文档库 最新最全的文档下载
当前位置:文档库 › DCS自动控制系统组态

DCS自动控制系统组态

DCS自动控制系统组态
DCS自动控制系统组态

中国石油大学

DCS自动控制系统组态

实验报告

学生姓名:

学号:

系别:

专业年级:

2015年07月14 日

一、设计任务与要求

设计任务:利用实验室的多容水箱及其辅助检测设备,并采用浙大中控作为控制器的硬件,设计一个液位控制系统,使液位能够保持在设定的范围内。

设计要求:

1、熟悉工艺流程。

2、熟悉使用浙大中控DCS设计控制系统的过程。

3、熟悉DCS设计、运行的基本原理。

4、熟悉控制系统的参数调整过程。

5、利用实验室现有装置设计一个水箱液位自动控制系统。

1.1 DCS概述:

DCS,全称:DistributedControlSystem,定义:DCS是分散控制系统(DistributedControlSystem)的简称,国内一般习惯称为集散控制系统。它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机(Computer)、通讯(Communication)、显示(CRT)和控制(Control)等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活、组态方便。

二、串级水箱控制系统原理

被控系统原理图:PCT-III型过程控制系统实验装置原理图

上图为三容水箱液位控制系统,该装置由三容水箱主体、电动调节阀、变频泵、工频泵、储水水箱组成。

该装置包含的上水箱、中水箱、下水箱的液位构成被控对象,对每个水箱可以通过电动调节阀和改变变频泵的转速来控制其流量特性,其进入每个水箱前的

阀阻和每个水箱下边的挡板阀也可以通过人工调节改变水箱液位,故可以构成不同阶次的被控对象。

通过组态可以得知上水箱、中水箱、下水箱的液位和左右两边的流量,通过综合调节来时这个液位系统达到理想的预定值。

三、液位串级控制系统组成结构

3.1硬件部分

被控对象

水箱:包括上水箱、中水箱、下水箱和储水箱。上、中、下水箱采用淡蓝色优质有机玻璃,便于学生直接观察液位的变化和记录结果。水箱底部均接有扩散硅压力传感器与变送器可对水箱的压力和液位进行检测和变送。上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。储水箱由不锈钢板制成,满足上、中、下水箱的供水需要。

检测装置压力传感器、变送器:三个压力传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为0~5KP,精度为0.5级。输出:4~20mADC。流量传感器、变送器:三个涡轮流量计分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。输出:4~20mADC。执行结构电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电源为单相220V,控制信号为4~20mADC或1~5VDC,输出为4~20mADC 的阀位信号;水泵:本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动:电磁阀:在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。

3.2软件部分

JX-300XP控制系统由工程师站、操作员站、控制站、过程控制网络等组成。

其中控制站和操作站在整个系统中作用有,控制站组态主要对I/O、自定义变量、常规控制方案、自定义控制方案和折线表定义等在控制站组态中,对液位设定值(SV)、控制系统中右上水箱液位测量值、右下水箱液位测量值及调节阀开度等模拟量进行I/O组态,对系统控制程序中占用到的部分中间变量进行自定义变量组态,在自定义控制方案中确定控制站中使用SCX语言或图形化环境进行控制站编程。

3.2.1操作站硬件

1、操作站组成:

操作站的硬件基本组成包括:工控PC机(IPC)、彩色显示器、鼠标、键盘、SCnetⅡ网卡、操作台、专用操作员键盘、打印机等,工程师站硬件配置与操作站硬件配置基本一致,无特殊要求,它们的区别仅在于系统软件的配置不同,工程师站除了安装有操作、见识等基本功能的软件外,还装有相应的系统组态、系统维护等应用工具软件。

2.机柜

3.2.2 控制站硬件

1. XP243主控卡

主控卡(又称主控制卡)是控制站软硬件的核心,协调控制站内软硬件关系和各项控制任务。他是一个智能化的独立运行的计算机系统,可以自动完成数据采集、信息处理、控制运算等各项功能。通过过程控制的网络与过程控制级(操作站、工程师站)相连,接受上层的管理信息,并向上传递工艺装置的特性数据和采集到的实时数据;向下通过SBUS和数据转发卡的程控交换与智能I/O卡件实时通信,实现与I/O卡件的信息交换(现场信号的输入采样和输出控制)。XP243采用双微处理器结构,协同处理控制站的任务,功能更强,速度更快。如图3.1

2. XP233数据转发卡

XP233是I/O机笼的核心单元,是主控卡联接I/O卡件的中间环节,它一方面驱动SBUS总线,另一方面管理本机笼的I/O卡件。通过数据转发卡,一块中控卡(XP243)可扩展1到8个I/O机笼,即可以扩展1到128块不同功能的I/O 卡件。

表3.2 为数据转发卡参数表

3. XP313电流信号输入卡

XP313电流信号输入卡可测量6路电流信号(Ⅱ型或Ⅲ型),并可为6路变送器提供+24V隔离配电电源,它是一块带CPU的智能型卡件,对模拟量电流输入信号进行调理、测量的同时,还具备卡件自检及主控制卡通讯的功能。

XP313卡的6路信号调理分为二组,其中1,2,3通道为第一组,4,5,6通道为第二组,同一组内的信号调理采用同一个隔离电源供电,两组间的电源及信号互相隔离,并且都与控制站的电源隔离。

4.XP322电流信号输出卡

XP322模拟信号输出卡为4路点点隔离型电流(Ⅱ型或Ⅲ型)信号输出卡。作为带CPU的高精度智能化卡件,具有实时检测输出信号的功能,它允许主控卡检测输出电流。

5.XP211机笼母板

XP211是JX-300XP系统的机笼母板,提供20个卡件插槽:2个主控卡插槽、2个转发卡插槽和16个I/O卡插槽,以及8个系统扩展端子、4个DB9针型插座盒1个电源接线端子,DB9针型插座用于SBUS互连,即机笼之间的互连;电源端子给机笼中所有的卡件提供5V和24V直流电源;I/O端子接口配合可插拔端子吧I/O信号引至相应的卡件上。

6.I/O卡件

I/O卡件是和现场直接相连的设备,现场信号通过电缆到达I/O卡件,I/O 卡件处理后将数据送给数据转发卡,数据转发卡再送到主控制站进行运算。而主控制卡就算出来的控制结果则通过数据转发卡到达I/O卡件,通过I/O卡件送到现场执行机构,每个I/O卡件必须隶属于某个数据转发卡,而每个数据转发卡可以转发多个I/O卡件的数据。

I/O点组态:I/O点组态是对现场信号的具体通道进行登记,如现场信号是通过哪个I/O卡件的哪个端子输入的。控制信号是通过哪个I/O卡件的哪个端子输出的。I/O点的命名规则如表3.5和表3.6。

以#1装置为例:

下面给出了#1装置输出模拟量的地址信息

四、控制系统设计方案

4.1.1水箱液位串级控制系统框图的设计

水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持上水箱下水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。

控制框图如图4.1所示。这里的扰动主要是水箱的出水阀的扰动,有时是认为的因素,有时是机械的因素,扰动总是不可避免的。主回路和副回路结合有效地抑制环境的扰动。

图4.1

4.1.2串级水箱控制系统流程图

流程图是一个控制系统的重要部分,操作员监控现场情况大多是通过流程图界面完成的,流程图要能够准确反映现场的工艺流程,同时要做到画面美观、形象、操作方便。所用符号符合工业规范。要有动态显示的数据和图形。

如图所示是水箱液位串级控制系统,它是由主控、副控两回路组成,主控回路的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量,副控制回路中的调节器称副调节器,控制对象为上水箱,中水箱的液位为副控制量,主调节器的输出作为副调节器的给定,副调节器的输出直接驱动电动调节阀,从而达到控制水箱液位的目的;在串联双容水箱水位的控制中,进水首先进人第一个水箱,然后通过第二个水箱流出,与一个水箱相比,由于增加了一个水箱,使得被控量的响应在时间上更落后一步,即存在容积延迟,从而导致该过程的难以控制。串级控制是改善调节过程动态性能的有效方法,由于其超前的控制作用,可以大大克服系统的容积延迟。采用一步整定法,通过浙大中控组态软件对整定过程及液位的平衡过程进行实时监控,直至达到主、副回路的最佳整定参数。

4.1.2硬件部分

硬件部分主要有变频器、电动调节阀、流量计、中水箱、下水箱、各种传感器、以及数据采集、转换装置;系统硬件的设计包括检测单元、执行单元和控制单元的设计,他们互相联系,组成一个完整的系统。

4.2控制系统的控制要求

水箱液位和流量串级控制系统主要由水箱、管道、水泵、异步电动机、电机控制电器、水压传感器、变频器、电动调节阀、系统中由电位器设置液位给定值,水压力传感器检测液位,采用PID算法得出流量给定值。涡轮流量计测流量,电动调节阀控制流量,采用PID算法得出电动调节阀度控制值,实现流量的控制。流量控制是内环,液位控制是外环。

根据工艺要求,为了保证控制精度,系统以低位水箱液位为主调节参数,高位水箱液位为副调节参数,构成串联双容水箱串级控制系统。低位水箱的液位传感器检测的液位信号与给定液位值进行比较后送人主调节器,经PID运算后,其

输出作为副调节器的给定值,与高位水箱的液位传感器检测到的液位信号进行比

较后送人副调节器,经PID运算后,其输出控制电动调节阀的开度,控制进水流量的大小,从而控制水箱的液位口。

4.3控制系统的PID参数整定

主回路是一个定值控制系统。对于主参数的选择,基本上可以按照单回路控制系统的设计原则进行。凡直接或间接与生产过程运行性能密切相关并可直接测量的工艺参数均可选择作主参数。另外,对于选用的主参数必须具有足够的灵敏度,并符合工艺过程的合理性;串级控制系统副回路具有调节速度快、抑制扰动能力强的特点,因而在选择副参数进行副回路设计时,必须注意主、副过程时间常数的匹配问题,以尽量减少对主参数的影响,提高主参数的控制质量。

如果副过程的时间常数比主过程小得多,这时副回路反应灵敏,控制作用快,但此时副回路包含的扰动少,对于过程特性的改善也就少了;相反,如果副过程的时间常数大于或接近于主过程的时间常数,这时副回路对于改善过程特性的效果较明显。但是,副回路反应较迟钝,不能及时有效地克服扰动,并将明显地影响参数。如果主、副过程的时间常数较接近,这时主副回路间的动态联系十分密切,当一个参数发生振荡时,会使另一个参数也发生振荡,这就是所谓的“共振”,它不利于生产的正常进行。串级控制系统主、副过程时间常数的匹配是一个比较复杂的问题。原则上,主副过程时间常数之比应是3到10范围内。

本次液位控制系统中设置串级控制系统主要是利用副回路能迅速克服主要扰动,所以副回路的时间常数以小一点为好,只要将主要扰动包括在副回路中即可。针对本次的液位串级控制系统可用以下步骤对PID参数整定:1)根据副变量的类型,按经验数据选择好副控制器的比例度(可参照图3.4);

2)将副控制器参数置于经验值,然后按单回路控制系统中任一整定方法整定主控制器参数;

3)观察控制过程,根据主、副控制器放大系数匹配的原理,适当调整主、副控制器的参数,使主变量控制质量最好;

4)若出现振荡,可加大主(或副)控制器的比例度,即可消除。如出现剧烈振荡,可先转入遥控,待产生稳定之后,重新投运和整定。

五、实验结果分析

利用实时监控系统对流程图进行仿真:

总貌画面组态

总貌画面可以作为分组画面、趋势曲线、流程图画面、数据一览画面等的索引,主要是为了操作方便。

如图5.1为系统总貌:

图5.1

分组画面组态:

分组画面组态是对实时监控状态下分组画面里的仪表盘的位号进行设置。运行

时,一个分组的信息显示在一页中,并以仪表盘的方式显示。

调整画面图:

趋势画面仿真图:

趋势画面组态用于完成实时监控趋势画面的设置,即哪些位号需要以曲线的方式实时显示。

和单回路控制系统相比较,串级控制系统有以下特点:

1)改善了对象的特性—在串级控制系统中,如把副回路视为一等效副对象,那么,它的时间常数和放大系数都比原副对象的小。对象时间常数减小,系统的响应速度将加快,这对及时克服干扰,提高控制质量是有利的;

2)提高了系统的工作频率—在串级控制系统中,由于等效副对象时间常数比原副对象的小。因此,在采用串级控制时系统的工作频率就比采用单回路控制时为高(在相同衰减比下)。这对及时克服干扰、消除偏差、提高控制质量是有利的;

3)提高了系统的抗干扰能力—和单回路控制系统相比,串级控制系统中有两台控制器,这就提高了控制器的总放大系数,系统中控制器的放大系数越大,克服干扰就越有力,特别当干扰落在副回路内时,由于响应快、控制及时,大大提高了系统的抗干扰能力;

4)具有一定的自适应能力—在串级控制系统中,主回路是一个定值系统,副回路却是一个随动系统,它的给定值是随主控制器的输出而变化的。主控制器可以根据操作条件和负荷的变化,不断地调整副控制器的给定值,从而保证在负荷和操作条件变化时,控制系统仍然具有较好的品质,这就提高了系统对负荷和操作条件变化的适应能力。

由于本实验各组分别独立进行组态(共分为10组,所以有10个工程),而在DCS实际运行时只能有一个工程运行。所以,需要对10组的工程进行整合,将10个工程整合为一个工程,在整合过程中,各组在本组工程设计完毕、检查无误后,可以根据教师指导进行工程整合。

六、实验结论

1通过本次水箱液位串级控制系统的设计不难看出所采用的串级控制方案很好地克服了双容对象的容量延迟对液位控制的不利影响,取得了较好的控制效果。通过上位机监控组态界面的设计,使整个系统的运行和控制状态更直观。目前,控制系统通过调试运行,系统运行情况良好。

2我们还可以明确单回路控制技术并非适用一切,对于时间常数较大、存

在时间滞后、系统有较大干扰的情况,单回路控制系统的调节质量难于保证。必须改进控制方式,而串级控制系统能较大的解决这一问题,串级控制系统由于副回路的存在,改善了对象的特性,使等效对象的时间常数减小,系统的工作频率提高,改善了系统的动态性能,使系统的响应加快,控制及时。同时,由于串级系统具有主副两只控制器,总放大倍数增大,系统的扰干扰能力增强。因此,它的控制质量要比单回路控制系统高。

七、参考文献

【1】百度文库

【2】过程控制课件

【3】浙大中控培训资料

一电厂热工控制DCS系统设计

| 67 PLC and DCS 一电厂热工控制DCS系统设计 刘景芝,孙 伟 (中国矿业大学信息与电气工程学院,江苏 徐州 221008) 摘 要:以西山孝义金岩公司自备电厂为背景,主要结合循环流化床锅炉机组的运行特点和控制特性,对其热工系统运用集散控制方式进行控制,并采用浙大中控的WebFiled JX-300X系统对单元机组的热工控制系统做了初步的整体设计。 关键词:热工控制系统;集散控制系统(DCS);循环流化床锅炉 中图分类号:TP393.03 文献标识码:B 文章编号:1003-7241(2007)12-0067-03 A DCS system for thermal control of a power station LIU Jing-zhi, SUN Wei (The School of Information and Electrical Engineering ,China University of Mining and Technology , Xuzhou 221008 China) Abstract: This paper introduces a distributed control system for the power station of the Xishan Jinyan company. According to the operation and control requirements of the circulating fluidized bed boiler, the distributed control for the thermal system of a power unit is designed with the SUPCON WebFiled JX-300X. Keywords: thermal control system; distributed control system(DCS); circulating fluidized bed boiler 1 引言 火力发电是现代电力生产中的一种主要形式,火力发电厂 运行系统多而且复杂,各系统之间要协调运行又要对负荷变化 具有很强的适应能力,因此有效的控制火力发电厂运行极其重 要。目前火电机组都普遍采用DCS[3],因为DCS系统给电厂在 安全生产与经济效益方面带来巨大作用,使以往任何控制系统 无法与其相提并论。随着各项技术的发展和用户对生产过程控 制要求的提高,一种全数字化的控制系统——现场总线控制系 统(FCS)问世了,并得到了快速发展。虽然现场总线控技术 代表了未来自动化发展的方向并将逐步走向实用化,但由于火 电厂的具体环境和控制特点,经过论证与分析,近期内热控系统 只能以DCS为主[1][2]。 西山孝义金岩公司自备电厂包括2台75t/h循环流化床锅 炉、2台15MW抽汽式汽轮发电机组。本文主要针对循环流化床 锅炉,将其改造为单元机组运行。根据循环流化床锅炉和火电机 组的运行特点,分析其热控系统的功能要求,采用集散控制系统 (DCS)实现热工自动化,并以浙大中控的WebFiled JX-300X为 例,进行具体系统的初步设计。 收稿日期:2007-07-03 JX-300X集散控制系统全面应用最新的信号处理技术、高 速网络通信技术、可靠的软件平台和软件设计技术和现场总线技 术,采用高性能的微处理器和成熟的先进控制算法,兼具高速可靠 的数据输入输出、运算、过程控制功能和PLC联锁逻辑控制功 能,能适应更广泛更复杂的应用要求,是一套全数字化的、结构灵 活、功能完善的新型开放式集散控制系统。 JX-300X体系结构如下图: 2 系统介绍及方案描述 2.1 系统总体方案描述 根据单元机组运行特点及要求,其控制系统一般配有以下系统: (1) 数据采集系统(DAS); 图1 JX-300X体系结构图

发电厂DCS控制系统解决方案

循环流化床锅炉是被国际公认的高效、低污染的清洁燃烧技术,是国家重点鼓励和发展的环保节能项目。该锅炉具有燃烧效率高,负荷调节范围大,无需加装脱硫、脱硝装置即可实现90%脱硫率,满足环保要求,以经济的方式解决大气污染问题,而且煤种适应性广,排出的灰渣活性好,容易实现综合利用。 目前国内300MW等级循环流化床锅炉消化引进阿尔斯通技术,和常规煤粉锅炉相比主要在燃烧系统方面存在差异其具有如下特点: ?通常锅炉四角分别布置4个返料器和4个外置流化床,外置床中布置了中温过热器,低 温过热器和高温再热器等锅炉受热面。 ?锅炉左右两侧配有风道燃烧器,每侧风道燃烧器含有两支油枪,床上左右两侧各配有 4支床上油枪。 ?风烟系统中一次风作为主要流化风,二次风分上中下分级送风助燃,多路流化风对返 料器、外置床等受热室起到流化作用。 ?风烟系统中灰循环的合理建立是锅炉稳定燃烧的重要前提,也是控制床温、再热汽温 的基础。 ?由于循环流化床锅炉的复杂性,锅炉炉膛安全监测系统和常规煤粉炉有较大差别,包 含锅炉跳闸BT、送风跳闸AT和主燃料跳闸MFT三个主要跳闸信号。 ?由于循环流化床锅炉的大滞后特性,自动控制难点在协调控制,床温控制、床压控制、 过热汽温控制和再热汽温控制。 ?对于循环配套直接空冷系统,直接空冷的控制关键在于风机转速主指令控制,即如何 设定好背压是一个关键,既能够考虑到汽轮机效率,又能考虑到风机电耗率,达到一个最佳经济性指标,同时兼顾到低温防冻保护。 图1?1 循环流化床机组示意图 1.2配置方案 蒙西DCS项目由DAS、FSSS、SCS、MCS、DEH、ECS、ACC等部分组成,总点数约20000点,采用TPS系统,总配置单元机组配置控制器18×2对,公用系统配置控制器2对,ACC

浅谈火电厂DCS系统调试的质量控制

浅谈火电厂D C S系统调试的质量控制 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅谈火电厂D C S系统调试的质量控制1 引言 火电厂分散控制系统(DCS)是以微机为基础,根据系统控制的概念,融合了计算机技术、控制技术、通信技术和图形显示技术,实现集中管理,分散控制。它根据火电厂工艺特性,将控制系统分成若干独立子系统,由相应的分布式处理单元独立完成,分布式处理单元可根据功能和地理位置分散布置。DCS的各子系统分工协作,并行工作,得用系统通信网络进行数据交换,共享系统资源。特别是电气控制系统纳入DCS后,DCS已成为火电厂完整的控制系统。 由于DCS系统已成为火电厂控制、监视的主要设备,因此DCS安装完毕后进行的调试就成为火电厂建设的一项重要工作,监理人员对DCS 系统的调试质量必须进行有效的控制。系统调试是对工程质量进行系统检验、并使其的功能得以正常发挥的过程。调试不但能及时发现问题进行改进,而且正式运行后的效果往往较好。反之,如调试效果不好,对存在的质量问题不及时改进,既会浪费能源又影响机组出力。所以,在系统工程调试阶段对DCS的质量控制十分重要。 监理人员在调试阶段首先要审查工程承包商提出的调试方案和调试报告,并报业主审批通过。具体调试过程要在监理的监控下完成,并填好相应的记录及调试结果,报业主签证认可。监理审查调试报告是控制工程调试质量的重点和关键。一个合理、可行、完整的调试报告是整个

系统顺利调试的前提;掌握准确、真实的调试数据和结果是系统调试的真实反映,同时也是竣工验收和将来系统运行中检查故障的重要依据。审查完调试报告后,即可按报告中的步骤控制系统调试。 2 DCS系统调试 DCS调试的具体过程根据其调试的阶段,应包括硬件、仪表的测定和调试;系统指标及软件调试;系统调试。 调试前审查的施工单位调试报告应包括以下几部分:工程概况;调试依据;调试前准备工作;调试方法及步骤;调试的具体时间安排和使用的仪器、仪表清单;人员的组织安排。调试报告后应附带填表形式。对于调试报告,应审查其合理性、可行性、完整性。对各个阶段的调试周期应统筹规划,确保调试时间的连续性。经监理审查后的调试报告,应上交业主审核通过后,才着手下一步的调试工作。 调试前的准备工作,作为质量控制的一部分,首先要检查DCS系统是否施工完毕,是否符合设计、有关文件、国家标准和规范要求。如DCS 系统是否按合同要求配置、屏柜安装是否正确、电缆敷设是否正确、接地系统是否正确等等。最好在正式调试前,进行调试培训,明确各人职责,做到岗岗有人。 2.1硬件、仪表的测定和调试

基于DCS系统下实现发电厂电气监控的毕业设计论文

《计算机控制技术》 课程论文. 用DCS来实现发电厂电气监控的设计 班级:电气09-2 学号: 姓名: 时间:2012/12/30

《计算机控制技术》课程设计任务书 题目:用DCS来实现发电厂电气监控的设计 设计要求: 1、简述DCS原理 2、简述发电厂电气监控原理 3、对DCS的系统结构进行初步设计 4、对发电厂电气监控系统进行初步设计 5、选择电气监控系统接入DCS的方式 6、对用DCS实现发电厂电气监控进行初步的总体方案设计 时间安排: 2012/12/24 确定设计题目 2012/12/25 进行相关资料收集 2012/12/26 对收集的资料进行整理 2012/12/27 开始着手设计 2012/12/28 完善设计 2012/12/29 完成设计论文 2012/12/30 对论文进行差错,上交论文

用DCS来实现发电厂电气监控的设计 广东石油化工学院电气09级2班张鹏 摘要:DCS系统在火电厂发电机组控制中的应用已近二十来年,而且正在越来越多地得到应用。本文对DCS和发电厂的电气监控系统进行了初步的介绍,然后对其分别初步进行系统结构的设计。最后通过采用硬接线+现场总线的方式将电气监控系统接入DCS,初步设计了总体的用DCS实现发电厂电气监控的结构方案。 关键词:DCS 发电厂电气监控 一、DCS的简介 集散控制系统(DCS,Distributed Control System)是相对于计算机集中控制系统而言的计算机控制系统,它是在对计算机局域网的研究基础上发展起来的,是过程控制专家们借用计算机局域网研究成果,把局域网变成一个实时性,可靠性要求很高的网络型控制系统,运用于过程控制领域。它集计算机、通信、图形显示和控制四大技术于一体的自动化综合系统,他基于控制功能分散、操作管理集中、信息共享的原则,具有运算能力强、实时、可靠和精度高、操作简单、检修维护方便、人机界面友善等的特点,可以方便地用于工业装置的生产控制和经营管理,在电力、化工、冶金等流程自动化领域的应用已经十分普及。近20多年来,由于微电子技术和计算机技术的飞速发展以及工业自动化要求的逐步提高,DCS经历了几个阶段的发展过程,结构日臻完善,技术更加成熟,已经成为生产自动化不可缺少的自控装置。DCS硬件方面广泛采用技术指标更先进的高档工业PC,有的甚至采用了RISC工作站;软件方面引入了通用的商业化软件包,系统互连方面采用国际标准的通用网络,逐步向信息集成的方向发展DCS系统在热工专业多年来已积累了丰富的经验,现行的“2000年燃煤示范电厂”自动化设计和目标也要求大型火力发电厂电气控制系统全面进入DCS,因此在火力发电厂中电气监控系统采用DCS已成为今后发展的方向。 二、发电厂电气系统监控系统(ECS)介绍 应用计算机、测量保护与控制、现场总线技术及通信技术,实现发电厂电气系统的运行、保护、控制、故障信息管理及故障诊断、电气性能优化等功能的综合自动化叫电气系统监控系统(ECS)。 电气系统监控的组成:从大的方面来划分,电气设备监控系统可以分为两大监控单元组:即发电机—变压器监控单元组和厂用电源监控单元组,而检测范围除包括此两大单元组外,还应包括单元机组直流系统、UPS和保安电源系统等。 两大监控单元组的功能 1、发电机—变压器监控单元组:发电机—变压器监控单元组应能实现程序控制和软手操控制,使发动机由零起升速、升压直到并网带初始负荷。根据实际运行水平和设备可靠性,机组顺控并网应该设置间断点,分步进行,即:第一步由DEH零起升速至额定;第二步,启动并网,主要完成并网前的准备工作,如投退相关保护压板,投入灭磁开关等;第三步,升压过程,DCS将投入AVR,通过AVR自动励磁调节器完成发电机零起升压至额定电压;第四步,完成并网,主要检查定转子的接地情况,投入ASS自动准同步装置(发电机与电网的同步是由同步装置自动实现的),在同步过程中通过DCS控制AVR、DEH,当同步条件满足时,向发电机断路器发合闸指令,在同步合闸成功、发电机电负荷达到一定值之后,DCS将高压厂用电系统快速从起/备变切换到高压工作厂变上。机组顺控解列操作大致与此相反:即机组正常停运时,DCS 控制降低机组负荷,当机组负荷降到某一定值时,DCS将高压厂用电系统快速切换到起/备变系统供电;当机组负荷继续降到零,跳开主开关,联跳汽轮机(主汽门关闭),发电机灭磁。 2、厂用电源监控单元组:厂用电源监控单元组主要包括高压厂用电源系统、低压厂用电源系统及保

DCS系统在发电厂的应用

D C S系统在发电厂的应 用 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

双控专题(报告) 设计(论文)题目: DCS系统在发电厂的应用 所在学院:自动化与电气工程学院 专业:电气工程及其自动化 班级:研控1302 学生姓名:窦胜 指导教师:程明 起讫日期:2014-5~2014-06

目录

第一章绪论 集散型控制系统(Distributed control system)又名分布式计算机控制系统(以下均简称DCS)是利用计算机技术对生产进行集中监视、操作、管理和分散控制的一种新型控制技术。集散型控制系统一般由几种管理部分,分散控制监测部分和通讯部分组成。其中分散控制监测部分(即现场控制单元),按机组整体设计分散于现场,或集中安装在控制室,一般可控制1个或多个回路,具有几十种甚至上百种运算功能。集散型控制系统软件一般由实时多任务操作系统,数据通信软件,组态软件和各种应用软件所组成。其中组态软件工具、逻辑编辑软件、画面软件,可以按用户要求生成实用系统。DCS通过计算机网络,充分利用网络上的计算机资源,实现生产过程中大量数据的并行计算,使系统具有可靠性高、成本低、灵活性强等特点。 近年来,发电行业进一步提高了电厂综合自动化水平,注重并加强了信息化的投入,很多火电厂提出需要适合自己工厂的厂级监控信息系统(SIS)以提高生产安全及生产效率,实现工厂管理信息系统与各种集散控制系统之间的信息共享。SIS以集散控制系统为基础,以安全运行和提升发电企业经济、安全效益为目标,运用安全、先进、有效的专业方法,达到电厂厂内的信息平台共享。高一级的生产运行的实时信息监视和调节,同时又提升了机组运行的可靠性。它为电厂管理层的决策提供真实、可靠的实时运行数据,为发电企业提供科学、准确的经济性指标。

DCS系统在发电厂的应用

双控专题(报告)设计(论文)题目: DCS系统在发电厂的应用所在学院:自动化与电气工程学院 专业:电气工程及其自动化 班级:研控1302 学生姓名:窦胜 指导教师:程明 起讫日期:2014-5~2014-06

目录 第一章绪论 (3) 第二章DCS系统构成 (4) 2.1数据采集系统(DAS) (4) 2.2模拟量控制系统(MCS) (4) 2.3顺序控制系统(SCS) (5) 2.4炉膛安全监控系统(FSSS) (5) 第三章发电厂DCS系统电气应用 (5) 3.1电气DCS系统的实现 (6) 3.1.1控制部分 (6) 3.1.2通信部分 (6) 3.1.3电气监控系统与DCS的连接方式 (6) 3.1.4后台机系统 (7) 3.2电厂DCS功能优势分析 (7) 3.2.1关于故障分散 (7) 3.2.2关于控制室的尺寸和表盘长度 (8) 3.2.3关于节约电缆 (8) 3.2.4关于减少备品备件的种类和数量 (8) 3.2.5关于减少机组运行对仪表控制设备制造厂商的依赖 (8) 3.2.6关于控制系统构成的灵活性,组态的便捷性和系统的可扩展性 (8) 3.2.7关于DCS系统提供的一些独特的控制功能 (9) 第四章小结 (9) 参考文献: (9)

第一章绪论 集散型控制系统(Distributed control system)又名分布式计算机控制系统(以下均简称DCS)是利用计算机技术对生产进行集中监视、操作、管理和分散控制的一种新型控制技术。集散型控制系统一般由几种管理部分,分散控制监测部分和通讯部分组成。其中分散控制监测部分(即现场控制单元),按机组整体设计分散于现场,或集中安装在控制室,一般可控制1个或多个回路,具有几十种甚至上百种运算功能。集散型控制系统软件一般由实时多任务操作系统,数据通信软件,组态软件和各种应用软件所组成。其中组态软件工具、逻辑编辑软件、画面软件,可以按用户要求生成实用系统。DCS通过计算机网络,充分利用网络上的计算机资源,实现生产过程中大量数据的并行计算,使系统具有可靠性高、成本低、灵活性强等特点。 近年来,发电行业进一步提高了电厂综合自动化水平,注重并加强了信息化的投入,很多火电厂提出需要适合自己工厂的厂级监控信息系统(SIS)以提高生产安全及生产效率,实现工厂管理信息系统与各种集散控制系统之间的信息共享。SIS以集散控制系统为基础,以安全运行和提升发电企业经济、安全效益为目标,运用安全、先进、有效的专业方法,达到电厂厂内的信息平台共享。高一级的生产运行的实时信息监视和调节,同时又提升了机组运行的可靠性。它为电厂管理层的决策提供真实、可靠的实时运行数据,为发电企业提供科学、准确的经济性指标。 在大型火电厂,DCS是计算机系统与发电机组控制模式结合的控制系统,与传统控制系统有本质区别。DCS具有通用性强、系统组态灵活、控制功能完善、数据处理方便、显示操作集中、调试方便、运行安全可靠等特点,在大型火力发电厂的生产过程中,能提高发电技术的自动化水平,减少不必要的人员浪费,增强系统的安全系数。

火电厂dcs控制系统

火电厂dcs控制系统 什么是dcs控制系统ECS):其主要作用是发电机的启、停控制及逻辑;厂用电系统各开关的控制及逻辑;电气系统的各参数与设备状态的监视;继电保护动作情况、故障报警及时间顺序记录。MEH):其主要作用是调节汽泵组的转速,可完成如下功能:挂闸、升速、定速、CCS控制、超速保护等功能。BCS):旁路系统是一个独立的系统,旁路控制能完成旁路操作的确切要求,并能完成安全功能或快开/块关功能,其基本组成部分分为高旁控制器和低旁控制器,主要实现高低旁的压力控制和温度控制。系统的主要技术概述 DCS在火为发电厂烟气脱硫控制系统的应用电厂脱硫是将燃煤机组烟气中的含硫化合物降低到符合国家排放标准的一种工艺,目前常应用比较广的是湿法脱硫工艺。该工艺主要包括工艺水系统,石灰石浆液制备、输送系统,吸收塔系统,石膏脱水系统,烟气系统等子工艺系统。主要设备有湿式球磨机、浆液输送泵、氧化风机、浆液循环泵以及增压风机等。就其控制系统而言,湿法脱硫工艺一般具有以下特点: 烟气脱硫的控制对象比较特殊但数量较少,控制对象较分散,控制使用的PID较少,控制回路较简单;闭环控制较少,开环控制较多,实时性要求不太高。另外,顺控较多,注重的是时间控制,保护要求不多。因此,脱硫控制系统是一个以开关量为主,模拟量为辅并伴有少量调节回路的系统,属于典型的混合控制系统,其控制I/O点数约3000点。 本系统采用石灰石石膏湿法脱硫工艺,该工艺是目前世界上应用最为广泛和最可靠的工艺。该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤,发生反应,以去除烟气中的SO2,反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸钙(石膏)。 总结随着计算机技术、通讯技术和控制技术的不断发展,为满足电网需要,火电机组必须具备更高的调节适应能力,采用厂级监控信息系统(SIS)、一体化的分散控制系统(DCS)

DCS控制系统在电厂的应用和改进

DCS控制系统在电厂的应用和改进 在电厂发电机组控制中,DCS系统应用已经有了很长的时间,而且,在应用过程中也越来越广泛。DCS系统建立在计算机系统上,是一种相对于计算机集中控制系统的控制系统,利用计算机局域网进行研究,将局域网变成了实时性、可靠性的网络型控制系统,文章对DCS控制的特点以及DCS结构变化和应用技术的改进进行了分析,希望能够更好的促进其应用,更好的满足电厂发展要求,保证能源的供应。 标签:DCS控制系统;应用;改进 1 DCS系统概述 DCS系统是分散控制系统的简称,国内习惯称为集散控制系统。DCS系统是利用过程控制级和过程监控级组成的计算机控制系统,其中主要对通信网络进行了利用,形成了多级控制系统。对计算机技术、通讯技术、显示技术以及控制技术等技术进行了利用,系统建立的目的就是为了实现分散控制、集中操作、分级管理、灵活配置以及组态方便。DCS的控制范围已经扩展到了经常使用的可编程控制器中,这样能对辅助车间进行控制,目前,电厂中DCS系统一体化逐渐成为了一种趋势。DCS系统和可编程控制系统在对辅助车间进行控制方面存在着不同的特点,因此,在应用方面也存在着不同的厂家选择不同控制系统的情况,为了能够更好的促进企业发展,企业对控制系统进行选择时一定要从长远方面进行考虑。 2 DCS的特點 2.1 高可靠性 DCS控制系统的功能分散在不同的计算机上,对不同的计算机进行不同的操作能够实现不同的操作。DCS控制系统在结构方面采用的是容错设计,这样在某台计算机出现故障的时候也不会导致其他计算机受到影响,也不会导致系统的其他功能受到影响。在DCS系统中,不同的计算机承担的任务都比较单一,因此,要使用特定结构和软件的专用计算机,这样系统中的每台计算机的可靠性都能得到明显的提高。 2.2 开放性 DCS系统是采用的开放式、标准化、模拟化和系列化设计,在系统中每台计算机之间的通信都是利用局域网来实现,这样能够实现信息的传输,同时,在系统功能方面也能够不断的进行改变,进行扩充。在局域网进行新增计算机的接入和卸下非常的方便,对其他计算机的工作不会产生影响,因此,系统在运行过程中不会出现很多的问题。

相关文档