文档库 最新最全的文档下载
当前位置:文档库 › (完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解
(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式

4.计算下列各行列式:

(1)????

?????

???71

10

025*********

4; (2)????????????-26

52321121314

1

2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)?????

????

???---d c b a

1

00

110011001

(1)

71100251020214

214

34327c c c c --0

10014

2310202110

214---=3

4)1(1431022

11014+-?---=14

31022110

14-- 3

21132c c c c ++14

171720010

99-=0

(2)

260

5232112131

412-24c c -2605032122130

412-24r r -0412032122130

412- 14r r -0

000032122130412-=0

(3)ef cf bf de cd bd ae ac ab ---=e

c b e c b e

c b adf ---=111111111---adfbce =abcdef 4

(4)

d c b a 100

110011001---21ar r +d

c b a ab 1

001

100

110

10---+=12)1)(1(+--d

c a ab 1011

1--+

2

3dc c +0

10111-+-+cd c ad

a a

b =23)1)(1(+--cd

ad

ab +-+111=1++++ad cd ab abcd

5.证明: (1)1

11222

2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3

3+;

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2

2222222

2

2222222

=++++++++++++d d d d c c c c b b b b a a a a ;

(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;

(5)1

22

110000

0100001a x a a a a x x x n n n +-----ΛΛΛΛΛΛ

ΛΛΛΛn n n n a x a x a x ++++=--11

1Λ. 证明

(1)0

0122222221

312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=

右边=-=3)(b a

(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开

按第一列

左边

bz

ay by ax x by ax bx az z bx

az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分

bz

ay y x by ax x z bx

az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

右边=-+=233)1(y

x z x z y z

y x b y x z x z y z y x a

(3) 22

2

22222

2222

2

222

)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9

644129644129

644129644122

2221

41312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 96449644964496442

22

2

2

++++++++d d d d c c c c b b b b a a a a 分成二项按第二列9

64

41964419

644196441222

2+++++++++d d d c c c b b b a a a 94

94949494642

2

22

24232423d d c c b b a a c c c c c c c c ----第二项

第一项

06416416416412

22

2=+d

d

d c c c b

b b a a a (4) 4

44444422222220

001a

d a c a b a a

d a c a b a a

d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a

d a c a b --------- =)

()()(1

11))()((222a d d a c c a b b a d a c a

b a d a

c a b ++++++--- =?---))()((a

d a c a b )

()()()()(0

0122222a b b a d d a b b a c c a b b b

d b c a b +-++-++--+ =?

-----))()()()((b d b c a d a c a b )

()()()(1

12222b d a b bd d b c a b bc c ++++++++

=))()()()((d b c b d a c a b a -----))((d c b a d c +++-

(5) 用数学归纳法证明

.,1

,22121

22命题成立时当a x a x a x a x D n ++=+-=

=

假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D Λ

:1列展开按第则n D

1

110

010001)1(1

1----+=+-x x

a xD D n n n n ΛΛΛΛΛΛΛΛ右边=+=-n n a xD 1

所以,对于n 阶行列式命题成立.

6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转ο90、或依副对角线翻转,依次得

n nn n a a a a D 11111ΛM M Λ=, 11112n nn n a a a a D Λ

M M

Λ= ,11

113a a a a D n n

nn ΛM M Λ=, 证明D D D D D n n =-==-32

)1(21,)1(.

证明 )det(ij a D =Θ

n

nn n n

n n nn n a a a a a a a a a a D 2211111111111)1(ΛM

M ΛΛΛM M Λ--==∴ΛΛM M ΛΛ=--=--n

nn n n

n

n n a a a a a a a a 3311

2211112

1)1()1( nn

n n n n a a a a ΛM M ΛΛ11112

1

)1()

1()

1(---=--D D n n n n 2)

1()

1()2(21)1()1(--+-+++-=-=Λ

同理可证nn

n n n n a a a a D ΛM M Λ11112

)1(2)

1(--=D D n n T n n 2)

1(2

)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2

)1(2

)1(22

)1(3)1()

1()

1()1(

7.计算下列各行列式(阶行列式为k D k ):

(1)a

a

D n 11O

=

,其中对角线上元素都是a ,未写出的元素都是0;

(2)x

a a a

x a a a x D n ΛΛΛΛΛΛΛ=;

(3) 1

1

11)()1()()1(1

1

11

Λ

ΛΛ

ΛΛΛΛΛn a a a n a a a n a a a D n n n n

n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n

n

n

n

n d c d c b a b a D O

N N

O

000

011112=; (5)j i a a D ij ij n -==其中),det(;

(6)n

n a a a D +++=

11

11

111

112

1ΛΛΛΛΛΛΛ,021≠n a a a Λ其中.

(1) a

a a a a D n 000100000

00000001000ΛΛΛΛΛΛΛΛΛΛΛ=

按最后一行展开)

1()1(1

0000

0000

00010000)1(-?-+-n n n a a a ΛΛΛΛΛΛΛΛΛΛ)

1)(1(2)1(--?-+n n n

a a

a

O

(再按第一行展开)

n n n n

n a a a

+-?-=--+)

2)(2(1)1()1(O

2--=n n a a )1(22-=-a a n

(2)将第一行乘)1(-分别加到其余各行,得

a

x x a a

x x a a x x a a

a a x D n ------=00

00000ΛΛΛΛΛΛΛΛ 再将各列都加到第一列上,得

a

x a

x a x a

a

a a n x D n ----+=00000000

0)1(ΛΛΛΛΛΛΛΛ)(])1([1

a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,

经2

)

1(1)1(+=

++-+n n n n Λ次行交换,得 n

n n n n n n n n n a a a n a a a n a a a D )()1()()1(111

1)1(1112)1(1

-------=---++ΛΛΛΛΛΛ

ΛΛ 此行列式为范德蒙德行列式

∏≥>≥++++--+--=1

12

)1(1)]1()1[()

1(j i n n n n j a i a D

∏∏≥>≥+++-++≥>≥++-?

-?-=---=1

11

)1(2

)1(112

)1()][()

1()

1()]([)

1(j i n n n n n j i n n n j i j i Λ

∏≥>≥+-=

1

1)(j i n j i

(4) n

n n

n

n d c d c b a b a D 0

1

1112O

N

N O

=

n

n n n n n

d d c d c b a b a a 0000

0000

11111111

----Λ

O

N

M N

O

展开

按第一行0

00

0)

1(111

11111

1

2c d c d c b a b a b n

n n n n n

n ----+-+O

N N O

2222 ---n n n n n n D c b D d a 都按最后一行展开

由此得递推公式:

222)(--=n n n n n n D c b d a D

即 ∏=-=

n

i i i i

i

n D c b d

a D 2

22)(

而 11111

11

12c b d a d c b a D -==

得 ∏=-=n

i i i i i n c b d a D 1

2)(

(5)j i a ij -=

04

3214012331

0122210113210)det(ΛΛΛΛΛΛΛΛΛΛΛ--------=

=n n n n n n n n a D ij n Λ,3221r r r r --0

4

321111111

1111111111

1111ΛΛΛΛΛΛΛΛΛΛΛ--------------n n n n

Λ

,,141312c c c c c c +++1

5242321022210

22100

02100001---------------n n n n n ΛΛΛΛΛΛΛΛΛΛΛ=212)1()1(----n n n

(6)n

n a a D a +++=

11

11111

1

12

1ΛΛΛΛΛΛΛΛ

,,433

221c c c c c c ---n n n n a a a a a a a a a a +-------100

001000100001000100010000114

3

3221ΛΛΛΛΛΛΛΛΛΛΛΛΛ 展开(由下往上)

按最后一列

))(1(121-+n n a a a a Λn

n n a a a a a a a a a --------000

000000000000000000000000224

3

3221Λ

ΛΛΛΛΛΛΛΛΛΛΛΛ n

n n a a a a a a a a ----+--00

000000000000

00

01133221ΛΛΛΛΛΛΛΛΛΛΛ+

+Λn

n n a a a a a a a a -------00

000000

0000000

00

1143322ΛΛΛΛΛΛΛΛΛΛΛ

n n n n n n a a a a a a a a a a a a ΛΛΛΛ322321121))(1(++++=---

)1

1)((1

21∑

=+=n

i i

n a a a a Λ

8.用克莱姆法则解下列方程组:

??????

?=+++-=----=+-+=+++;01123,2532,242,5)1(4321

43214

3214321x x x x x x x x x x x x x x x x ????

?????=+=++=++=++=+.15,065,065,065,165)2(545434323212

1x x x x x x x x x x x x x

解 (1)1121

35132412

11111----=

D 8120735032101111------=145008130032

101111---=

142142

0005410032101

111-=---= 1121

05132412211151------=

D 1121

05132905

01115----=

1121023313090509151------=23

3130905011

2109151------=

120

2300461000112109151-----=14200038

100112109

151----=142-=

112035122412111512-----=D 811507312032701151-------=3139

0112300231011

5

1-=

284284

00

0191002

3101151-=----=

426110135232422115113-=----=D ; 1420

21321322

1215

1114=-----=

D

1,3,2,144332211-========

D

D

x D D x D D x D D x (2) 5

1000651000

6510

00651

0065=D 展开按最后一行

6

10005100

65100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=?-?=

(,11的余子式中为行列式a D D ',11

的余子式中为a D D ''''类推D D ''''''',) 5

1001

651000

6510

006500

0061

1=D 展开按第一列

6

51

006510

0650006+'D 46+'=D 460319+''''-'''=D 1507=

5

10106

51000

6500

006010

00152=D 展开

按第二列

510

065100650006

1-6

5100

6500

0610

005-

365510651065?-= 1145108065-=--=

5

1100

6500006010

00051001653=D 展开

按第三列51006500061000516

5000

6100

0510

065+

6100510656510650061+= 703114619=?+=

510006010000510

00651010654=D 展开

按第四列6

1000

5100

6510

0655000610005100651-

-5

106510

6565--=395-= 1

1

00510006510

00651100655=D 展开

按最后一列

D '+1

00051006

51006512122111=+= 665

212

;665

395

;665

703

;665

1145

;665

1507

44321=

-=

=

-

==

x x x x x . 9.齐次线性方程组取何值时问,,μλ???

??=++=++=++0

200321

321321x x x x x x x x x μμλ有非零解?

解 μλμμμλ

-==1

21111

13D , 齐次线性方程组有非零解,则03=D

即 0=-μλμ 得 10==λμ或

不难验证,当,10时或==λμ该齐次线性方程组确有非零解.

10.齐次线性方程组取何值时问,λ???

??=-++=+-+=+--0

)1(0)3(2042)1(321

321321x x x x x x x x x λλλ 有非零解?

λλλ----=111132421D λ

λλλ--+--=1011124

31

)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ

齐次线性方程组有非零解,则0=D 得 32,0===λλλ或

不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.

第二章 矩阵及其运算

1. 已知线性变换:

?????++=++=++=3

21332123

2113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.

解 由已知:

?

???

?????? ?

?=???? ??221321323513122y y y x x x ,

故 ???? ?????? ?

?=???? ??-3211

221323513122x x x y y y ?

???

?????? ??----=321423736947y y y , ?????-+=-+=+--=3

21332123

211423736947x x x y x x x y x x x y .

2. 已知两个线性变换

?????++=++-=+=3

21332123

11542322y y y x y y y x y y x , ?????+-=+=+-=323312211323z z y z z y z z y ,

求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.

解 由已知

???? ?????? ?

?-=???? ??221321514232102y y y x x x ???

?

?????? ??--???? ??-=32131

010

2013514232102z z z

???

?

?????? ??----=321161109412316z z z ,

所以有?????+--=+-=++-=3

21332123

2111610941236z z z x z z z x z z z x .

3. 设???? ??--=111111111A , ????

??--=150421321B , 求3AB -2A 及A T B .

解 ???

?

??---???? ??--???? ??--=-1111111112150421321111111111323A AB

???

?

??----=???? ??---???? ??-=2294201722213211111111120926508503,

???

? ??-=???? ??--???? ??--=092650850150421321111111111B A T

.

4. 计算下列乘积:

(1)???

?

?????? ??-127075321134;

解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374????

??=49635.

(2)???

? ??123)321(;

解 ???

?

??123)321(=(1?3+2?2+3?1)=(10).

(3))21(312-???

?

??;

解 )21(312-????

?????? ???-??-??-?=23)1(321)1(122)1(2???

?

??---=6321

42. (4)????

?

??---??? ??-20

4

131

210131

43110412 ; 解 ????

?

??---??? ??-20

4

131210131

43110412??? ??---=6520876.

(5)???

? ?????? ??32133231323

2212131211321)(x x x a a a a a a a a a x x x ;

???

? ?????? ??32133231323

2212131211321)(x x x a a a a a a a a a x x x

=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)???

? ??321x x x 3223311321122

33322222111222x x a x x a x x a x a x a x a +++++=.

5. 设

??? ??=31

21A , ??

? ??=2101

B , 问:

(1)AB =BA 吗? 解 AB ≠BA .

因为??? ??=64

43AB , ??

? ??=8321

BA , 所以AB ≠BA .

(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.

因为

??? ??=+5222B A ,

??? ?

???? ?

?=+5222

52

22)(2B A ??

? ??=2914148,

??? ??+??? ??+??? ??=++43011288611483222B AB A ?

?

? ??=27151610,

所以(A +B)2≠A 2+2AB +B 2.

(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.

因为

??? ??=+52

22B A , ??? ?

?=-1020

B A ,

??

? ?

?=??? ?

???? ?

?=-+9060102052

22))((B A B A ,

??

? ??=??? ??-??? ??=-718243011148322B A ,

故(A +B)(A -B)≠A 2-B 2.

6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;

解 取

??

? ??=00

10A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;

解 取

??

? ??=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取

??? ??=0001A , ??? ??-=1111X , ??

? ??=1011

Y ,

则AX =AY , 且A ≠0, 但X ≠Y .

7. 设

??

? ??=101λA , 求A 2, A 3, ? ? ?, A k .

?

?

? ??=??? ????? ??=12011011012λλλA ,

?

?

? ??=??? ????? ??==1301101120123λλλA A A , ? ? ? ? ? ?,

??

? ??=101λk A k . 8. 设???

?

??=λλλ001001A , 求A k .

解 首先观察

???? ?????? ??=λλλλλλ0010010010012A ???

? ??=222002012λλλλλ,

???? ??=?=3232323003033λλλλλλA A A ,

????

??=?=43423434004064λλλλλλA A A ,

???

?

??=?=545345450050105λλλλλλA A A ,

? ? ? ? ? ?,

?

?=k

A k k k

k k k k k k k λλλλλλ0002)1(1

21----????

?

. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,

???? ???????

? ??-=?=---+λλλλλλλλλ0010010002

)1(1211k k k k k k k k k k k k A A A

?????

?

??+++=+-+--+1

1111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:

?????

? ??-=---k k k k k k k k k k k A λλλλλλ0002)1(121.

9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以

(B T AB)T =B T (B T A)T =B T A T B =B T AB ,

从而B T AB 是对称矩阵.

10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,

即AB 是对称矩阵.

必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以

AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:

(1)

??

? ??5221; 解

??

? ?

?=5221A . |A|=1, 故A -1存在. 因为

??? ??--=??? ??=1225*22122111A A A A A ,

*||11A A A =-?

?

? ??--=1225.

(2)

??

? ??-θθθθcos sin sin cos ; 解

??

? ??-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为

??? ??-=??? ??=θθθθcos sin sin cos *22122111A A A A A ,

所以

*||11A A A =-?

?

? ??-=θθθθcos sin sin cos .

(3)???

?

??---145243121;

????

??---=145243121A . |A|=2≠0, 故A -1存在. 因为

???? ??-----=???? ??=214321613024*332313322212312111A A A A A A A A A A ,

所以

*||11

A A A =-?????

?

?-----=1716213213012.

(4)????

? ??n a a a O 002

1(a 1a 2

? ? ?a n

≠0) .

????? ??=n a a a A O 002

1

, 由对角矩阵的性质知

?????

??

? ??=-n a a a A 10011211O . 12. 解下列矩阵方程:

(1)

??

? ??-=??? ??12643152X ;

??? ??-??? ?

?=-126431521

X ??? ??-??? ??--=12642153??

? ??-=80232.

(2)??

? ??-=???

? ??--2343

11111012112X ; 解

1

111012112234311-?

??

? ??--?

?? ??-=X

?

??

? ??---?

?? ??-=03323210123431131 ???? ??---=3253

8122. (3)

??

? ??-=??? ??-??? ??-10131102

21

41X ;

1

1

11

02

10132141--??

?

??-??? ??-??? ??-=X

??

? ????? ??-??? ??-=210110131142121

??? ?

???? ?

?=2101

0366121?

??

? ??=04111. (4)???

? ??---=???? ?????? ??021102341010100001100001010X .

1

1010100001021102341100001010--??

?

? ?????? ??---???? ??=X

???? ?????? ??---???? ??=010100001021102341100001010???

? ??---=201431012.

13. 利用逆矩阵解下列线性方程组:

(1)?????=++=++=++3

532522132321321321

x x x x x x x x x ;

解 方程组可表示为

???

?

??=???? ?????? ??321153522321321x x x ,

故 ?

??? ??=???? ?????? ??=???? ??-0013211535223211

321x x x , 从而有 ?????===0

01321

x x x .

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

第一章 3.如果排列n x x x 2 1是奇排列,则排列1 1 x x x n n 的奇偶 性如何? 解:排列 1 1x x x n n 可以通过对排列 n x x x 21经过 (1)(1)(2)212 n n n n L 次邻换得到,每一次邻换都 改变排列的奇偶性,故当2)1( n n 为偶数时,排列 1 1x x x n n 为奇排列,当2)1( n n 为奇数时,排列1 1 x x x n n 为 偶排列。 4. 写出4阶行列式的展开式中含元素13 a 且带负 号的项. 解:含元素13a 的乘积项共有13223144 (1)t a a a a ,13223441 (1)t a a a a , 13213244 (1)t a a a a ,13213442 (1)t a a a a ,13243241 (1)t a a a a ,13243142 (1)t a a a a 六项, 各项列标排列的逆序数分别为(3214)3t , (3241)4t , (3124)2 t , (3142)3 t , (3421)5t ,(3412)4 t , 故所求为13223144 1a a a a , 132134421a a a a , 13243241 1a a a a 。 5.按照行列式的定义,求行列式 n n 0 000100200100 的

值. 解:根据行列式的定义,非零的乘积项只有 1,12,21,1(1)t n n n nn a a a a L , 其中(1)(2) [(1)(2)21]2 n n t n n n L ,故行列式的值等于: (1)(2) 2 (1) ! n n n 6. 根据行列式定义,分别写出行列式x x x x x 1 11 1231112 1 2 的 展开式中含4 x 的项和含3 x 的项. 解:展开式含4 x 的乘积项为 4 11223344 (1)(1)22t a a a a x x x x x 含3 x 的乘积项为13 12213344 (1)(1)1t a a a a x x x x 8. 利用行列式的性质计算下列行列式: 解 : (1) 41 131123421 1234 1111 1 1 1 1 410234123410121 10310 ()341234120121 2412341230321 r r r r r r r r r r r

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???????---d c b a 100 110011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

线性代数课后习题1答案(谭琼华版)

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1) ; 21-1 2 解:;5)1(1222 1-12=-?-?= (2) ;1 1 12 2 ++-x x x x 解: ; 1)1)(1(11 1232222--=-++-=++-x x x x x x x x x x (3) ;22b a b a 解: ;222 2ba ab b a b a -= (4) ;5 984131 11 解: ;59415318119318415115 984131 11=??-??-??-??+??+??= (5) ;0 00 00d c b a 解: ;00000000000000 00=??-??-??-??+??+??=d c b a d b c a d c b a (6) .132213321 解: .183211322133332221111 322133 21=??-??-??-??+??+??=

2.求下列排列的逆序数: (1)34215; 解:3在首位,前面没有比它大的数,逆序数为0;4的前面没有比它大的数,逆序数为0;2的前面有2个比它大的数,逆序数为2;1的前面有3个比它大的数,逆序数为3;5的前面没有比它大的数,逆序数为0.因此排列的逆序数为5. (2)4312; 解:4在首位,前面没有比它大的数,逆序数为0;3的前面有1个比它大的数,逆序数为1;1的前面有2个比它大的数,逆序数为2;2的前面有2个比它大的数,逆序数为2.因此排列的逆序数为5. (3)n(n-1)…21; 解:1的前面有n-1个比它大的数,逆序数为n-1;2的前面有n-2个比它大的数,逆序数为n-2;…;n-1的前面有1个比它大的数,逆序数为1;n 的前面没有比它大的数,逆序数为0.因此排列的逆序数为n(n-1)/2. (4)13…(2n-1)(2n) …42. 解:1的前面没有比它大的数,逆序数为0;3的前面没有比它大的数,逆序数为0;…;2n-1的前面没有比它大的数,逆序数为0;2的前面有2n-2个比它大的数,逆序数为2n-2;4的前面有2n-4个比它大的数,逆序数为2n-4;…;2n 的前面有2n-2n 个比它大的数,逆序数为2n-2n.因此排列的逆序数为n(n-1). 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□, 即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: (1) 71100 251020214214 ; 解: 7110025102 021 4214343 27c c c c --0 1 14 23102021 10214 ---= 34)1(14 3 10 2211014 +-?--- =- 14 3 10 2211014 --3 2 1 132c c c c ++- 14 17172 1099 -= 0. (2) ;0111101111011 110 解: 0111101111011 1104342c c c c --0 1 1 1 1 10110111000--=14)1(1 11 101 1 1+-?-- =-1 1 1 101 01 1-- 12c c +-1 2 1111 001-=- 1 2 11-=-3.

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

工程数学线性代数同济大学第六版课后习题答案

第一章 行列式 1、 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4、

(2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3、 (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a )、 (4)y x y x x y x y y x y x +++、 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3)、 2、 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32、(3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1、(4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3、 (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2、 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个)

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算22 1 12312231315 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ? 3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A

4.设矩阵210120001A ?? ??=?? ???? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+ 2.设00021000531 23004580034600A ?? ??? ? ??=?? ?????? ,求1.A - 二、讨论抽象矩阵的可逆性 1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -

线性代数习题与答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+… +1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 3 12123 122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

相关文档
相关文档 最新文档