文档库 最新最全的文档下载
当前位置:文档库 › 2020版高考数学一轮复习 阶段滚动检测(三)(含解析)

2020版高考数学一轮复习 阶段滚动检测(三)(含解析)

2020版高考数学一轮复习 阶段滚动检测(三)(含解析)
2020版高考数学一轮复习 阶段滚动检测(三)(含解析)

阶段滚动检测(三)

一、选择题

1.(2018·甘肃省静宁县第一中学模拟)已知集合A ={x ∈N |x 2

-4x ≤0},集合B ={x |x 2

+2x +a =0},A ∪B ={0,1,2,3,4,-3},则A ∩B 等于( ) A .{1,-3}B .{1}C .{-3}D .?

2.已知向量a =(λ,-2),b =(1+λ,1),则“λ=1”是“a ⊥b ”的( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 3.已知命题q :?x ∈R ,x 2

>0,则( ) A .命题綈q :?x ∈R ,x 2

≤0为假命题 B .命题綈q :?x ∈R ,x 2≤0为真命题 C .命题綈q :?x ∈R ,x 2≤0为假命题 D .命题綈q :?x ∈R ,x 2≤0为真命题

4.已知函数f (x )为偶函数,当x ∈[-1,1]时,f (x )=1-x 2,且f (x +1)为奇函数,则f ? ??

??212等于( )

A.12B .-12C .-32D.32

5.已知函数f (x )=?????

? ??

??12x ,x ≥2,f x +,x <2,则函数f (log 23)的值为( )

A .3B.13C .6D.1

6

6.已知函数f (x )=ax 2

+bx +c ,不等式f (x )<0的解集为(-∞,-3)∪(1,+∞),则函数

y =f (-x )的图象可以为( )

7.已知函数f (x )=???

??

e x

,x ≤0,ln x ,x >0,g (x )=f (x )+x +a ,若g (x )存在2个零点,则a 的取值

范围是( ) A .[-1,0) B .[0,+∞) C .[-1,+∞)

D .[1,+∞)

8.如图,在等腰直角三角形ABC 中,AB =AC =2,D ,E 是线段BC 上的点,且DE =13BC ,则AD →·AE

的取值范围是( )

A.??????89,43

B.??????43,83

C.????

??89,83 D.????

??43,+∞ 9.已知sin(α+β)=35,sin(α-β)=-23,则tan α

tan β等于 ( )

A.115

B.25

C.119D .-1

19

10.如果已知△ABC 的三个内角A ,B ,C 所对的三条边分别是a ,b ,c ,且满足(a 2

+b 2

c 2)·(a cos B +b cos A )=abc, c =2,则△ABC 周长的取值范围为( )

A .(2,6)

B .(4,6)

C .(4,18)

D .(4,6]

11.已知f (x )是定义在(0,+∞)上的单调函数,且对任意的x ∈(0,+∞)都有f (f (x )-x 3

)=2,则方程f (x )-f ′(x )=2的一个根所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)

12.如图,半径为1的扇形AOB 中,∠AOB =2π

3,P 是弧AB 上的一点,且满足OP ⊥OB, M ,N

分别是线段OA ,OB 上的动点,则PM →·PN →

的最大值为( )

A.

22B.3

2

C .1D. 2 二、填空题

13.(2017·天津)已知a ∈R ,i 为虚数单位,若a -i 2+i

为实数,则a 的值为________.

14.若函数f (x )=x 3+ax 2

-2x +5在区间? ??

??13,12上既不是单调递增函数,也不是单调递减函

数,则实数a 的取值范围是____________.

15.曲线f (x )=ln x -1

x

在点(1,f (1))处的切线的倾斜角为α,则

1

sin αcos α-cos 2

α

=________.

16.(2018·浙江省台州中学模拟)已知a ,b 是两个单位向量,而|c |=13,a ·b =1

2,c ·a

=1,c ·b =2,则对于任意实数t 1,t 2,|c -t 1a -t 2b |的最小值是________.

17.设f (x )=a sin2x +b cos2x ,其中a ,b ∈R .若f (x )≤????

??f ? ????π6对一切x ∈R 恒成立,则①f ?

????11π12=0; ②??????f ? ????5π12

??f ? ????π5;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递

增区间是??????k π+π6,k π+2π3(k ∈Z );⑤存在经过点(a ,b )的直线与函数f (x )的图象不相

交.

以上结论正确的是______________.(写出所有正确结论的序号) 三、解答题

18.已知m >0,p :x 2

-2x -8≤0,q :2-m ≤x ≤2+m . (1)若p 是q 的充分不必要条件,求实数m 的取值范围; (2)若m =5,p 和q 一真一假,求实数x 的取值范围.

19.已知平面向量a =(1,x ),b =(-2x +3,-x )(x ∈R ). (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.

20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a +b )·(sin A -sin B )=c (sin C -sin B ). (1)求A ;

(2)若a =4,求△ABC 面积S 的最大值.

21.已知函数f (x )=3sin x cos x -cos 2

x . (1)求f (x )的最小正周期和单调递增区间;

(2)当x ∈?

?????0,π2时,求函数f (x )的最大值和最小值及相应的x 的值.

22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经

验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为? ????v 103

+1(升),在水

底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v

2 (米/单位时

间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;

(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.

23.已知函数f (x )=x 3

-6x 2

+9x -3. (1)求函数f (x )的极值;

(2)定义:若函数h (x )在区间[s ,t ](s

h (x )的“美丽区间”.试问函数f (x )在(3,+∞)上是否存在“美丽区间”?若存在,求出

所有符合条件的“美丽区间”;若不存在,请说明理由.

答案精析

1.A 2.A 3.D 4.C 5.D 6.B 7.C [如图画出函数f (x )的图象,

即y =ln x 和y =e x

的图象,y =e x

在y 轴右侧的部分去掉, 再画出直线y =-x ,之后上下移动,

可以发现当直线过点A 时,直线与函数图象有两个交点,

并且向下可以无限移动,都可以保证直线与函数的图象有两个交点, 即方程f (x )=-x -a 有两个解, 也就是函数g (x )有两个零点, 此时满足-a ≤1,即a ≥-1,故选C.]

8.A [如图所示,以BC 所在直线为x 轴,以BC 的中垂线为y 轴建立平面直角坐标系,

则A (0,1),B (-1,0),C (1,0),设D (x ,0),则E ? ????x +23,0? ????-1≤x ≤13. 据此有AD →

=(x ,-1), AE →

=?

??

??x +2

3

,-1,

则AD →·AE →=x 2+23x +1=? ????x +132+89

.

据此可知,当x =-13时,AD →·AE →取得最小值89;当x =-1或x =13时,AD →·AE →

取得最大值43,

所以AD →·AE →的取值范围是??????89,43.]

9.D [∵sin(α+β)=3

5,

sin(α-β)=-2

3

∴?????

sin αcos β+cos αsin β=3

5,sin αcos β-cos αsin β=-2

3

解得sin αcos β=-130,cos αsin β=1930,

又tan αtan β=sin αcos αsin βcos β=sin αcos β

cos αsin β=-1

3019

30 =-1

19

.故选D.]

10.D [根据(a 2

+b 2

-c 2

)·(a cos B +b cos A )=abc 和余弦定理, 得到(a 2

+b 2

-c 2)

?

????a ×a 2+c 2-b 22ac +b ×b 2+c 2-a 2

2bc =(a 2

+b 2

-c 2

)·c =abc , 消去c 得到a 2

+b 2

-4=ab , 所以(a +b )2-4=3ab ≤3×

a +b

2

4

解得0c ,周长l 的取值范围为(4,6].] 11.D [由题意,可知f (x )-x 3

是定值,不妨令t =f (x )-x 3

,则f (x )=x 3

+t 又f (t )=t 3

+t =2,整理得(t -1)(t 2

+t +2)=0, 解得t =1,

所以有f (x )=x 3

+1,所以f (x )-f ′(x )=x 3

+1-3x 2

=2,令F (x )=x 3

-3x 2

-1 可得F (3)=-1<0,F (4)=15>0, 即F (x )=x 3

-3x 2-1的零点在区间(3,4)内,

所以f (x )-f ′(x )=2的一个根所在的区间是(3,4).] 12.C [∵扇形AOB 的半径为1, ∴|OP →

|=1

∵OP ⊥OB ,∴OP →·OB →

=0 ∵∠AOB =2π3,∴∠AOP =π

6

∴PM →·PN →=(PO →+OM →)·(PO →+ON →

) =PO →2+ON →·PO →+OM →·PO →+OM →·ON →

=1+|OM →|cos 5π6+|OM →|·|ON →|cos 2π3≤1+0×? ??

??-32+0×? ????-12=1,故选C.] 13.-2 14.? ??

??54,52 15.5 16.3 17.①②③

解析 f (x )=a sin2x +b cos2x =±a 2

+b 2

sin(2x +φ),a 2

+b 2

≠0,

又??????f ? ????π6=a sin π3+b cos π3=32a +b 2,由题意f (x )≤??????f ? ????π6对一切x ∈R 恒成立,则x =π6是函数f (x )的对称轴,则2·π6+φ=π2+k π(k ∈Z ),所以φ=π

6+k π(k ∈Z ),

从而tan φ=tan ? ????π6+k π=b

a =33,

则a =3b .

所以f (x )=3b sin2x +b cos2x =2b sin ?

????2x +π6. f ?

????11π12=2b sin ?

????11π6+π6=0,

故①正确;

②??????f ? ????5π12=??????2b sin ? ????5π6

+π6

=||2b sin π=0,

??????f ? ????π5=????

??2b sin ? ????2π5+π6

=??????2b sin 17π30

=????

??2b sin 13π30>0, 所以??????f ? ????5π12<????

??f ? ????π5,故②正确; ③f (-x )≠±f (x ),故③正确; ④f (x )=3b sin2x +b cos2x =2b sin ? ????2x +π6,b >0, 由2k π-π2≤2x +π6≤2k π+π

2,

知k π-π3≤x ≤k π+π

6

,故④不正确;

⑤a =3b ,要使经过点(a ,b )的直线与函数f (x )的图象不相交,则此直线与横轴平行,又

f (x )的振幅为|2b |>|b |,所以直线必与f (x )图象有交点.故⑤不正确.

18.解 (1)由x 2

-2x -8≤0得-2≤x ≤4, 即p :-2≤x ≤4,

记命题p 的解集为A =[-2,4], 命题q 的解集为B =[2-m,2+m ],

p 是q 的充分不必要条件,∴A B ,

∴?????

2-m ≤-2,2+m ≥4,

解得m ≥4.

(2)①若p 真q 假,则???

?

?

-2≤x ≤4,x <-3或x >7,

无解,②若p 假q 真,则???

??

x <-2或x >4,-3≤x ≤7,

解得-3≤x <-2或4<x ≤7.

综上得x 的取值范围为[-3,-2)∪(4,7].

19.解 (1)由a ⊥b 得a ·b =0,所以-2x +3-x 2

=0,即x 2

+2x -3=0, 解得x =1或x =-3.故x 的值为1或-3. (2)由a ∥b 得x (-2x +3)=-x , 即2x 2

-4x =0, 解得x =0或x =2.

当x =0时,a -b =(-2,0), 所以|a -b |=2;

当x =2时,a -b =(2,4), 所以|a -b |=2 5. 故|a -b |=2或2 5.

20.解 (1)根据正弦定理可知 (a +b )(a -b )=c (c -b ), 整理得b 2

+c 2

-a 2

=bc ,

由余弦定理的推论得cos A =b 2+c 2-a 22bc =1

2

∵0

3

.

(2)根据余弦定理a 2=b 2+c 2-2bc cos π3=b 2+c 2

-bc ,

∵b 2

+c 2

≥2bc 且a =4,∴16≥2bc -bc =bc ,即bc ≤16.

∴△ABC 面积S =12bc sin π3=3

4bc ≤43,当且仅当b =c =4时等号成立.

故△ABC 面积S 的最大值为4 3. 21.解 (1)f (x )=3sin x cos x -cos 2

x =32sin2x -12cos2x -1

2

=sin ? ????2x -π6-12. ∵ω=2,

∴T =π,即f (x )的最小正周期为π, 由2k π-π2≤2x -π6≤2k π+π

2,k ∈Z ,

得k π-π6≤x ≤k π+π

3

,k ∈Z ,

∴f (x )的单调递增区间为??????k π-π6,k π+π3

(k ∈Z ).

(2)∵x ∈?

?????0,π2,

∴-π6≤2x -π6≤5π

6,

当2x -π6=π2,即x =π

3

时,

f (x )取最大值12

当2x -π6=-π

6

即x =0时,f (x )取最小值-1.

22.解 (1)由题意,下潜用时60v (单位时间),用氧量为??????? ????v 103+1×60v =3v 2

50+60

v (升),

水底作业时的用氧量为10×0.9 =9(升),

返回水面用时60v 2

=120

v

(单位时间),

用氧量为120v ×1.5=180

v

(升),

因此总用氧量y =3v 2

50+240

v +9,(v >0).

(2)由(1)得y =3v 2

50+240

v +9,(v >0),

∴y ′=6v 50-240

v

2=

v 3-

25v

2

令y ′=0得v =1032,

当0

2时,y ′<0,函数单调递减;当v >103

2时,y ′>0,函数单调递增. ①若c <103

2,则函数在(c ,103

2)上单调递减, 在(103

2,15)上单调递增, ∴当v =103

2时,总用氧量最少. ②若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,总用氧量最少.

综上,若0

2,下潜速度v =103

2时,总用氧量最少,若c ≥103

2,下潜速度v =c 时,总用氧量最少.

23.解 (1)因为f (x )=x 3

-6x 2

+9x -3, 所以f ′(x )=3x 2

-12x +9=3(x -1)·(x -3). 令f ′(x )=0,可得x =1或x =3. 则f ′(x ),f (x )在R 上的变化情况为:

所以当x =1时,函数f (x )有极大值1, 当x =3时,函数f (x )有极小值-3.

(2)假设函数f (x )在(3,+∞)上存在“美丽区间”[s ,t ](3

所以???

??

f s =s ,f t =t ,

即?

????

s 3-6s 2

+9s -3=s ,

t 3-6t 2

+9t -3=t ,

也就是方程x 3-6x 2

+9x -3=x 有两个大于3的相异实根. 设g (x )=x 3

-6x 2

+8x -3(x >3), 则g ′(x )=3x 2-12x +8. 令g ′(x )=0,解得x 1=2-

2

3

3<3, x 2=2+

2

3

3>3. 当3x 2时,g ′(x )>0,

所以函数g (x )在区间(3,x 2)上单调递减,在区间(x 2,+∞)上单调递增. 因为g (3)=-6<0,g (x 2)

g (5)=12>0,

所以函数g (x )在区间(3,+∞)上只有一个零点.

这与方程x 3

-6x 2

+9x -3=x 有两个大于3的相异实根相矛盾,所以假设不成立. 所以函数f (x )在(3,+∞)上不存在“美丽区间”.

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

2005-2017年浙江高考理科数学历年真题之解析几何大题 教师版

2005-2017年浙江高考理科数学历年真题之解析几何大题 (教师版) 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+???由题意,得 2,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可 设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 021********||tan 11y k k F PF k k m y -∴∠= =≤=+-+ 0||y =时,12F PF ∠ 最大,(,,||1Q m m ∴> 2、(2006年)如图,椭圆b y a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T , 且椭圆的离心率e= 2 3。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。

2019年浙江省数学高考模拟精彩题选 解析几何解答题 含答案

2016浙江精彩题选——解析几何解答题 1.(2016名校联盟第一次)19.(本题满分15分) 已知椭圆C :22 a x +y 2b 2=1(a >b >0)的左右焦点为F 1,F 2 ,离心率为e .直线l :y =ex +a 与x 轴、y 轴分别交于点A ,B 两点,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线 l 的对称点,设. (Ⅰ)若l = 3 4 ,求椭圆C 的离心率; (Ⅱ)若D PF 1F 2 为等腰三角形,求l 的值.

2.(2016温州一模19).(本题满分15分)如图,已知椭圆C: 22 22 1(0) x y a b a b +=>> 经过点 ,A B分别为椭圆C的左、右顶点,N M,是椭圆C上非顶点的两点,且OMN ?的面积等于2.(Ⅰ)求椭圆C的方程; (Ⅱ)过点A作OM AP//交椭圆C于点P,求证:ON BP//. 解:(Ⅰ)由题意得: ? ? ? ? ? ? ? ? ? ? ? + = = = = + 2 2 2 2 2 2 2 2 1 ) 2 6 ( 1 c b a a c e b a ,解得: ?? ? ? ? = = 2 4 2 2 b a 故椭圆C的方程为:1 2 4 2 2 = + y x ……………………………………5分 (Ⅱ)解法一:如图所示,设直线OM,ON的方程为 OM y k x =, ON y k x = 联立方程组22 1 42 OM y k x x y = ? ? ? += ?? ,解得M, 同理可得( N,……………………………………7分作' MM x ⊥轴, ' NN x ⊥轴,',' M N是垂足, OMN S ? = '' ''OMM ONN MM N N S S S ?? -- 梯形 1 [()()] 2M N M N M M N N y y x x x y x y =+--+ 1 () 2M N N M x y x y =- 1 2 = =9分 已知 OMN S ? 2 =,化简可得 2 - = ON OM k k.……………………………………11分 设(,) P P P x y,则22 42 P P x y -=,

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方 程教案理(含解析)苏教版 第八节 曲线与方程 1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式; (5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点 设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标 即为方程组? ?? ?? F 1x ,y =0,F 2x ,y =0 的实数解.若此方程组无解,则两曲线无交点. [小题体验] 1.已知两定点A (-2,0),B (1,0),如果动点P 满足PA =2PB ,则点P 的轨迹方程为________. 解析:设P 点的坐标为(x ,y ), ∵A (-2,0),B (1,0),动点P 满足PA =2PB , ∴ x +2 2 +y 2 =2 x -1 2 +y 2 , 平方得(x +2)2 +y 2 =4[(x -1)2 +y 2 ], 化简得(x -2)2 +y 2 =4, ∴点P 的轨迹是以(2,0)为圆心、2为半径的圆,方程为(x -2)2 +y 2 =4.

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

历年浙江解析几何高考题

历年浙江解析几何高考题 1、(042)直线y=2与直线x+y—2=0的夹角是() (A)(B)(C)(D) 2、(046文理)曲线y2=4x关于直线x=2对称的曲线方程是() (A)y2=8--4x (B)y2=4x—8 (C)y2=16--4x (D)y2=4x—16 3、(0411文理)椭圆的左、右焦点分别为F1、F2,线段F1F2被点(,0) 分成5:3两段,则此椭圆的离心率为() (A)(B)(C)(D) 4、(0422文理)(本题满分14分)已知双曲线的中心在原点,右顶点为A(1,0).点P、Q 在双曲线的右支上,点M(m,0)到直线AP的距离为1. (Ⅰ)若直线AP的斜率为k ,且,求实数m的取值范围; (Ⅱ)当时,ΔAPQ的内心恰好是点M,求此双曲线的方程. 5、(053文理).点(1,-1)到直线x-y+1=0的距离是( ) (A) (B) (C) (D) 6、(059).函数y=ax2+1的图象与直线y=x相切,则a=( ) (A)1/8 (B)1/4 (C) 1/2 (D)1 7、(0513文理).过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线 相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.

8、(0519).如图,已知椭圆的中心在坐标原点,焦点F 1,F 2 在x轴上,长轴A 1 A 2 的长为4, 左准线l与x轴的交点为M,|MA 1|∶|A 1 F 1 |=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P为l上的动点,求∠F 1PF 2 最大值. (理)(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示). 9、(063)抛物线的准线方程是() (A) (B) (C) (D) 10、(0613)双曲线上的离心率是3,则等于 11、(0619)如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=(Ⅰ)求椭圆方程; (Ⅱ)设F、F分别为椭圆的左、右焦点,求证:。 (理Ⅱ)设、分别是椭圆的左、右焦点,为线段的中点,求证;

江苏省2019届高考数学专题三解析几何3.1小题考法—解析几何中的基本问题讲义

专题三 解析几何 [江苏卷5年考情分析] 第一讲 小题考法——解析几何中的基本问题 [题组练透] 1.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为____________. 解析:由题意知直线l 与直线PQ 垂直,所以k l =-1 k PQ =1.又直线l 经过PQ 的中点(2,3), 所以直线l 的方程为y -3=x -2,即x -y +1=0. 答案:x -y +1=0 2.(2018·南通一模)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为____________. 解析:设圆心为(a ,b ), 则??? b -3a ·33=-1, a -2 +()b -32 =a 2 + b -3 2 , 解得a =1,b =0,r =2. 即所求圆的方程为(x -1)2 +y 2 =4. 答案:(x -1)2 +y 2 =4 3.(2018·南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中, 若动圆C 上的点都在不等式组??? x ≤3, x - 3y +3≥0x + 3y +3≥0 ,表示的平面区域内,则面积最大的圆 C 的标准方程为____________.

解析:作出不等式组表示的可行域如图中阴影部分所示,面积最大的圆C 即为可行域三角形的内切圆.由对称性可知,圆C 的圆心在x 轴上,设半径为r ,则圆心C (3-r,0),且它与直线x -3y +3=0相切,所以|3-r +3|1+3 =r ,解得r =2,所以面积最大的圆C 的标准方程为(x -1)2 +y 2=4. 答案:(x -1)2 +y 2 =4 [方法技巧] 1.求直线方程的两种方法 [典例感悟] [典例] (1)(2018·无锡期末)过圆x 2 +y 2 =16内一点P (-2,3)作两条相互垂直的弦AB 和CD ,且AB =CD ,则四边形ACBD 的面积为________. (2)(2018·南通、泰州一调)在平面直角坐标系xOy 中,已知点A (-4,0),B (0,4),从直线AB 上一点P 向圆x 2 +y 2 =4引两条切线PC ,PD ,切点分别为C ,D.设线段CD 的中点为 M ,则线段AM 长的最大值为________. [解析] (1)设O 到AB 的距离为d 1,O 到CD 的距离为d 2,则由垂径定理可得d 2 1=r 2 -? ?? ? ? AB 22 ,d 22=r 2 -? ????CD 22,由于AB =CD ,故d 1=d 2,且d 1=d 2=22OP =262,所以? ?? ??AB 22=r 2-d 21=16 -132=192,得AB =38,从而四边形ACBD 的面积为S =12AB ×CD =1 2 ×38×38=19.

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

2020年浙江高考解析几何题

2020年浙江高考解析几何题 作者:题海降龙 【真题回放】 (2017浙江—抛物线与圆) 如图,已知抛物线x 2=y ,点A (﹣,),B (,),抛物线上的点P (x ,y )(﹣<x <),过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|PA |?|PQ |的最大值. 【原创解法】 (2018浙江—抛物线与半椭圆) 如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (1)设AB 中点为M ,证明:PM 垂直于y 轴; (2)若P 是半椭圆x 2 +2 4 y =1(x <0)上的动点,求△P AB 面积的取值范围. 【解析】 (Ⅰ)设00(,)P x y ,2111(,)4A y y ,2 221(,)4 B y y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程2 2014()422 y x y y ++=? 即22 000280y y y x y -+-=的两个不同的实数根所以1202y y y +=因此,PM 垂直于y 轴.

(Ⅱ)由(Ⅰ)可知1202 12002,8, y y y y y x y +=???=-??所以2221200013||()384PM y y x y x =+-=- ,12||y y -=.因此,PAB △ 的面积3 2212001||||(4)24 PAB S PM y y y x =?-=-△.因为2 200 01(0)4y x x +=<,所以22 00004444[4,5]y x x x -=--+∈.PAB △ 面积的取值范围是15104 . 【原创解法】2018年属于简单题,关键处理好第一小题的韦达定理。(2019浙江—抛物线与三角形) (2019浙江)过焦点F (1,0)的直线与抛物线 y 2 =2px 交于A,B 两点,C 在抛物线,△ABC 的 重心P 在x 轴上,AC 交x 轴于点Q (点Q 在点P 的右侧)。(1)求抛物线方程及准线方程; (2)记△AFP ,△CQP 的面积分别为 S 1, S 2,求 S 1 S 2 的最小值及此时点P 的坐标 【原创解法】 2020年浙江高考解几预测 近三年浙江高考解析几何都是以抛物线为大背景即抛物线与圆、椭圆、三角形的组合图形呈现。2020年在维稳的大环境下,抛物线出现的可能性最大,但平时也需要练一下椭圆问题。毕竟我们无法猜测高考出卷老师刹那间的灵感(想法),猜中的可能性比买彩票中奖更难。希望在临近高考时,下面几题能激发您灵感,悟出真谛!

江苏省2019高考数学二轮复习专题三解析几何3.3大题考法_椭圆讲义含解析201905231172

第三讲 大题考法——椭圆 题型(一) 直线与椭圆的位置关系 主要考查直线与椭圆的位置关系及椭圆的方 程、直线方程的求法. [典例感悟] [例1] 如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的离心率为 2 2 ,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程; (2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P , C ,若PC =2AB ,求直线AB 的方程. [解] (1)由题意,得c a =22且c +a 2 c =3, 解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 2 2 +y 2 =1. (2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意. 当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2 )x 2 -4k 2 x +2(k 2 -1)=0, 则x 1,2=2k 2 ±21+k 2 1+2k 2 , C 的坐标为? ?? ? ?2k 2 1+2k 2,-k 1+2k 2, 且AB =x 2-x 1 2 +y 2-y 1 2 = 1+k 2 x 2-x 1 2 =221+k 2 1+2k 2 . 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k 1+2k 2 =-1k ? ?? ??x -2k 2 1+2k 2,

则P 点的坐标为? ?? ??-2,5k 2 +2k 1+2k 2, 从而PC = 2 3k 2+11+k 2 |k |1+2k 2 . 因为PC =2AB , 所以 23k 2 +1 1+k 2 |k |1+2k 2=421+k 2 1+2k 2 , 解得k =±1. 此时直线AB 的方程为y =x -1或y =-x +1. [方法技巧] 解决直线与椭圆的位置关系问题的2个注意点 (1)直线方程的求解只需要两个独立条件,但在椭圆背景下,几何条件转化为坐标的难度增加,涉及到长度、面积、向量等. (2)直线与椭圆的位置关系处理需要通过联立方程组来处理,联立方程组时要关注相关的点是否能够求解,不能求解的可以用根与系数的关系来处理. [演练冲关] 1.(2018·南通、泰州一调)如图,在平面直角坐标系xOy 中,已 知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为2 2 ,两条准线之间的距离为4 2. (1)求椭圆的标准方程; (2)已知椭圆的左顶点为A ,点M 在圆x 2+y 2 =89上,直线AM 与椭圆相交于另一点B ,且 △AOB 的面积是△AOM 的面积的2倍,求直线AB 的方程. 解:(1)设椭圆的焦距为2c ,由题意得c a =22,2a 2 c =42, 解得a =2,c =2,所以b = 2. 所以椭圆的标准方程为x 24+y 2 2 =1. (2)法一:(设点法)因为S △AOB =2S △AOM ,所以AB =2AM ,所以M 为AB 的中点. 因为椭圆的方程为x 24+y 2 2=1,所以A (-2,0). 设M (x 0,y 0)(-2

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

相关文档
相关文档 最新文档