文档库 最新最全的文档下载
当前位置:文档库 › 8几何最值问题解法探讨

8几何最值问题解法探讨

8几何最值问题解法探讨
8几何最值问题解法探讨

专题8:几何最值问题解法探讨

在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例

1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】

A 1

B

C .

55 D .52 【答案】A 。

【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。

【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,

∵OD≤OE+DE ,

∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,

此时,∵AB=2,BC=1,∴OE=AE=12

AB=1。

DE===

∴OD 1。故选A 。

例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

【答案】4。

【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,在BA 上截取BE=BN ,连接EM 。

∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM 。

在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM ,BM=BM ,

∴△BME ≌△BMN (SAS )。∴ME=MN 。∴CM+MN=CM+ME≥CE 。

又∵CM+MN 有最小值,∴当CE 是点C 到直线AB 的距离时,CE 取最小值。

∵BC=ABC=45°,∴CE 的最小值为0=4。

∴CM+MN 的最小值是4。

例3.(2011四川凉山5分)如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 ▲ cm 。

【答案】15π。

【考点】圆柱的展开,勾股定理,平行四边形的性质。

【分析】如图,圆柱展开后可见,棉线最短是三条斜线,第一条斜线与底面圆周长、1

3高组成直角三角形。由周长公式,底面圆周长为4cm π,13

高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线

最短为15cm π。

例4. (2012四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD

的取值范围是

▲ .

【答案】1<AD <4。

【考点】全等三角形的判定和性质,三角形三边关系。

【分析】延长AD 至E ,使DE=AD ,连接CE .根据SAS 证明△ABD ≌△ECD ,

得CE=AB ,再根据三角形的三边关系即可求解:

延长AD 至E ,使DE=AD ,连接CE 。

∵BD=CD ,∠ADB=∠EDC ,AD=DE ,∴△ABD ≌△ECD (SAS )。

∴CE=AB 。

在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <8。

∴1<AD <4。

练习题:

1. (2011湖北荆门3分)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开

始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】

A.13cm

B.12cm

C.10cm

D.8cm

2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=

23

BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】

A 、6

(4)π+㎝ B 、5cm C 、 D 、7cm

3.(2011广西贵港2分)如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ .

二、应用垂线段最短的性质求最值:典型例题:例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

【答案】245

。 【考点】动点问题,垂直线段的性质,勾股定理。

【分析】如图,根据垂直线段最短的性质,当BP′⊥AC 时,BP 取得最小值。

设AP′=x ,则由AB =AC =5得CP′=5-x ,

又∵BC =6,∴在Rt △AB P′和Rt △CBP′中应用勾股定理,得

222222B P A B A P B P B C C P

'=-''=-',。 ∴2222AB AP BC CP -'=-',即()22225x 66x -=--,解得7

x=5

∴24BP 5',即BP 的最小值是245。 例2.(2012浙江台州4分)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】

A . 1 B

C . 2

D 1

【答案】B 。

【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。

【分析】分两步分析:

(1)若点P,Q固定,此时点K的位置:如图,作点P关于BD的对称点P1,连接P1Q,交BD于点K1。

由线段中垂线上的点到线段两端距离相等的性质,得

P1K1 = P K1,P1K=PK。

由三角形两边之和大于第三边的性质,得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。

∴此时的K1就是使PK+QK最小的位置。

(2)点P,Q变动,根据菱形的性质,点P关于BD的对称点P1在AB上,即不论点P在BC上任一点,点P1总在AB上。

因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P1Q⊥AB 时P1Q最短。

⊥DC于点Q1。∵∠A=120°,∴∠DA Q1=30°。

过点A作AQ

又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=2=

综上所述,PK+QK B。

例3.(2012江苏连云港12分)已知梯形ABCD,AD∥BC,AB⊥BC,AD=

1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?

问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

【答案】解:问题1:对角线PQ 与DC 不可能相等。理由如下:

∵四边形PCQD 是平行四边形,若对角线PQ 、DC 相等,则四边形PCQD 是矩

形,

∴∠DPC =90°。

∵AD =1,AB =2,BC =3,∴DC =。

设PB =x ,则AP =2-x ,

在Rt △DPC 中,PD 2+PC 2=DC 2,即x 2+32+(2-x)2+12=8,化简得x 2-2x +

3=0,

∵△=(-2)2-4×1×3=-8<0,∴方程无解。

∴不存在PB =x ,使∠DPC =90°。∴对角线PQ 与DC 不可能相等。

问题2:存在。理由如下:

如图2,在平行四边形PCQD 中,设对角线PQ 与DC 相交于点G ,

则G 是DC 的中点。

过点Q 作QH ⊥BC ,交BC 的延长线于H 。

∵AD ∥BC ,∴∠ADC =∠DCH ,即∠ADP +∠PDG =∠DCQ +∠QCH 。

∵PD ∥CQ ,∴∠PDC =∠DCQ 。∴∠ADP =∠QCH 。

又∵PD =CQ ,∴Rt △ADP ≌Rt △HCQ (AAS )。∴AD =HC 。

∵AD =1,BC =3,∴BH =4,

∴当PQ ⊥AB 时,PQ 的长最小,即为4。

问题3:存在。理由如下:

如图3,设PQ 与DC 相交于点G ,

∵PE ∥CQ ,PD =DE ,∴

DG PD 1=GC CQ 2=。 ∴G 是DC 上一定点。

作QH ⊥BC ,交BC 的延长线于H ,

同理可证∠ADP =∠QCH ,∴Rt △ADP ∽Rt △HCQ 。∴

AD PD 1=CH CQ 2=。 ∵AD =1,∴CH =2。∴BH =BG +CH =3+2=5。

∴当PQ ⊥AB 时,PQ 的长最小,即为5。

问题4:如图3,设PQ 与AB 相交于点G ,

∵PE ∥BQ ,AE =nPA ,∴PA AG 1=BQ BG n+1

=。

∴G是DC上一定点。

作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K。∵AD∥BC,AB⊥BC,

∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°

∠PAG=∠QBG,

∴∠QBH=∠PAD。∴△ADP∽△BHQ,∴AD PA1

=

BH BQ n+1

=,

∵AD=1,∴BH=n+1。∴CH=BH+BC=3+n+1=n+4。

过点D作DM⊥BC于M,则四边形ABND是矩形。

∴BM=AD=1,DM=AB=2。∴CM=BC-BM=3-1=2=DM。

∴∠DCM=45°。∴∠KCH=45°。

∴CK=CH?cos45°(n+4),

∴当PQ⊥CD时,PQ的长最小,最小值为

2

(n+4)。

【考点】反证法,相似三角形的判定和性质,一元二次方程根的判别式,全等三角形的判定和性质,勾股定理,平行四边形、矩形的判定和性质,等腰直角三角形的判定和性质。

【分析】问题1:四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,然后利用矩形的性质,设PB=x,可得方程x2+32+(2-x)2+1=8,由判别式△<0,可知此方程无实数根,即对角线PQ,DC的长不可能相等。

问题2:在平行四边形PCQD中,设对角线PQ与DC相交于点G,可得G是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,易证得Rt△ADP≌Rt△HCQ,即可求得BH =4,则可得当PQ⊥AB时,PQ的长最小,即为4。

问题3:设PQ与DC相交于点G,PE∥CQ,PD=DE,可得DG PD1

=

GC CQ2

=,易证得

Rt△ADP∽Rt△HCQ,继而求得BH的长,即可求得答案。

问题4:作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,

易证得AD PA1

=

BH BQ n+1

=与△ADP∽△BHQ,又由∠DCB=45°,可得△CKH是等腰直角三角

形,继而可求得CK的值,即可求得答案。

例4.(2012四川广元3分)如图,点A的坐标为(-1,0),点B在直线y x

=上运动,当线段AB最短

时,点B的坐标为【】

A.(0,0)

B.(21-,21-)

C.(2

2,22-) D.(22-,22-)

例5.(2012四川乐山3分)如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:

①△DFE 是等腰直角三角形;

②四边形CEDF 不可能为正方形;

③四边形CEDF 的面积随点E 位置的改变而发生变化;

④点C 到线段EF 的最大距离为

其中正确结论的个数是【 】

A .1个

B .2个

C .3个

D .4个

【答案】B 。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于1

2 BC。

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。

又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,

由②,知四边形CMDN是正方形,∴DM=DN。

由①,知△DFE是等腰直角三角形,∴DE=DF。

∴Rt△ADE≌Rt△CDF(HL)。

∴由割补法可知四边形CEDF的面积等于正方形CMDN面积。

∴四边形CEDF的面积不随点E位置的改变而发生变化。

故此结论错误。

④由①,△DEF EF。

当DF与BC垂直,即DF最小时, EF取最小值。此时点C到线段EF的最大

故此结论正确。

故正确的有2个:①④。故选B。

例6.(2012四川成都4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:

第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);

第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;

第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.

(注:裁剪和拼图过程均无缝且不重叠)

则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.

【答案】20;12+

【考点】图形的剪拼,矩形的性质,旋转的性质,三角形中位线定理。

【分析】画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示。

图中,N1N2=EN1+EN2=NB+NC=BC,

M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理)。

又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,

其周长为2N1N2+2M1N1=2BC+2MN。

∵BC=6为定值,∴四边形的周长取决于MN的大小。

如答图2所示,是剪拼之前的完整示意图。

过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是

一个矩形,这个矩形是矩形ABCD的一半。

∵M是线段PQ上的任意一点,N是线段BC上的任意一点,

∴根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最

小值为4;

而MN=

∵四边形M1N1N2M2的周长=2BC+2MN=12+2MN,

∴四边形M1N1N2M2周长的最小值为12+2×4=20;最大值为12+2×

例7. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:

①△DFE是等腰直角三角形;

②四边形CEDF不可能为正方形;

③四边形CEDF的面积随点E位置的改变而发生变化;

④点C到线段EF的最大距离为.

其中正确结论的个数是【】

A.1个B.2个C.3个D.4个

【答案】B。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。

【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于1

2 BC。

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。

又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,

由②,知四边形CMDN是正方形,∴DM=DN。

由①,知△DFE是等腰直角三角形,∴DE=DF。

∴Rt△ADE≌Rt△CDF(HL )。

∴由割补法可知四边形CEDF 的面积等于正方形CMDN 面积。

∴四边形CEDF 的面积不随点E 位置的改变而发生变化。

故此结论错误。

④由①,△DEF EF 。

当DF 与BC 垂直,即DF 最小时, EF 取最小值。此时点C 到线段EF 的最大

故此结论正确。

故正确的有2个:①④。故选B 。

例8. (2012浙江宁波3分)如图,△ABC 中,∠BAC=60°,∠ABC=45°,,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 ▲ .

【考点】垂线段的性质,垂径定理,圆周角定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。

【分析】由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,此时线段EF=2EH=20E?sin ∠EOH=20E?sin60°,当半径OE 最短时,EF 最短。如图,连接OE ,OF ,过O 点作OH ⊥EF ,垂足为H 。

∵在Rt△ADB 中,∠ABC=45°,

∴AD=BD=2,即此时圆的直径为2。 由圆周角定理可知∠EOH=

12

∠EOF=∠BAC=60°,

∴在Rt△EOH 。

由垂径定理可知

例9. (2012四川自贡12分)如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△A EF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.

(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;

(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

【答案】解:(1)证明:如图,连接AC

∵四边形ABCD 为菱形,∠BAD=120°,

∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,

∴∠BAE=∠FAC。

∵∠BAD=120°,∴∠ABF=60°。

∴△ABC 和△ACD 为等边三角形。

∴∠ACF=60°,AC=AB 。∴∠ABE=∠AFC。

∴在△ABE 和△ACF 中,∵∠BAE=∠FAC,AB=AC ,∠ABE=∠AFC,

∴△ABE≌△ACF(ASA )。∴BE=CF。

(2)四边形AECF 的面积不变,△CEF 的面积发生变化。理由如下:

由(1)得△ABE≌△ACF,则S △ABE =S △ACF 。

∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值。

作AH⊥BC 于H 点,则BH=2,

AECF ABC 11S S BC AH BC 22

?==??=四形边 由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.

故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面

积会最小,

又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.

∴S △CEF =S 四边形AECF ﹣S △AEF 12=?=

∴△CEF

【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。

【分析】(1)先求证AB=AC ,进而求证△ABC、△ACD 为等边三角形,得∠ACF =60°,AC=AB ,从而求证△ABE≌△ACF,即可求得BE=CF 。

(2)由△ABE≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AEC F=S △AEC +S △ACF =S △AEC +S △AB E=S △ABC

即可得四边形AECF 的面积是定值。当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,根据S △CEF =S 四边形AECF -S △AEF ,则△CEF 的面积就会最大。

例10.(2012浙江义乌10分)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.

(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;

(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;

(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.

【答案】解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,

∴∠CC 1B=∠C 1CB=45°。

∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°。

(2)∵由旋转的性质可得:△ABC≌△A 1BC 1,

∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1。 ∴11

BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1。∴∠A BA 1=∠CBC 1。 ∴△ABA 1∽△CBC 1。∴1

122

ABA CBC S AB 416S CB 525??????=== ? ?????。 ∵S △ABA1=4,∴S △CBC1=254

(3)过点B作BD⊥AC,D为垂足,

∵△ABC为锐角三角形,∴点D在线段AC上。

在Rt△BCD

①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋

转,使点P的对应点P1在线段AB上时,EP1最小。

最小值为:EP1=BP1﹣BE=BD﹣2。

②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使

点P的对应点P1在线段AB的延长线上时,EP1最大。

最大值为:EP1=BC+BE=5+2=7。

【考点】旋转的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角

形的判定和性质。

【分析】(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形

的性质,即可求得∠CC1A1的度数。

(2)由旋转的性质可得:△ABC≌△A1BC1,易证得△ABA1∽△CBC1,利用相

似三角形的面积比等于相似比的平方,即可求得△CBC1的面积。

(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值。

例11. (2012福建南平14分)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.

(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)

答:结论一:;结论二:;结论三:.

(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),

①求CE的最大值;

②若△ADE是等腰三角形,求此时BD的长.

(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)

【答案】解:(1)AB=AC ;∠AED=∠ADC ;△ADE ∽△ACD 。

(2)①∵∠B=∠C ,∠B=45°,∴△ACB 为等腰直角三角形。

∴AC 2=== ∵∠1=∠C ,∠DAE=∠CAD ,∴△ADE ∽△ACD 。

∴AD :AC=AE :AD ,∴22AD AE

AC ==2= 。 当AD 最小时,AE 最小,此时AD ⊥BC ,AD=

12BC=1。

∴AE 的最小值为 2122

=。∴CE 的最大值= 22=。

②当AD=AE 时,∴∠1=∠AED=45°,∴∠DAE=90°。

∴点D 与B 重合,不合题意舍去。

当EA=ED 时,如图1,∴∠EAD=∠1=45°。

∴AD 平分∠BAC ,∴AD 垂直平分BC 。∴BD=1。

当DA=DE 时,如图2,

∵△ADE ∽△ACD ,∴DA :AC=DE :DC 。

∴BD=BC -DC=2

综上所述,当△ADE 是等腰三角形时,BD 的长的长为1

或2。

【考点】相似三角形的判定和性质,勾股定理,等腰(直角)三角形的判定和性质。

【分析】(1)由∠B=∠C ,根据等腰三角形的性质可得AB=AC ;由∠1=∠C ,∠AED=∠EDC+∠C 得到∠AED=∠ADC ;又由∠DAE=∠CAD ,根据相似三角形的判定可得到△ADE ∽△ACD 。

(2)①由∠B=∠C ,∠B=45°可得△ACB 为等腰直角三角形,则

AC 2===,由∠1=∠C ,∠DAE=∠CAD ,根据相似三角形的判定可得

△ADE ∽△ACD ,则有AD :AC=AE :AD ,即22AD AE

AC ==2=,当AD ⊥BC ,AD 最小,此时AE 最小,从而由CE=AC -AE 得到CE 的最大值。

②分当AD=AE,,EA=ED,DA=DE三种情况讨论即可。

练习题:

1. (2011浙江衢州3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】

A、1

B、2

C、3

D、4

2.(2011四川南充8分)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M 是BC的中点.

(1)求证:△MDC是等边三角形;

(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

3.(2011浙江台州4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上

的一个动点,

PQ切⊙O于点Q,则PQ的最小值为【】

A.错误!未找到引用源。B.错误!未找到引用源。C.3 D.2

4.(2011河南省3分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为▲ .

5.(2011云南昆明12分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P 从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;

(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x 的函数关系式,并写出自变量x的取值范围;

(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;

(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.

三、应用轴对称的性质求最值:典型例题:例1. (2012山东青岛3分)如图,圆柱形玻璃杯

高为12cm、底面周长为18cm,在杯内离杯底4cm的点

C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最

短距离为▲ cm.

【答案】15。

【考点】圆柱的展开,矩形的性质,轴对称的性质,三角形三边关系,勾股定理。

【分析】如图,圆柱形玻璃杯展开(沿点A竖直剖开)后侧面是一个长

18宽12的矩形,作点A关于杯上沿MN的对称点B,连接BC交MN于

点P,连接BM,过点C作AB的垂线交剖开线MA于点D。

由轴对称的性质和三角形三边关系知AP+PC为蚂蚁到达蜂蜜

的最短距离,且AP=BP。

由已知和矩形的性质,得DC=9,BD=12。

在Rt△BCD中,由勾股定理得BC15。

∴AP+PC=BP+PC=BC=15,即蚂蚁到达蜂蜜的最短距离为15cm。

例2. (2012甘肃兰州4分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】

A.130°B.120°C.110°D.100°

【答案】B。

【考点】轴对称(最短路线问题),三角形三边关系,三角形外角性质,等腰三角形的性质。【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:

如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值。作DA延长线AH。

∵∠BAD=120°,∴∠HAA′=60°。

∴∠AA′M+∠A″=∠HAA′=60°。

∵∠MA′A=∠MAA′,∠NAD=∠A″,

且∠MA′A+∠MAA′=∠AMN,

∠NAD+∠A″=∠ANM,

∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°。

故选B。

例3. (2012福建莆田4分)点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角

坐标系如图所示.若P是x轴上使得PA PB

-的值最大的点,Q是y轴上使得QA十QB的值最小的点,

则OP OQ

?=▲.

【答案】5。

【考点】轴对称(最短路线问题),坐标与图形性质,三角形三边关系,待定系数法,直线上点的坐标与方程的关系。

【分析】连接AB并延长交x轴于点P,作A点关于y轴的对称点A′连接A′B交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论:

连接AB并延长交x轴于点P,

由三角形的三边关系可知,点P即为x轴上使得|PA-PB|的值最大的点。

∵点B是正方形ADPC的中点,

∴P(3,0)即OP=3。

作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值。

∵A′(-1,2),B(2,1),

设过A′B的直线为:y=kx+b,

2k b

12k b

=-+

?

?

=+

?

,解得

1

k

3

5

b

3

?

=-

??

?

?=

??

。∴Q(0,

5

3

),即OQ=

5

3

∴OP?OQ=3×5

3

=5。

例4. (2012四川攀枝花4分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为▲ .

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

八年级上册数学几何部分

八年级上册数学几何部分——三角形全章复习 知识点一:1.三角形的定义:由不在同一条_____上的三条线段___________组成的图形叫做三角形. 2.三角形的分类(1)按边分类: ????????不等边三角形三角形 底边和腰不相等的等腰三角形__________ ______________(2)按角分类: 3.三角形三边间的关系定理:三角形任意两边之和________第三边.任意两边之差_____第三边。 即已知三角形两边的长,可以确定第三边的取值范围:设三角形的两边的长为a 、b ,则第三边的长c 的取值范围是_______________________. 基础知识训练练习1.下列长度的各组线段中,能组成三角形的是( ) A .3cm ,12cm ,8cm B .6cm ,8cm ,15cm C .2.5cm ,3cm ,5cm D .6.3cm ,6.3cm ,12.6cm 【变式1】四条线段的长分别是2cm 、4cm 、6cm 、7cm 以其中三条线段为边可构成__个三角形. 【变式2】已知三角形的两边长分别4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm 练习2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是___________. 【变式1】如果三角形的两边长分别为2和6,则周长L 的取值范围是( ) A .6

几何图形的十大解法30例(图形无变形版)

几何图形的十大解法(30例) 一、 分割法 例:将两个相等的长方形重合在一起,求组合图形的面积。(单位:厘米) 解:将图形分割成两个全等的梯形。 S 组=(7-2+7)×2÷2×2=24(平方厘米) 例:下列两个正方形边长分别为8厘米和5厘米,求阴影部分面积。 解:将图形分割成3个三角形。 S = 5×5÷2 + 5×8÷2 + (8-5)×5÷2 = 12.5+20+7.5 = 38(平方厘米) 例:左图中两个正方形的边长分别为8厘米和6厘米。求阴影部分面积。 解:将阴影部分分割成两个三角形。 S 阴 = 8×(8+6)÷2 + 8×6÷2 =56+24 = 80(平方厘米) 二、 添辅助线 例:已知正方形边长4厘米,A、B、C、D 是正方形边上的中点,P 是任意一点。 求阴影部分面积。 解:从P 点向4个定点添辅助线,由此看出,阴影部分面积和空白部分面积相等。 S 阴 = 4×4÷2 = 8(平方厘米) 2 7

例:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行 四边形底20.4厘米,高8厘米。梯形下底是多少厘米? 解:因为添一条辅助线平行于三角形一条边,发现40平方 厘米是一个平行四边形。 所以梯形下底:40÷8=5(厘米) 例:平行四边形的面积是48平方厘米,BC 分别是这个平行四边形相邻两条边的中 点,连接A、B、C 得到4个三角形。求阴影部分的面积。 解:如图连接平行四边形各条边上的中点,可以看出空白部分占了整个平行四边形的八分之五,阴影部分占了八分之三。 S 阴 = 48÷8×3 = 18(平方厘米) 三、 倍比法 例:已知:OC=2AO,S ABO =2㎡,求梯形ABCD 的面积。 解:因为OC = 2AO, 所以 S BOC = 2×2 = 4(㎡) S DOC = 4×2 = 8(㎡) S ABCD = 2+4×2+8 = 18(㎡) 例:已知:S 阴=8.75㎡ ,求下图梯形的面积。 解:因为 7.5÷2.5=3(倍) 所以 S 空 = 3 S 阴。 S = 8.75×(3+1)=35(㎡) B A C D O 7.5 2.5

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

希尔伯特23个数学问题7大数学难题全解

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

最新初二数学上册几何知识点总结

初二数学上册几何知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________. 3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,

则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P、P分别在OA、OB上,求作点P、P,使△PPP的周长最小,连接OP,若OP=10cm,求△PPP的周长. 7.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.

第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接 BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧(⌒)AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .1 2 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交 于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

尺规作图三大几何难题教学提纲

尺规作图三大几何难 题

安溪六中校本课程之数学探秘 尺规作图三大几何问题 一、教学目标 1.让学生了解尺规作图三大几何问题如何产生的? 2.经历探索尺规作图三大几何问题如何解决的过程,进一步体会数学方法思想。 3.学生通过自主探究、合作交流体会尺规作图三大几何问题有什么教育价值? 二、问题背景 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个著名问题是三等分任意角和化圆为方问题。古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是

“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。数学家们在这些问题上又演绎出很多故事。直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。 2.化圆为方,即作一正方形,使其与一给定的圆面积相等。 3.三等分角,即分一个给定的任意角为三个相等的部分。 三、问题探秘 1.立方倍积 关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟

八年级上册数学几何难题突破

18.等腰三角形一腰上的高与另一腰的夹角为20°,则该等腰三角形 的底角的度为 . 19.如图,已知∠AOB=60°,点P 在边OA 上,OP=12,点M ,N 在边OB 上,PM=PN ,若MN=2,则OM= . 20.如图,在等边△ABC 中,D 为AB 上一点,连接CD ,在CD 上取一 点E,∠BEC=120°,连接BE,若CD= 314,BE=2,△ACD 的面积为33 14 , 则△BCE 的面积为 . 24.已知:如图,△ABC 中,AD 平分∠BAC,BD⊥AD,垂足为D , 过D 作DE∥AC,交AB 于E , (1) 求证:AE=ED (2) 若AB=5,求线段DE 的长. E D C B A (第19题图) (第20题图) P N M O

25.已知:如图, △ABC 中,AB=AC, ∠BAC=90°,AD ⊥BC,AE 平分∠BAD 交BC 于点E, (1) 求证:AB=CE (2) 点M 在AB 上,BM=2DE ,连接MC 交AD 于点N ,若DN=1,求AB 的长 27.已知:在平面直角坐标系中,点O 为坐标原点, △ABC 的顶点A(-2,0),点B 、C 分别在 x 轴正半轴上和y 轴正半轴上,∠ACB=90°,∠BAC=60°, (1)求点B 的坐标 (2)动点E 从点B 出发以每秒1个单位的速度沿BC 向终点C 运动,设点E 的运动时间为t 秒,△ABE 的面积为S ,求S 与t 的关系式 (3)在(2)的条件下,点E 出发的同时,动点F 从点C 出发以每秒1个单位的速度,沿 CO 向终点O 运动,点F 停止时,点E 也随之停止。连接EF ,以EF 为边在EF 的上方作等边△EFH ,连接CH ,当点C (0,23),CH=3时,求t 的值 E D C B A N M E D C B A y x O B A C y x O B A C

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

几何问题解题思路

几何问题解题思路 数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助! 中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。 第一个方面,几何基本公式: 三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。 第二个方面,几何问题的“割补平移”思想。 中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 第三个方面,几何极限理论。 平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小; 立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。 实战例题: 【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米? A.25

B.10+5л C.50 D.55 【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。故答案为C。 最新招考公告、备考资料就在辽宁事业单位考试网 https://www.wendangku.net/doc/574058775.html,/liaoning/

小学几何图形的九大解法

小学几何图形的九大方法 例1:将两个相等的长方形重合在一起,求组合图形的面积。(单位:厘米) 解:将图形分割成两个全等的梯形。S组=(7-2+7)×2÷2×2=24(平方厘米) 例2:下列两个正方形边长分别为8厘米和5厘米,求阴影部分面积。 解:将图形分割成3个三角形。S=5×5÷2+5×8÷2+(8-5)×5÷2=12.5+20+7.5=38(平方厘米) 例3:左图中两个正方形边长分别为8厘米和6厘米。求阴影部分面积。 解:将阴影部分分割成两个三角形。 S阴=8×(8+6)÷2+8×6÷2=56+24=80(平方厘米)

添加辅助线法 例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。求阴影部分面积。 解:从P点向4个定点添辅助线,由此看出,阴影部分面积和空白部分面积相等。S阴=4×4÷2=8(平方厘米) 例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行四边形底20.4厘米,高8厘米。梯形下底是多少厘米? 解:因为添一条辅助线平行于三角形一条边,发现40平方厘米是一个平行四边形。 所以梯形下底:40÷8=5(厘米) 例3:平行四边形的面积是48平方厘米,BC分别是这个平行四边形相邻两条边的中点,连接A、B、C得到4个三角形。求阴影部分的面积。

解:如果连接平行四边形各条边上的中点,可以看出空白部分占了整个平行四边形的八分之五,阴影部分占了八分之三。S阴=48÷8×3=18(平方厘米) 倍比法 例1:已知OC=2AO,SABO=2㎡,求梯形ABCD的面积。 解:因为OC=2AO,所以SBOC=2×2=4(㎡)SDOC=4×2=8(㎡)SABCD=2+4×2+8=18(㎡) 例2:已知S阴=8.75㎡,求下图梯形的面积。 解:因为7.5÷2.5=3(倍)所以S空=3S阴S=8.75×(3+1)=35(㎡) 例3:下图AB是AD的3倍,AC是AE的5倍,那么三角形

中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 典型例题: 例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】 A1B C. 55 D. 5 2 例2.在锐角三角形ABC中,BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN 的最小值是▲ 。 例3.如图,圆柱底面半径为2cm,高为9cm π,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

练习题: 1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC= 23 BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6 (4)π+㎝ B 、5cm C 、㎝ D 、7cm 3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ . 二、应用垂线段最短的性质求最值:典型例题: 例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

世界近代三大数学难题:哥德巴赫猜想

世界近代三大数学难题:哥德巴赫猜想 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。 猜想提出 1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。” 1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。 研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。 殆素数

初二数学(上册)几何题(提高)

1、已知如图,△ABC 中,AB=AC ,∠A=120°,DE 垂直平分仙于D ,交BC 于E 点.求证:CE=2BE . 2、如图,在直角坐标系xOy 中,直线y=kx+b 交x 轴正半轴于A(-1,0),交y 轴正半轴于B,C 是x 轴负半轴上一点,且CA= 4 3CO,△ABC 的面积为6。 (1)求C 点的坐标。 (2)求直线AB 的解析式。 ( 3、已知如图,射线CB ∥OA ,∠C=∠OAB=100 ,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF. (1)求∠EOB 的度数; (2)若平行移动AB ,那么∠OBC ∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值; 4.如图Ⅰ—8,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ;(2)若AC =12 cm ,求 A B C O x y F O E C B A

BD 的长. 5、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线 BG 于点G ,DE ⊥GF 交AB 于点E ,连接EG 。 (1)求证:BG=CF ;(2)请你判断BE+CF 与EF 的大小关系,并证明。 6.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的 中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12 CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论 A F C D B G E

中考数学专题八~ 几何最值问题解法探讨.docx

【2013年中考攻略】专题&几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何瑕值问题的常用的方法有:(1)应用两点间线段垠短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值; (5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值: 1?(2012山东济南3分)如图,ZM0N二90° ,矩形ABCD的顶点A、B分别在边0M, 0N ±,当B在边 0N 上运动时,A随之在边0M上运动,矩形ABCD的形状保持不变,其中AB二2, BC二1,运动过程中,点D到点0的最大距离为【】 A* E 氏厉 U琴''D?j 2.(2012湖北鄂州3分)在锐角三角形ABC中,BC二4血,ZABC二45° , BD平分ZABC, M—N分别是BD、BC上的动点,则CM+MN的最小值是一▲ 3.(2011四川凉山5分)如图,圆柱底面半径为2c加,高为9/rcm,点A、 B分别是圆柱两底而圆周上的点,HA、B在同一母线上,用一?棉线从A顺着圆柱侧而绕3圈到B,求棉 线最短为▲ cm C

4. (2012四川眉山 3分)在△ABC 中,AB = 5, AC=3, AD 是BC 边上的中线,则AD 的収值范围是 5. (2012山东莱芜4分)在AABC 中,AB = AC=5, BC = 6.若点P 在 边AC 上移动,则BP 的垠小值是一 ▲ B C 6. (2012浙江台州4分)如图,菱形ABCD 中,AB 二2, ZA=120°,点P, Q, K 分别为线段BC, CD, BD ± 的任意一点,贝'J PK+QK 的最小值为【 7. (2012 江苏连云港 12 分)C 知梯形 ABCD, AD/7BC, AB 丄BC, AD = 1, AB=2, BC = 3, 二、应用垂线段最短的性质求最值: A. 1 B. 73 G / X

相关文档
相关文档 最新文档