文档库 最新最全的文档下载
当前位置:文档库 › 高考定积分练习题

高考定积分练习题

高考定积分练习题
高考定积分练习题

高考定积分应用常见题型大全

一.选择题(共21小题)

1.(2012?福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()

A.B.C.D.

2.(2010?山东)由曲线y=x2,y=x3围成的封闭图形面积为()

A.B.C.D.

3.设f(x)=,函数图象与x轴围成封闭区域的面积为()

A.B.C.D.

4.定积分的值为()

A.B.3+ln2C.3﹣ln2D.6+ln2

5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()

A.1B.C.D.

6.=()

A.πB.2C.﹣πD.4

7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()

A.2B.4C.5D.8 9.若a=,b=,则a与b的关系是()

A.a<b B.a>b C.a=b D.a+b=0 10.的值是()

A.B.C.D.11.若f(x)=(e为自然对数的底数),则=()

A.

+e2﹣e B.

+e

C.

﹣e2+e

D.

﹣+e2﹣e

12.已知f(x)=2﹣|x|,则()

A.3B.4C.3.5D.4.5

13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()

A.7B.8C.7.5D.6.5

14.积分=()

A.B.C.πa2D.2πa2

15.已知函数的图象与x轴所围成图形的面积为()

A.1/2B.1C.2D.3/2

16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π

17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()

A.B.C.D.

18.图中,阴影部分的面积是()

A.16B.18C.20D.22

19.如图中阴影部分的面积是()

A.B.C.D.

20.曲线与坐标轴围成的面积是()

A.B.C.D.

21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()

A.

y=B.

y=

C.

y=

D.

y=

高考定积分应用常见题型大全(含答案)

参考答案与试题解析

一.选择题(共21小题)

1.(2012?福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()

A.B.C.D.

考点:定积分在求面积中的应用;几何概型.

专题:计算题.

分析:根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与y=围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.

解答:解:根据题意,正方形OABC的面积为1×1=1,

而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,

则正方形OABC中任取一点P,点P取自阴影部分的概率为=;

故选C.

点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.

2.(2010?山东)由曲线y=x2,y=x3围成的封闭图形面积为()

A.B.C.D.

考点:定积分在求面积中的应用.

专题:计算题.

1(x2﹣x3)dx即可.

分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫

解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]

所求封闭图形的面积为∫01(x2﹣x3)dx═,

故选A.

点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.

3.设f(x)=,函数图象与x轴围成封闭区域的面积为()

考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.

专题:计算题;数形结合.

分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.

解答:解:根据题意作出函数的图象:

根据定积分,得所围成的封闭区域的面积S=

故选C

点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.

4.定积分的值为()

A.B.3+ln2C.3﹣ln2D.6+ln2

考点:定积分;微积分基本定理;定积分的简单应用.

专题:计算题.

分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.

解答:

解:=(x2+lnx)|12=(22+ln2)﹣(12+ln1)=3+ln2

故选B.

点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.

5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()

考点:定积分;定积分的简单应用.

专题:计算题.

分析:联立由曲线y=x2和曲线y=两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.

解答:

解:联立得,

解得或,

设曲线与直线围成的面积为S,

则S=∫01(﹣x2)dx=

故选:C

点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.

6.=()

A.πB.2C.﹣πD.4

考点:微积分基本定理;定积分的简单应用.

专题:计算题.

分析:

由于F(x)=x2+sinx为f(x)=x+cosx的一个原函数即F′(x)=f(x),根据∫a b f(x)dx=F(x)|a b公式即可求出值.

解答:

解:∵(x2++sinx)′=x+cosx,

∴(x+cosx)dx

=(x2+sinx)

=2.

故答案为:2.

点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.

7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()

A.2B.4C.5D.8

考点:定积分的简单应用.

分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.

解答:解:由图可知[﹣2,0)上f′(x)<0,

∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,

∴函数f(x)在(0,4]上单调递增,

故在[﹣2,4]上,f(x)的最大值为f(4)=f(﹣2)=1,

∴f(2a+b)<1(a≥0,b≥0)?

表示的平面区域如图所示:

故选B.

点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.

8.∫01e x dx与∫01e x dx相比有关系式()

A.

∫01e x dx<∫01e x dx B.

∫01e x dx>∫01e x dx

C.

(∫01e x dx)2=∫01e x dx D.

∫01e x dx=∫01e x dx

考点:定积分的简单应用;定积分.

专题:计算题.

分析:

根据积分所表示的几何意义是以直线x=0,x=1及函数y=e x或y=e x在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.

解答:解:∫

1e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,

如图

∵当0<x<1时,e x x>e x,故有:∫01e x dx>∫01e x dx

故选B.

点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.

9.若a=,b=,则a与b的关系是()

A.a<b B.a>b C.a=b D.a+b=0

考点:定积分的简单应用.

专题:计算题.

分析:

a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈sin24.6°,b==sinx=sin1

﹣sin0=sin1≈sin57.3°.

解答:

解:∵a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈﹣cos114.6°=sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°,

∴b>a.

故选A.

点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.

10.的值是()

A.B.C.D.

考点:定积分的简单应用.

专题:计算题.

分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积即可.

解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

定积分高考试题

定积分与微积分 一、知识回顾: 1.用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和: 1 ()n i i b a f n ξ=-∑; ④取极限: () 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑? 2.曲边图形面积:()b a S f x dx =?; 变速运动路程2 1 ()t t S v t dt =? ; 变力做功 ()b a W F r dr = ? . 3.定积分有如下性质: 性质1 =?b a dx 1 性质2 =? b a dx x kf )( (其中k 是不为0的常数) (定积分的线性性质) 性质3 ?=±b a dx x f x f )]()([2 1 (定积分的线性性质) 性质4 ??? +=c a b c b a dx x f dx x f dx x f )()()( 其中(b c a <<) 4.定积分的计算(微积分基本定理) (1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有 二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、 2.由曲线y=x 2 ,y=x 3 围成的封闭图形面积为( ) A 、 B 、 C 、 D 、 ? -==b a b a a F b F x F dx x f ) ()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、6 4. ? +1 )2(dx x e x 等于( ) A 、1 B 、e ﹣1 C 、e D 、e 2 +1 5. ? 4 2 1 dx x dx 等于( ) A 、﹣2ln2 B 、2ln2 C 、﹣ln2 D 、ln2 6. dx x ?--2 2 )cos 1(π π等于( ) A 、π B 、2 C 、π﹣2 D 、π+2 7. 已知则? -= a a xdx 2 1 cos (a >0),则?a xdx 0cos =( ) A 、2 B 、1 C 、 D 、 8. 下列计算错误的是( ) A 、 ?- =π π 0sin xdx B 、 ? = 1 32dx x C 、 ?? -=22 2 cos 2cos π ππ xdx xdx D 、 ?- =π π0sin 2 xdx 9 计算dx x ? -2 24的结果是( ) A 、4π B 、2π C 、π D 、 10. 若 0)32(0 2=-? dx x x k ,则k 等于( ) A 、0 B 、1 C 、0或1 D 、以上均不对 11.下列结论中成立的个数是( ) ①∑?=?= n i n n i dx x 133 1 031;②∑?=?-=n i n n i dx x 131031)1( ;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3 12.根据定积分的定义,?202 dx x =( ) A . ∑=?-n i n n i 1 21)1( B . ∑=∞→?-n i n n n i 121)1(lim C . ∑=?n i n n i 122)2( D . ∑=∞→?n i n n n i 122 )2(lim 13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为 ( ) A . ? 1 )(t dt t v B .dt t v s t ? + 1 0)( C .00 1 )(s dt t v t -? D .dt t v s t ?-1 0)(

定积分典型例题精讲

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子 1 n 乘入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=3 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =22 tdt ππ-?=2tdt =220 2cos tdt π ?= 2 π 例3 比较12 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??.

不定积分的典型例题

例1.計算 dx x x ?++1 1 42 解法1 ).12)(12(1224+- ++ =+x x x x x 而 +++)12(2x x )1(2)12(22+=+-x x x 所以 )121 121(21112242dx x x dx x x dx x x ???++++-=++ . )]12arctan()12[arctan(2 11 )12( ) 1221 1 )12( ) 12(21) 21)22(121)22(1[212 2 22c x x x x d x x d dx x dx x +++-= ++++ +--=++ ++- =???? 解法2 dx x x x x x x x dx x x ??+++-++-=++)12)(12(2)12(112 2242 . arctan 21)12arctan(211212242 c x x dx x x x x dx +++=++++=?? 解法3 ???+-=++=++≠22222421)1 (11111,0x x x x d dx x x x dx x x x 当 c x x x x x x d +-=+--=?21arctan 212)1() 1 (22 ,2 221arctan 2 1lim 20 π - =-+ →x x x Θ ,2 221arctan 21lim 20π=--→x x x

由拼接法可有 .0 2 221arctan 2100 ,2 221arctan 21112242 ??? ? ? ? ?<+--=>++-=++?x c x x x x c x x dx x x ππ 例2.求 .) 1()1(2 2 23dx x x x ?+++ 解 将被积函数化为简单的部分分式 (*)1 )1(1)1()1(222223?????++++++=+++x D Cx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .2 11)1(2)1(2 3=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为 . 2.24 26)1() 2(2)1(3lim ]12[lim )1() 1()1(2[lim 2232212312 2231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以 .2 1 -=D 分解式(*)两边同乘以x ,再令,+∞→x 得 .1,1-=?+=C C A 故有 . arctan 2 1 )1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dx x D Cx x B x A dx x x x +-+-+-+=++++++=+++?? 例3. 求 .) ()1(2 424dx x x x x ? ++ 解 令 ,2x u =再用部分分式,則

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

定积分典型例题

定积分典型例题 例 1 求 Iim J 2(^n τ +Q2n 2 +H ∣ +V ∏3). n _.: ∏ 分析将这类问题转化为定积分主要是确定被积函数和积分上下限?若对题目中被积函数难以想到, 可采取如下方法:先对区间[O, 1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 1 III 1 解 将区间[0, 1] n 等分,则每个小区间长为.汉=丄,然后把—=丄1的一个因子-乘入和式中 n n n n n 各项?于是将所求极限转化为求定积分?即 n i ?^贰+痢+山+疔)=曲(£ +£ +川+晋)=MdX=扌? 例 2 £ J 2x 一 X d X __________ . 解法1由定积分的几何意义知, °?2x -χ2dx 等于上半圆周(x_1) y =1 (y_0) 与X 轴所围成的图形的面积?故 2? 2^x 2dx = _ ? ■° 2 解法2本题也可直接用换元法求解?令 x_1 = sint (—巴

最新不定积分的典型例题

不定积分的典型例题

例1.計算?Skip Record If...? 解法1 ?Skip Record If...? 而?Skip Record If...??Skip Record If...?所以 ?Skip Record If...? ?Skip Record If...? 解法2 ?Skip Record If...? ?Skip Record If...? 解法3 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...??Skip Record If...? 由拼接法可有 ?Skip Record If...? 例2.求?Skip Record If...? 解将被积函数化为简单的部分分式 ?Skip Record If...? 两边同乘以?Skip Record If...?,约去?Skip Record If...?的因子后令?Skip Record If...?得?Skip Record If...? 两边同乘以?Skip Record If...?,对?Skip Record If...?求导,再令?Skip Record If...?,施以上运算后,右端得A,而左端为 ?Skip Record If...? 在分解式(*)中令?Skip Record If...?得?Skip Record If...?所以?Skip Record If...?分解式(*)两边同乘以?Skip Record If...?,再令?Skip Record If...?得?Skip Record If...?故有 ?Skip Record If...? 例3.求?Skip Record If...? 解令?Skip Record If...?再用部分分式,則 ?Skip Record If...? ?Skip Record If...?两边乘以?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?两边乘以?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?两边乘以 ?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?令?Skip Record If...? ?Skip Record If...? 例4 ?Skip Record If...? ?Skip Record If...??Skip Record If...? 例5.求?Skip Record If...?

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

定积分在高考中的常见题型

定积分在高考中的常见题 型 Last revision on 21 December 2020

定积分在高考中的常见题型解法 贵州省印江一中(555200) 王代鸿 定积分作为导数的后续课程,与导数运算互为逆运算,也是微积分基本概念之一,同时为大学数学分析打下基础。从高考题中来看,定积分是高考命题的一种新方向,在高考复习中要求学生了解定积分的定义,几何意义,掌握解决问题的方法。 一、利用微积分基本定理求定积分 1、微积分基本定理:一般地,如果)(x f 是区间[]b a ,上的连续函数,并且)()(x f x F =',那么?-=b a b F a F dx X f )()()(.这个结论叫做微积分基本定理(又叫牛顿-莱布尼兹公式)。 2、例题讲义 例1、计算?+e dx x x 1)21( 解:因为 x x x x 21 )ln 2+='+( 所以?+e dx x x 1)21(=22212)11(ln )(ln |ln e e e x x e =+-+=+)( 【解题关键】:计算?b a dx X f )(的关键是找到满足)()(x f x F ='的函数)(x F 。 跟踪训练:1计算?+2 0)cos (π dx x e x 二、利用定积分的几何意义求定积分。 1、定积分的几何意义 :设函数y=f(x)在 []b a ,上y=f(x)非负、连续,由直线x=a,x=b, y=0及曲线y=f(x) 所围成的曲边梯形面积 S=?b a dx X f )(

2、例题讲义: 例2、求由曲线12+=x y ,直线2y x =-及y 轴所围成的图形的面积S 等于=___________ 解: 联立方程组 (如图所示) ? ??-=+=11x y x y 解得???==34y x S =BCD OBCE AOB S S S 曲边梯形曲边梯形++? =dx x x dx x )1(11112 14210--++++????)()( = 412231023|)22 132(|)3221x x x x x +-+++( =3 8 【解题关键】:将曲边梯形进行分割成几个容易求面积的图形,再求面积 和 例3、求dx x ?+402)2-4( 的值 解:令)0()2(42≥+-=y x y 则有)0()2(42 2≥+-=y x y 及)()(04222≥=++y y x 右图所以π221)2-1402==+?A S dx x 圆( 【解题关键】:将被积函数转化为熟悉的曲线方程,利用曲线图形的特点 求其定积分。 练习:由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A. 415 B. 417 C. 2ln 21 D. 2ln 2 三、利用变换被积函数求定积分

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

定积分的典型例题

定积分典型例题 例1 求 2 1lim n n →∞ .分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被 积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把 2 111n n n = ?的一个因子1n 乘入和式中各项.于是将所求 极限转化为求定积分.即 2 1lim n n →∞ = 1lim n n →∞ = 34 = ? . 例2 ? =_________. 解法1 由定积分的几何意义知, ? 等于上半圆周2 2(1) 1x y -+= (0y ≥) 与 x 轴所围成的图形的面积.故 ? =2 π. 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π-≤≤ ),则 ? = tdt =2 tdt =2 20 2 cos tdt π ? =2 π 例3 比较 12 x e dx ? ,2 1 2x e dx ?,12 (1)x dx +?.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无 法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0 x >时,()0f x '>,()f x 在(0,)+∞上单调 递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 12 2 1 ()()f x dx f x dx =-? ?,从而有 2 11 12 2 2 (1)x x x dx e dx e dx +>> ??? . 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ =++ 得1x e x >+.注意到 12 2 1 ()()f x dx f x dx =-??.因此 2 11 12 2 2 (1)x x x dx e dx e dx +>> ? ?? . 例4 估计定积分2 02 x x e dx -? 的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2 ()x x f x e -=, 因为 2 ()(21) x x f x e x -'=-, 令()0f x '=,求得驻点12 x = , 而 0 (0)1f e ==, 2 (2)f e =, 1 4 1 ()2 f e -=, 故 1 2 4 (),[0,2]e f x e x -≤≤∈,从而2 122 4 22x x e e dx e - -≤ ≤? ,所以 2 102 4 2 22x x e e dx e - --≤ ≤-? . 例5 设 ()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (b a n g x →∞ ? . 解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又 ()0g x ≥()b a g x dx (b a g x ≤ ? ()b a g x dx .由于1n n →→,故lim (b a n g x →∞ ? = ()b a g x dx ? . 例6求sin lim n p n n x dx x +→∞ ? , ,p n 为自然数.分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用 方法是利用积分中值定理与夹逼准则.

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分典型例题20例答案

定积分典型例题20例答案 例 1 求lim 丄(循2 丁2『L Vn 3) ? n n 分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函 数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来 找出被积函数与积分上下限. 解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘 n n n n n 入和式中各项?于是将所求极限转化为求定积分?即 lim A (习n 2 ^2n 2 L Vn 3) = lim -(^— L ^—) = VXdx - ? n n n nn,n ,n ° 4 2 -- ------ r 例 2 o (2x x dx = ___________ ? 2 . ________ 解法1由定积分的几何意义知, ° . 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0) 与x 轴所围成的图形的面积.故 2 ,2x x 2dx = _ ? 0 2 '1 sin 2 tcostdt = 2。 2 J sin 2t costdt =2 : cos 2 tdt^ 2 2 x 2 2 x 例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)= 分析这是求变限函数导数的问题,利用下面的公式即可 (1) f (x) =2xe x e x 可得 x f (x) = 0 f (t)dt xf (x) ? x 1 例 4 设 f(x)连续,且。f(t)dt x ,贝U f (26) = _________________ O A x 1 解 对等式0 f(t)dt x 两边关于x 求导得 3 2 f(x 1) 3x 1, 解法2本题也可直接用换元法求解.令 x 1 = Sint ( 2 t 2),则 d v(x) dx u(x) f(t)dt f[v(x)]v(x) f[u(x)]u (x) ? (2) 由于在被积函数中 x 不是积分变量,故可提到积分号外即 x f (x) x 0 f (t)dt ,则 x 2dx =

高中数学高考总复习定积分与微积分基本定理习题及详解

高中数学高考总复习定积分与微积分基本定理 习题及详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??0 2e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

相关文档
相关文档 最新文档