文档库 最新最全的文档下载
当前位置:文档库 › 汽车无线遥控开门技术

汽车无线遥控开门技术

汽车无线遥控开门技术
汽车无线遥控开门技术

汽车无线遥控开门技术

1 引言

本文将对汽车无线遥控开门系统的新型设计方案与应用发展作分析介绍。汽车安全应用所使用的典型无线遥控开门系统-遥控钥匙(RKE)系统,。该系统组成包括一个安装在汽车上的控制器(或称接收器)和一个由用户携带的收发器(或发射器),即无线遥控车门钥匙。收发器一般包括一个微控制器、RF器件以及按钮和LED等人机接口器件。微控制器可用DS89C440或PIC16F639,RF器件可用MAX7044或MAX1479或TRF6901。收发器通常关闭,只在按下按钮或需要发送数据时才工作。收发器用来向控制器发送数据,因此是单向通信。然而,这一情况正在改变。新型智能收发器即可发送数据,也可接收数据,因此是双向通信。在双向通信系统中,控制器(安装在汽车上)和收发器(即车钥匙)可以实现自动通信,不需要人机接口。

2 设计思想

从上述无线遥控开门系统组成可看出,系统方案的设计思想是基于用微控制器构建发射器(遥控钥匙)与接收器。

众所周知,MAXQ系列是采用低噪声设计并为配合模拟电路工作而进行了优化的16位RISC 微控制器,能够与RF接收器器件整合到一起构建模拟电路的最佳方案。

2.1 遥控钥匙(发射器或收发器)与接收器(车上控制器)

遥控钥匙可选用DS89C450-KIT和MAX7044或两个评估板(EV KIT),即DS89C450-KIT 和MAX7044EVKIT (EVht)构成发射器。可以安装在一个壳体内,充电电池位于下方。如使用天线,发送距离超出标准钥匙链几个数量级。

接收器(车上控制器)可由并排安装在一起的MAXQ3212 16位微控制器和MAXl473接收器组成。其连线接到汽车的车体控制模块(BCM)上。若是在作调试或演示,可使用一个专门的MAXQ3212端口引脚以9600bps发送异步串行数据。

在此之所以采用MAXQ3212 16位微控制器,是因为MAXQ系列是采用低噪声设计并为配合模拟电路工作而进行了优化的16位RISC微控制器,除数字元件外还集成了高精密的模拟功能,因而应用方案需要的芯片数更少,能够与RF接收器器件MAXl473整合到一起构建模拟电路的最佳方案,而且基本不会干扰RF信号。其优异的功耗特性与强大的功能组合使产品的设计和构建更加简单,可缩短产品上市时间。

而RF接收器器件MAXl473是最新的300MHz至450MHzASK(振幅变换调制)射频接收器平均灵敏度为-114dBm,正常工作仅消耗5.5mA(典型值)的电流。内置镜频抑制,无需通常使用的前端SAW滤波器。睡眠模式时,MAXl473可在小于250ps的时间内启动并发送数据,保证了更深的睡眠周期和更长的电池寿命。MAXl473可工作于3V至5V的电源电压。该300MHz 至450MHz发送器和接收器的最大优点是能将RKE系统有效距离扩大一倍,可理想应用子电池供电设备,包括钥匙,汽车报警和胎压检测。

2.2 关于模拟信号强度测量

MAXl473接收器提供一个模拟接收信号强度指示器(RSSl),可对此信号进行测量。MAXQ3212内置一个模拟比较器,以比较VREF和CMPI输入,并可以在定时器输出引脚上产生脉宽调制信号(PWM)。图2示出了由比较器和PWM构建ADC的方法。将RSSI信号送到MAXQ3212比较器的VREF引脚端。然后将定时器编程为PWM模式,如果对该PWM进行适当滤波,就可产生DAC输出到T2PB引脚端,并将输出(即DAC)连接到比较器的另一个输入CMPI引脚端。比较器随后比较信号电平,如果信号匹配,可在没有专用硬件ADC的情况下成功进行了模数转换。

软件中没有采用逐次逼近法,而是采用斜率ADC。从一个合理的最小值开始,DAC输出缓慢增加,直到比较器指示匹配状态。

2.3 RF信号如何解码

MAXl473接收器提供一路数字信号输出(DATAOUT)。由于RF噪声一直存在,无论钥匙链实际上是否在发送数据,该引脚都将连续转换状态。为将该噪声与信号区分开来,MAXQ微控制器必须采用一个小型软件状态机,测量上升沿和下降沿信号之间的时间,以识别前同步码。

而测量边沿间隔的最有效方法是使用中断触发技术。MAXQ可编程为上升沿或下降沿触发中断。将中断设置为“上升沿”触发,即开始测量。一旦探测到上升沿,复位并重启定时器,同时将中断触发边沿设置为“下降”沿。到下降沿时,中断处理程序读取定时器的值。这可用一小段程序以示一个代码段,该代码段读取和复位定时器,然后转换中断触发信号的极性。如果边沿间隔与8400bps数据率(加/减一个合理的容限)匹配,并检测到协议所指定的同步脉冲数,则微控制器软件状态机切换到接收模式,开始解析余下的数据包。

2.4 关于数据流--曼彻斯特编码的使用

由于制造商、型号以及出厂时间的不同,图1中所示的发射器(遥控钥匙)数据流(脉冲串)的协议的差异极大。而对这种售后的市场项目来说,使用可编程微控制器恰到好处。在此随意选用了8400bps曼彻斯特编码的数字数据流,并采用ASK(振幅变换调制)方式以433MHz进行发射。若要使用FSK(频率变换调制)或不同的发射频率,必须用不同的接收器芯片替换MAXl473。

(1)曼彻斯特编码基本概念

每个数据位至少由一个信号跳变来表示,从而实现数据流自同步。图3(a)给出了0和1的表示符号,这里选择下降沿为0,上升沿为1。串形数据通常先发送LSB。,ASCⅡ字符“A”(41h,0100.000lb)以1000.0010b的形式发送。编码可以通过连接0和1的符号形成。图3(b)通过连接0和1的符号形成ASCII“A”的编码。

(2)数据流与软件

当按下钥匙链上的按钮时,将发送前同步码,随后依次是发送ID、计数值以及钥匙数据,见图4所示。按钮释放前,发送器一直重复该序列过程,同时还需要一个软件去抖程序。在该实例代码中,是简单地通过短暂关闭接收器实现的。

实际的系统还会将部分数据加密,防止车辆被盗。一般由车体控制模块(BCM)进行解密。接收器软件测量接收信号强度、等待和同步至前同步码、解码数据流并通过串口传输数据。

2.5 发射器(遥控钥匙)与接收器中几种芯片的选用

(1) MAXl473接收器与MAX7044发送器的选用

RF接收器器件MAXl473是最新的300MHz至450MHzASK射频接收器,其特性已如前述。

而发射器中的MAX7044器件是可输出+3dBmASK信号的发送器,采用微型的8引脚SOT封装,采用占空比为50%的编码方式时,如曼彻斯特码,仅需消耗7.7mA的电流。MAX7044可使用电压低至2.1V的单个锂电池供电。

该300MHz至450MHz发送器和接收器的最大优点是能将RKE系统有效距离扩大一倍(即控制范围超过两倍)是理想应用于电池供电设备,包括钥匙,汽车报警和胎压检测的选择。

(2)双通道接收器同时捕捉两种信号的MAX1471结构方框与应用

使用MAXl471双通道接收器同时捕捉两种信号,即能同时接收ASK和FSK,模式间切换时间为零。针对同时需要对ASK和FSK解码的低成本系统设计,MAXl471双模接收器还可进行自轮询,器件可保持长达8分钟的睡眠模式,并可唤醒微处理器,以进一步节省能源。MAXl47l工作于300MHz至450MHz,包括内置的42dB(兆型值)镜频抑制混频器,不需常见

的SAW滤波器。MAXl471内置一个可用于3.3V或5V的稳压器,可在低至2.4V的电压下工作。图5为MAX1471结构方框与应用示意图,从图看出MAX1471也可用于汽车轮胎压力监视系统中接收器。

3 智能无线遥控开门系统

利用两个频率可实现低成本双向通信收发器,其中125kHz用于接收数据,UHF(315、433868或915MHz)用于发射数据。由于125kHz信号的传播能力不强,因此双向通信的范围通常在三米以下。

在此类智能无线遥控开门系统中,控制器(接收器)利用125kHz频率发送命令,同时不断搜索有效范围内收发器(在此的发射器称收发器更为确切)发出的UHF频率信号。而该智能收发器通常处于接收模式,等待有效的125kHz控制器命令。如果接收到有效的控制器命令,那么收发器将通过UHF频率做出响应。这就是通常所说的新型被动遥控开门(PKE)系统。

而传统遥控开门系统中的发射器和新型被动遥控开门系统中的收发器之间最大的差别是后者拥有用于双向通信的125kHz电路。并利用包括数字和低频前端电路的集成片上系统(SoC)智能MCU可以实现低成本无线遥控开门系统(PKE)的收发器。图6为智能无线遥控开门系统示意图。

由于智能无线遥控开门系统收发器的工作依赖于与控制器间的自动通信,不需要人机接口,因此系统工作的可靠性直接依赖于控制器和收发器之间的信号状况。

图6所示智能无线遥控开门系统收发器上的按钮用于可选操作,但开车门的动作并不需要人工干扰即可自动完成。智能无线遥控开门系统应用的双向通信顺序如下:控制器利用125kHz频率发送命令;收发器利用三个正交排列的125kHz共振天线接收125kHz控制器命令;如果命令正确,收发器通过一个UHF发射器发送响应(加密数据);控制器接收到响应数据,如果数据正确则激活开关打开车门。

收发器的低频率天线(例如125kHz)采用的是LC谐振电路。当控制器天线发射的电磁波磁场通过收发器的线圈天线时,LC谐振电路感生出电压。在LC谐振电路物理限制给定的情况下,收发器的输入接收电压在LC电路调谐到控制器命令的载波频率(125kHz),或天线线圈(电感L)正对着控制器天线时,输入接收电压达到最大。

收发器中的智能MCU同时包括了低频(LF)前端和数字部分。LF前端部分不断寻找输入信号。与此同时,数字电路部分则处于睡眠模式以减少电池消耗。只有在接收到正确的控制器命令时,数字电路部分才会被唤醒(类似图5MAX1471方框中唤醒MCU引脚功能)。通过在LF前端部分采用特殊的唤醒滤波器可以做到这一点。通过对LF检测电路进行编程,使得只有输入信号带有预先设定的头标志时才会产生输出。

4 智能无线遥控开门系统收发及其应用

(1)利用微控制器PIC16F639 MCU构成的智能无线遥控开门系统收发器。

图7所示为方案图。收发器采用三个正交放置的天线LCX、LCY、LCZ来探测来自X,Y 和Z方向的输入信号。由于其通用的智能功能,以及其低成本优势,智能收发器能够用于多种应用,特别是汽车和安全行业中的应用。采用智能MCU的被动遥控开门(PKE)收发配置实例,收发器采用三个正交放置的天线来探测来自X,Y和Z方向的输入信号。

(2)汽车行业:智能被动遥控开门系统;遥控车库门锁和开门系统;引擎启动控制与轮胎压力监控系统()LF启动传感器。

(3)安全行业:长距离访问控制;停车位控制;自动房门开关。

利用双向通信方法可以实现智能无线汽车通信。采用集成式片上系统(SoC)智能微控制器(MCU)可以实现低成本双向通信收发器。通过在收发器中增加一个简单的电压充电电路,

利用输入的低频率控制器命令来生成一个直流电压,那么还可以实现无电池工作。

5 结语

不断发展的无线通信技术可以将汽车中的独立子系统整合起来。应该说基于用微控制器构建的无线遥控开门系统的开发前景看好。

车内声品质主观评价与主动控制技术研究-吉 大汽车-王登峰

吉林大学汽车工程学院
车内声品质主观评价与主动控制技术研究
吉林大学汽车工程学院 吉林大学汽车动态模拟国家重点实验室 王登峰 2010年12月10日

吉林大学汽车工程学院
1 、声品质概念与研究方法 1、声品质概念与研究方法 2 、汽车声品质评价的心理声学基础 2、汽车声品质评价的心理声学基础 3 、车内声品质主观评价试验与分析 3、车内声品质主观评价试验与分析 4 、声品质评价指标的客观量化描述 4、声品质评价指标的客观量化描述 5 、车内声品质主动控制技术概述 5、车内声品质主动控制技术概述 6 、车内声品质自适应主动控制方法 6、车内声品质自适应主动控制方法 7 、车内声品质主动控制系统 7、车内声品质主动控制系统 8 、研究结果与分析评价 8、研究结果与分析评价

吉林大学汽车工程学院
一、声品质概念与研究方法

吉林大学汽车工程学院
1、传统A计权声级评价标准不足
?车内噪声是评价汽车乘坐舒适性的重要指标之一; ? A计权声级是以噪声响度来衡量噪声强弱的评价指标; ?传统汽车噪声研究多以A计权声压级作为评价指标,致力 于使汽车噪声满足日益严格的限值标准和乘坐舒适性要求 ; ?用A计权声级评价噪声品质特性,无法全面反映噪声对人 的骚扰性,常与主观感觉不符; ?汽车内部噪声给乘坐者的主观感受对消费者的购车取向有 很大影响 。

吉林大学汽车工程学院
2、声品质概念的提出
? 针对噪声传统评价方法的不足,反映人体主观感受的声品质 ( Sound Quality)概念出现,并逐渐成为噪声研究的主要 评价指标之一; ? 声品质是在特定的技术目标或任务下对声音适宜性的描述, 强调人耳的听觉感知和主观判断; ? 声品质标准的提出,代表现代噪声研究的新理念,即噪声控 制不仅要降低噪声的声压级,还要能够调节其品质特性。 ? 汽车噪声控制的最终目标是实现有选择性的噪声控制,在消 除总体噪声中令人烦躁成分的同时,适当保留令人愉悦的成 分,使声音符合消费者主观感受的要求。

汽车NVH 技术研究与应用现状

汽车NVH 技术研究与应用现状 东北大学车辆工程1002班白国星20102255 摘要:汽车的NVH 技术研究如何解决车辆运行中的噪声、振动、舒适性的问题,汽车NVH性能是评价整车性能重要指标之一。其中NVH性能测试技术自然成为汽车工程界关注的焦点。NVH性能测试流程大致如下:首先,运用整车NVH 性能摸底测试方法验证轿车NVH主观感受;其次,介绍传递路径分析基本原理,并构建基本分析模型,结合传递路径分析方法与国际先进的声振数据测试系统,对可能产生问题的路径进行了声振测试、分析,并通过排除法得出该工程问题的初步诊断结论;最后,在分析、总结工程实例基础之上,建立起了整车NVH性能测试与分析一般技术流程,为工程上解决相关整车NVH问题提供参考和依据,提出整车NVH性能测试技术流程研究的意义。 主题词:汽车; 噪声; 振动; NVH 技术 Auto NVH technology research and application status Abstract: Auto NVH technology research how to solve the vehicle noise, vibration, the problem of comfort, and auto NVH performance is one of the important indicators of performance evaluation. The NVH performance test technology nature has become the focus of automotive engineering. : NVH testing process is roughly as follows. First, use the vehicle NVH performance baseline test methods validation sedan NVH subjective feeling; Secondly, introducing the basic principle of transfer path analysis, and building a basic analysis model, combining transfer path analysis method with the international advanced acoustic data testing system, test and analysis the problem of path which may be produced, and through the exclusion method obtain the engineering problems' conclusion preliminary; Finally, based on the analysis, summarizes the engineering examples, establishing the harshness NVH of the vehicle performance test and analysis of the general technical process, providing a reference and the basis for engineering vehicle NVH problems, putting forward the vehicle NVH the significance of performance testing technology process Keywords: Car; Noise; Vibration; NVH technology

声品质基本概念与研究综述

声品质基本概念与研究综述 引言 多年以来,噪声控制技术的任务是降低声源的声辐射,声源的测试也是围绕A声压级或A声功率级,这种努力的原则是基于A声压级或A声功率级越低越好。而随着技术的发展,大多数声源的辐射噪声己经得到降低,对人们的听觉不会造成物理伤害。研究发现,此时传统的声压级、以及三分之一倍频程的评价标准己经不能反映人们对于噪声的主观判断,往往有声压级相同的声音,给人的主观感觉却截然不同,而有的声音声压级虽然较高,但让人感觉比较愉悦,在这样的情况下,声品质的概念便应运而生了。定义中的“声”并不是指单纯声波这样一个物理过程,而是指人耳的听觉感知过程;“品质”是指由人耳对于声音事件感知过程最终做出的主观判断。这一概念更强调人们对声特性判断的主观性。 1.声品质基本评价量 在声品质评价中,目前已有一系列的基本特性被认为是适宜于描述听觉事件的,这些量主要有:响度、锐度、粗糙度、抖晃度等。这些量中的某几个组合在一起,形成了感觉舒适度、烦躁度等综合性指标。 1.1响度 响度是对声音强度的一种感受,它是人们对声音感知影响最大的一个参量。通过对响度及其依赖关系的研究,以及掩蔽效应的研究,人们发现,两个声级相等而频率间隔大于临界带的纯音产生的响度大

于频率处于两纯音之间而声级为两纯音按能量叠加的纯音的响度。两纯音的频率间隔增加,组成复合音的响度也随之增加。这意味着响度不是由单独频率成分所决定的,而是由两者相互影响而产生,尤其是当两者频率间隔较小时,影响较为明显。只有在两者频率间隔足够大时无相互影响,这时,响度值等于两者的响度之和。 由于临界带对响度计算有很大的影响,因此在构造响度模型时,把激励声级对临界带率模式作为基础。将总响度N看成是特征响度N'对临界带率的积分,即: 其中()z N'为在一个临界带内的特征响度,单位为Bark sone G,下标G表示响度值是由临界带声级计算得来的。 1.2 粗糙度 粗糙感是在调制频率为15~300Hz 时产生的。调制函数的频谱在15~300Hz 区域即足以产生粗糙感,并非要周期性调制。这也是大多窄带噪声即使没有包络和频率的周期性变化,却产生粗糙感的原因。将调制频率为70Hz,调制幅度为100%,声级为60dB的1kHz 纯音粗糙度定义为1 asper。 影响粗糙度的因素主要有两个,一个为频率分辨率,一个为时间分辨率,频率分辨率由激励模式或特征响度随临界带的关系决定。当调制幅度为25%时,即m=0.25 ,粗糙度达到其最低值0.1 asper,调制幅度每增加10%,相应粗糙度增加17%,因此在可听粗糙度划

汽车车门声品质方法的研究

汽车车门声品质方法的研究 摘要:汽车是现代人们出行的一种重要交通工具,随着我国国民消费水平的上升,很多大众家庭都能买的起一台汽车,从而促进了我国汽车行业的发展。面对 越来越多的不同品牌的汽车,汽车自身的质量便成为了消费者首要考虑的指标。 汽车车门的开启与关闭是使用汽车的过程中最为基础的一项操作。因此,汽车车 门开关的声音便成了消费者感知汽车做工的重要途径之一。本文便介绍了如何对 汽车车门声的品质进行主观和客观的评价,并通过评价结果来分析研究如何进一 步提高汽车车门开关时的声音品质。 关键词:汽车;车门声音;品质;研究; 引言 汽车的车门是组成汽车的重要部件之一,汽车的车门在开启或关闭时会发出 一些声响,尤其是关闭时,会与汽车主体结构发生碰撞,从而产生较大的声音。 通过对广大客户的调查,我们发现很大一部分客户对汽车关门时的声音品质有着 较高的要求,要求关门声要听起来较为低沉、厚重,没有其他的杂音。这就给汽 车制造商指明了一个生产方向。而如何确保生产出的汽车满足客户对车门声音品 质的要求,就需要建立一套科学的声音评价体系,然后采集并分析实际车辆车门 开关时发出的声音,进行合理的分析研究,才能为车门的制造提供科学的依据。 一、车门声音的测试和分析 汽车车门的开关声音在一定程度上向客户反映了很多关于汽车的信息,如车 内隔音效果是否良好,是否可以减少噪音,保障乘客的舒适感,车门是否具有较 好的安全性等等。因此,越来越多的汽车制造商开始逐渐重视起对汽车车门开关 时的声品质的研究。以达到进一步提升汽车性能,提高车辆销售率的目的。对汽 车车门声品质的研究单凭人耳去听是远远不够的,还需要借助很多专业的设备才 能完成对车门声音的采集、测量、计算等工作,进而分析出车门声的一些基本物 理参数,帮助相关人员进行车门声品质的研究工作。 1、车门声音样本的采集 在进行汽车车门声品质研究评价工作时,车门声音的采集工作是一项非常关 键的步骤。为了保证车门声品质研究的真实性、客观性、有效性,要设置多台不 同型号的汽车作为声音采集的对象车辆,从而形成对比,然后分别对采集的声音 进行主观和客观的评价,并对评价结果进行详细的分析。除此之外,为了保证采 集的声音样本的有效性,没有杂音的干扰,还要对采集实验的工作环境进行严格 的要求,采集时,目标车辆必须处于经过消音处理后的安静的房间内,确保目标 车辆处于空载的状态,车辆保持安静,不能开启车窗。 由于汽车车门关门时的声音品质常常会受到人体施加的力量的影响,力量越大、关门的速度就越快,产生的噪音分贝也就越大。因此,同一款车型,不同的 人开关车门时所产生的声音也各不相同。所以,在使用关门辅助装置模拟关闭车门,以测试车门的开关声音时,要设置好固定的关门力量,并多次采集声音样本,然后对所有的声音样本进行多次测量、分析,以保证测量数据的真实性和全面性。 车门声音样本的采集需要使用专业的设备和工具,通常要求配有实验专用的 电脑、传声器、麦克风低噪音电缆、声压标定器、‘人工头’、数据采集前端,还 有关门辅助装置。声音采集前必须保证所有设备都处于良好的工作状态。具体操 作方法就是先将‘人工头’放置在普通人体高度的位置,并临近汽车车门,规定好 与车门的距离,然后由辅助装置以固定的力度开关车门,模拟日常人们开关车门。

相关文档