmHg之间;其中WHO于1999年给出的理想收缩压/舒张压为120/80以下,正常血压为139/89以下。就算是健康人,一般血压的高低和年龄性别也是有关的,一般情况下,年纪比较大的老年人会比青年人血压高,男性血压会比女性血压高一些。 2、在CO、HR、SV中任选一种查阅其变化对健康状况的指示作用。 答:心率(HR)的加快是增加心输出量(CO)的一个有效因素。但心输出量的增加不仅与心率有关,还与每博输出量(SV)有关。随着心率的增加,每博输出量会减少。当心率增加到一定程度后,由于每博输出量的减少,会使心输出量反而开始下降。正常人的左、右心室的搏出量是基本相等的。在心率恒定的情况下,心肌收缩能力越大,即收缩强度越强,收缩速度越快,则搏出量愈多,反之亦然。心肌收缩能力的大小与其结构特点和机能状态有关,锻炼者心肌比较发达,收缩能力较强。经常参加体育锻炼的人,心肌发达,搏动有力,每博输出量比一般人的要大,在安静状态下的心率也比一般人的慢;参加剧烈运动时,心率虽然加快,但是往往以提高每博输出量为主,使心输出量成倍地增加,这样的心脏能够承担繁重的工作,故每搏输出量大的人心脏机能更好,身体更健康。Report: 1、简述实验中设备的工作原理,并分析可能的干扰来源。 答:①工作原理:Finapres医疗系统出品的系列无创血压连续监测产品是通过手指动脉压传感器记录每次心跳产生的血压数据,专利转换技术将指动脉压转换为肱动脉压,时时追踪记录血压值变化,通过流模型技术计算出15个血流动力学参数及其变化趋势,并利用RTF专利技术校准标定血压值,保证血压测定的精确性。②可能的干扰来源:实验指套比较松,可能影响其探测灵敏度(实验当中更小的指套没有用了,故用了更大的指套,有点松动);实验设备如果有一定的使用年份的话,也会影响其测量精度;被试者的频繁快速移动也会对仪器的测量准确度有所挑战。

关于现阶段生物医学信号处理的技术与进展

关于现阶段生物医学信号处理的技术与进展[摘要] 生物电子学的迅速发展也推动着生物医学信号处理的快速进步。本 文对生物医学信号处理的研究现状作出介绍,同时通过分析典型系统,给出基于DSP的生物医学信号采集和分析系统的模型,并对面对的技术问题做出分析。最后指出今后的发展趋势及展望。 [关键词] 生物医学信号DSP小波虚拟仪器 引言 随着生物学和医学的发展,越来越多的人体和生物信号需要测定以供科研和诊断之用。生物医学信号处理被应用于医学教学、科研、临床、监控等,并显示出越来越重要的地位。生物医学信号包括各种生理参数,如脑电、心电、肌电等生物电信号;心跳、血压、呼吸、血流量、脉搏、心音等的非电量信号。这些信号均是强噪声背景下的低频(小于200Hz)微弱信号(幅度小于100 mV) ,这就对信号采集系统有很高的精度要求[1]。正由于采集的信号具有生物信号特有的特点:高背景噪声,且随机性大,即影响因素很多并且不可能用确定性的数学函数来表达,信号弱等[2],故需采用各种数字信号处理的方法来提取我们需要的信号。所以人体信号采集和分析系统的地位显得越来越重要。 一、生物医学信号处理的研究现状 1.基于DSP的生物医学信号采集和分析系统 现有的生物信号采集和分析系统大部分都是以PC机或工作站为核心的。其缺点是仅适合固定场合,灵活性差。并且计算机上用软件实现信号算法,虽然软件可以是自己编写的,也可以使用现成的软件包,但这种方法的缺点是速度太慢,不能用于实时系统,只能用于教学与仿真。如近些年发展迅速的Matlab,几乎可以实现所有数字信号处理的仿真[3]。便携式系统目前往往多是基于单片机系统,但由于单片机采用的是冯·诺依曼总线结构,所以单片机系统复杂,尤其是乘法运算速度慢,在运算量大的实时系统中很难有所作为,难以实现复杂的算法,特别是各种数字信号处理方面的大规模运算。近年来,随着大规模集成电路的发展,半导体制造厂商推出了高速低功耗特别适合于数字信号处理的嵌入式DSP处理器(如TI 的TMS320C2000/C5000等)和高增益、高共模抑制比的集成化仪用放大器等高性能芯片[4]。为研制新一代的采集和实时分析系统提供了物质基础。 2.基于虚拟仪器技术的生物医学信号采集和分析系统 作为一种新兴的计算机技术,虚拟仪器技术的发展为生物医学仪器的发展带来了广阔的前景。建立在通用计算机和数据采集(DAQ)设备基础上的虚拟仪器技术具有开发周期短、

相关文档
相关文档 最新文档