文档库 最新最全的文档下载
当前位置:文档库 › SAS分析非平稳时间序列

SAS分析非平稳时间序列

SAS分析非平稳时间序列
SAS分析非平稳时间序列

运用SAS对谷物产量进行分析

一、摘要

利用SAS软件(程序见附录)判断谷物产量数据为平稳序列且为非白噪声序列,然后先后通过模型的识别、参数的估计、模型的优化、残差白噪声检验,确定AR(1)模型拟合时间序列显著有效。由于时间序列之间的相关关系,且历史数据对未来数据有一定的影响,对未来5期的谷物生产量进行预测。

二、理论准备

首先判断序列的随机性和平稳性。通过随机性检验,判断该序列是否为白噪声序列,如果是白噪声序列,就认为该随机事件没有包含任何值得提取的有用信息,我们就应该终止分析。通过平稳性检验,序列可以分为平稳序列和非平稳序列。如果序列平稳,通过相关计算进行模型拟合,并利用过去行为对将来行为进行预测,达到预测效果。如果序列为非平稳,再确定模型为非平稳序列中四大类模型中的哪种种模型或者几种模型对序列的综合影响,通过把序列转化为平稳序列,再进一步分析。

三、数据选取

本实验采用某地区连续74年的谷物产量(单位:千吨),如下所示:

0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.18 1.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.81 0.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.93 0.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25 0.79 1.19 0.69 0.92 0.86 0.86 0.85 0.90 0.54 0.32 1.40 1.14 0.69 0.91 0.68 0.57 0.94 0.35 0.39 0.45 0.99 0.84 0.62 0.85 0.73

0.66 0.76 0.63 0.32 0.17 0.46

四、数据进行平稳性与纯随机性的检验与判别

(一)序列的纯随机性检验

图1序列延迟6阶LB检验结果

序列纯随机性检验结果显示延迟6阶LB检验统计量的P值小于1%的显著性水平0.0001,说明序列之间蕴含着很强的相关信息,即该序列是非随机性序列,为非白噪声。

(二)模型的平稳性检验——ADF检验

绘制该序列时序图:

图2序列时序图

该时序图显示该地区谷物产量在0.8千吨左右,波动比较平稳,但存在略微趋势。运用单位根检验序列的平稳性。

序列时序图得到如下图:

图3 ADF检验图

ADF检验结果表示,单位根统计量ADF=-2.682929,在5%的显著性水平下,接受γ=0的原假设,即认为该序列非平稳且带有趋势。

为此对序列进行一阶差分(Y t=▽X t=X t-X t1 ),画出Y t的时序图如下

由时序图可以看出经过一阶差分后的序列平稳。进一步对差分后的序列进行单位根检验,如图:

图4 一阶差分后的ADF检验图

从图中可以看出,在5%的显著性水平下,拒绝γ=0的假设,即通过一阶差分后,序列基于平稳。

下面便对一阶差分序列Y t进行分析。

五、模型的识别

令Y t=▽X t=X t-X t1

画出差分序列的自相关图和偏自相关图如下:

图5 样本自相关图

样本自相关图显示除了延迟一阶自相关系数在二倍标准差范围以外,其他阶数的自相关系数都在2倍标准差范围内波动。根据自相关系数的这一特点可以初步判断该序列具有短期相关性,进一步确定序列平稳。同时,可以认为该序列的自相关系数1阶截尾。

图6 样本偏自相关图

样本偏自相关图显示除了延迟1、2、3阶的偏自相关系数显著大于2倍标准差之外,其他的偏自相关系数都在2倍标准差范围内作小值随机波动,所以该偏自相关系数可认为3阶截尾。为了模型定阶的准确性,下面采用BIC准则,对模型进行判断。

根据BIC准则,我们知道在所有通过检验的模型中使得BIC函数达到最小的模型为相对最优模型。为此运用SAS输出所有自相关延迟阶数小于等于10,移动平均延迟阶数小于等于5的所有ARMA(p,q)模型的BIC信息量,如下图所示:

图7 ARMA(p,q)模型的BIC信息量

图表显示一阶差分序列Y t的BIC信息量最小的是MA(1)模型。BIC统计量值为-2.8997。可得该模型为MA(1)模型。

六、模型的参数估计

由BIC准则确定,该模型为MA( 1) 模型,运用SAS的ESTIMATE命令输出未知参数估计结果,如下图所示:

图8 模型参数估计

参数显著性结果显示常数项的参数t统计量的P值均大于0.05,即参数不显著。

然后通过更改命令,去掉常数项,得到的未知参数估计结果,如下图所示:

图9未知参数估计结果

此时参数显著性结果显示参数t统计量的P值小于0.05,即参数显著。

七、模型残差的白噪声检验

ESTIMATE命令输出的残差白噪声检验图如下所示:

图10残差白噪声检验

残差白噪声检验显示延迟6阶,延迟12阶,延迟18阶,延迟24阶LB检验统计量的P值均显著大于0.05,说明模型的残差为白噪声序列,即该MA(1)模型显著有效。

八、模型的确定

(一)、ESTIMATE命令输出的序列拟合统计量的值如下图所示:

图11 序列拟合统计量

这部分输出的五个统计量的值,由上到下分别是方差估计值、标准差估值、AIC信息量、SBC信息量及残差个数。

(二)、ESTIMATE命令输出的序列模型如下所示:

图12序列模型

由图中Factor 1 显示得出该序列的模型为:Y

t

=(1-0.79567B)εt,该式

也可写为:Y

t

=εt-0.79567ε1-t且δε2=0.267456 。

所以可以得出X

t 序列模型为ARIMA(0,1,1),即(1-B)X

t

=εt-0.79567ε1-t

且δε2=0.267456 。

九、模型的预测

运用SAS,对往后五期(即第75、76、77、78、79年)的谷物产量进行预测,得到以下结果:

从该输出结果显示第75、76、77、78、79年的预测值分别为0.5183、0.5183、0.5183、0.5183、0.5183。在图表第四、第五列为预测值在95%置信度的置信上限和置信下限。同时,得到预测图如下所示:

图14往后五期预测图

十、结论

(1)序列纯随机性检验结果显示序列是非随机性序列,为非白噪声,经一阶差分为平稳时间序列。

(2)样本自相关图显示差分后的序列自相关系数1阶截尾,样本偏自相关图显示偏自相关系数可认为3阶截尾。

(3)采用BIC准则判断模型为MA(1)模型。

(4)残差白噪声检验显示MA(1)模型显著有效。

附件

模型绘制时序图、平稳性与随机性检验、识别

data example;

input status@@;

difx=dif(status);

time=_n_;

cards;

0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.18 1.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.81 0.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.93 0.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25 0.79 1.19 0.69 0.92 0.86 0.86 0.85 0.90 0.54 0.32 1.40 1.14 0.69 0.91 0.68 0.57 0.94 0.35 0.39 0.45 0.99 0.84 0.62 0.85 0.73 0.66 0.76 0.63 0.32 0.17 0.46 ;

proc gplot;

plot status*time difx*time;

symbol v=star c=blue i=join;

run;

proc arima;

identify var=status(1,0) minic p=(0:10)q=(0:5);

run;

模型的参数估计

estimate q=1;

run;

estimate q=1 noint;

run;

模型序列的预测

forecast lead=5 id=time out=results;

run;

模型序列的预测图

proc gplot data=results;

plot status*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay; symbol1 c=black I=none v=star;

symbol2 c=red I=join v=none;

symbol3 c=green I=join v=none l=32;

run;

非线性时间序列

近代时间序列分析选讲: 一. 非线性时间序列 二. GARCH模型 三. 多元时间序列 四. 协整模型

非线性时间序列 第一章.非线性时间序列浅释 1.从线性到非线性自回归模型 2.线性时间序列定义的多样性第二章. 非线性时间序列模型 1. 概述 2. 非线性自回归模型 3.带条件异方差的自回归模型 4.两种可逆性 5.时间序列与伪随机数 第三章.马尔可夫链与AR模型 1. 马尔可夫链 2. AR模型所确定的马尔可夫链 3. 若干例子 第四章. 统计建模方法 1. 概论 2. 线性性检验 3.AR模型参数估计 4.AR模型阶数估计 第五章. 实例和展望 1. 实例 2.展望

第一章.非线性时间序列浅释 1. 从线性到非线性自回归模型 时间序列{x t}是一串随机变量序列, 它有广泛的实际背景, 特别是在经济与金融领域中尤其显著. 关于它们的从线性与非线性概念, 可从以下的例子入手作一浅释的说明. 考查一阶线性自回归模型---LAR(1): x t=αx t-1+e t, t=1,2,…(1.1) 其中{e t}为i.i.d.序列,且Ee t=0, Ee t=σ2<∞, 而且e t与{x t-1,x t-1,…}独立. 反复使用(1.1)式的递推关系, 就可得到 x t=αx t-1+e t = e t + αx t-1 = e t + α{ e t-1 + αx t-2} = e t + αe t-1 + α2 x t-2 =… = e t + αe t-1 + α2e t-2

+…+ αn-1e t-n+1 +αn x t-n. (1.2) 如果当n→∞时, αn x t-n→0, (1.3) {e t+αe t-1+α2e t-2+…+αn-1e t-n+1} →∑j=0∞αj e t-j . (1.4) 虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是, 对以上的简单模型, 不难相信, 当|α|<1时, (1.3)(1.4)式成立. 于是, 当|α|<1时, 模型LAR(1)有平稳解, 且可表达为 x t=∑j=0∞αj e t-j . (1.5) 通过上面叙述可见求LAR(1)模型的解有简便之优点, 此其一. 还有第二点, 容易推广到LAR(p)模型. 为此考查如下的p阶线性自回归模型LAR(p):

非平稳时间序列分析

非平稳时间序列分析 1、首先画出时序图如下: 从时序图中看出有明显的递增趋势,而该序列是一直递增,不随季节波动,所以认为该序列不存在季节特征。故对原序列做一阶差分,画出一阶差分后的时序图如下:

从中可以看到一阶差分后序列仍然带有明显的增长趋势,再做二阶差分: 做完二阶差分可以看到,数据的趋势已经消除,接下来对二阶差分后的序列进行

检验: Autocorrelations Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error 0 577.333 1.00000 | |********************| 0 1 -209.345 -.36261 | *******| . | 0.071247 2 -52.915660 -.09166 | .**| . | 0.080069 3 9.139195 0.01583 | . | . | 0.080600 4 15.375892 0.02663 | . |* . | 0.080615 5 -59.441547 -.1029 6 | .**| . | 0.080660 6 -23.834489 -.04128 | . *| . | 0.081324 7 100.285 0.17370 | . |*** | 0.081431 8 -146.329 -.25346 | *****| . | 0.083290 9 52.228658 0.09047 | . |**. | 0.087118 10 21.008575 0.03639 | . |* . | 0.087593 11 134.018 0.23213 | . |***** | 0.087670 12 -181.531 -.31443 | ******| . | 0.090736 13 23.268470 0.04030 | . |* . | 0.096108 14 71.112195 0.12317 | . |** . | 0.096194 15 -105.621 -.18295 | ****| . | 0.096991 16 37.591996 0.06511 | . |* . | 0.098727 17 23.031506 0.03989 | . |* . | 0.098945 18 45.654745 0.07908 | . |** . | 0.099027 19 -101.320 -.17550 | ****| . | 0.099347 20 127.607 0.22103 | . |**** | 0.100908 21 -61.519663 -.10656 | . **| . | 0.103337 22 35.825317 0.06205 | . |* . | 0.103893 23 -93.627333 -.16217 | .***| . | 0.104081 24 55.451208 0.09605 | . |** . | 从其自相关图中可以看出二阶差分后的序列自相关系数很快衰减为零,且都在两倍标准差范围之内,所以认为平稳,白噪声检验结果: Autocorrelation Check for White Noise To Chi- Pr > Lag Square DF ChiSq --------------------Autocorrelations-------------------- 6 30.70 6 <.0001 -0.363 -0.092 0.016 0.02 7 -0.103 -0.041 12 84.54 12 <.0001 0.174 -0.253 0.090 0.036 0.232 -0.314 18 97.98 18 <.0001 0.040 0.123 -0.183 0.065 0.040 0.079 24 126.99 24 <.0001 -0.175 0.221 -0.107 0.062 -0.162 0.096

时间序列分析_最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 ?描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

非线性时间序列模型的波动性建模(中)

非线性时间序列模型的波动性建模 Song-Yon Kim and Mun-Chol Kim 朝鲜平壤金日成综合大学数学学院 本文出自于2011年5日朝鲜平壤举行的第一届PUST国际会议 本版修订于2013年11月3日 摘要:在本文中的非线性时间序列模型被用来描述金融时间序列数据的波动。描述两种由波动的非线性时间序列组合成TAR(阈值自回归模型)与AARCH(非对称自回归条件异方差 模型)的误差项和参数估计的研究。 关键词:非线性时间序列模型;波动;ARCH(自回归条件异方差模型);AARCH;TAR;QMLE(拟极大似然估计) 一介绍 在金融市场中,资产价格的波动是一个极其重要的变量,其建模在投资,货币政策,金融风险管理等方面中有重要意义 在投资持有期的资产价格波动的一个很好的预测是评价投资风险的一个很好的起点。资产价格波动是金融衍生证券定价的最重要的变量。对于定价我们需要知道的波动性范围是从现在相关资产,直至期权到期。事实上,市场惯例是根据波动单位列出价格期权。如今,波动性的定义和测量可能在衍生工具合约明确规定。在这些新的合同,波动成为潜在的“资产”。波动率模型已成为一个在金融时间序列模型分析的主要对象并且使许多科学家沉浸其中。

其中σ称为波动,在上面的公式中所示,σ准确估计成为期权定价和估计的一个非常重要的问题。此外,如对关联时间t 的波动σt 的估计等问题开始提出。 1982,罗伯特恩格尔提出了一个新的模型来用一个更准确的方法[ 7 ]对波动作出估计。他重视ARCH 模型中的误差项,这是大多线性时间序列模型如AR 、ARMA 、ARIMA 等所忽略的。同时他提出一种新的非线性模型,通过相加取代简单的白噪声,误差项的条件异方差性偏差的变化自动回归。误差项的条件异方差性偏差的 自动回归 1986年,Bollerslev 将Engle 的 ARCH (q)模型修改变为GARCH (p, q) model [8]. ???? ???++==∑∑==--q i p i i t i i t i t t t t t h h d i i z h z 112021..:,βεααε 在他的论文中,他提出了GARCH (1,1)过程中的存在,静止状态和MLE (最大似然估计)。 此后,大量ARCH 模型相继被开发出来,例如ARCH-M ,IGARCH 和LogGARCH 等。 在整个研究中,波动性已被证明是更受“坏消息”,而不是“好消息”的影响,也就是说,是不对称的,这导致对非对称模型的研究。 1991年,Nelson 提出了指数GARCH 模型(EGARCH )描述了不对称冲击。[ 6 ] () ()()x E x x x g g h t t t -+=-+-+=λωεγγ11h 10 但在许多研究论文,有效的参数估计和固定的条件是没有明确解释的,而且这种困难难以克服[ 9 ]。 但在1993,Glosten 开始使用阈值自回归条件异方差(TARCH )模型和其后提出的许多非对称模型[ 2 ],试图对不对称的波动进行建模。 特别是在2003年,Wai Mi Bei 开发了非对称ARCH (q )模型[ 10 ]。 ()∑∑==---+++=q i p j j t j i t i i t i t h 1120H γεβεαα 直到现在,持续的研究正在努力拟出更好的波动模型以显示各种ARCH 模型的影响。 在本文中,利用非线性时间序列模型的波动性建模是基于对前人研究成果分析的观察而得出。

非线性时间序列.doc

-------------精选文档 ----------------- 近代时间序列分析选讲: 一. 非线性时间序列 二. GARCH 模型 三. 多元时间序列 四. 协整模型

-------------精选文档 ----------------- 非线性时间序列 第一章 .非线性时间序列浅释 1.从线性到非线性自回归模型 2.线性时间序列定义的多样性第二章 . 非线性时间序列模型 1.概述 2.非线性自回归模型 3.带条件异方差的自回归模型 4.两种可逆性 5.时间序列与伪随机数 第三章 . 马尔可夫链与 AR 模型 1.马尔可夫链 2.AR 模型所确定的马尔可夫链

-------------精选文档 ----------------- 3.若干例子 第四章 . 统计建模方法 1.概论 2.线性性检验 3.AR 模型参数估计 4.AR 模型阶数估计 第五章 . 实例和展望 1.实例 2.展望 第一章 .非线性时间序列浅释 1.从线性到非线性自回归模型 时间序列 {x t } 是一串随机变量序列 , 它有广泛的实际背景 , 特别是在经济与金融

-------------精选文档 ----------------- 领域中尤其显著. 关于它们的从线性与非线 性概念 , 可从以下的例子入手作一浅释的说 明. 考查一阶线性自回归模型---LAR(1): x t = x t-1 +e t ,t=1,2, (1.1) 其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且e t与 {x t-1 ,x t-1 ,} 独立 . 反复使用 (1.1) 式的递推关系 , 就可得到 x t =x t-1 +e t =e =e =e t t t +x t-1 +{ e t-1 +x t-2 } +e t-1 + 2 x t-2

非线性时间序列

第六章 时间序列的平滑 引论 上一章我们引进非参数函数估计的基本概念,现在将它应用到时间序列别的重要平滑问题上. 对估计慢变化时间趋势,平滑技术是有用的图示工具,它产生了时域平滑(§). 对将来事件和与之相联系的现在与过去变量之间的关系的非参数统计推断导致了§的状态域平滑. § 引入的样条方法是对§引入的局部多项式方法的有用替代. 这此方法能够容易地推广到时间序列的条件方差(波动性)的估计,甚至整个条件分布的估计,参阅§. 时域平滑 6.2.1 趋势和季节分量 分析时间序列的第一步是画数据图. 这种方法使得人们可以从视觉上检查一个时间序列是否像一个平稳随机过程. 如果观察到趋势或季节分量,在分析时间序列之前通常要将它们分离开来. 假定时间序列{}t Y 能够分解成 t t t t Y f s X =++, () 其中t f 表示慢变函数,称为“趋势分量”,t s 是周期函数,称为“季节分量”,t X 是随机分量,它被假定是零均值的平稳序列. 在使用这种分解之前,可以先用方差稳定变换或Box-Cox 变换. 这类幂变换有如下以参数λ为指标的形式 ,0,()log(),0, u g x u λλλ?≠=?=? () 或具有在0λ=点处连续的变换形式 ()(1)/g u u λλ=-. 这类变换由Box 和Cox (1964)给出. 注意,由在幂变换中数据必须是非负的,因此,在使用幂变换之前,可能必须先实施平移变换. 我们的目的是估计和提取确定性分量t f 和t s . 我们希望残差分量t X 是平稳的, 且能够用线性和非线性技术做进一步的分析. 通过推广Box 和Jenkins (1970)而发展的一个替代方法是对时间序列{}t Y 重复应用差分算子,直到被差分的序列表现为平稳为止. 这时,被差分的序列可以进一步平衡时间序列技术来处理. 作为说明Box 和Jenkins 方法的一个例子,我们先取S&P500指数的对数变换,然后计算一阶差分. 图给出了这个预处理序列. 所得序列基本上是该指数中变化的每日价格的百分比. 除了几个异常值(即1987年10月19日%的市场崩盘,金融市场称之为“黑色星期一”)外,这个序列显示出平稳性. 这个变换与金融工程中常用资产定价的几何布朗运动模型的离散化有关. 图 1972年1月3日至1999年12月31日(上图)和1999年1月4日至 1999年12月31日(下图)S&P500指数对数变换的差分

时间序列分析第三章平稳时间序列分析

应用时间序列分析实验报告 实验名称第三章平稳时间序列分析 一、上机练习 data example3_1; input x; time=_n_; cards; 0.30 -0.45 0.036 0.00 0.17 0.45 2.15 4.42 3.48 2.99 1.74 2.40 0.11 0.96 0.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34 -1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36 -0.50 -1.93 -1.49 -2.35 -2.28 -0.39 -0.52 -2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.21 0.78 0.88 2.07 1.44 1.50 0.29 -0.36 -0.97 -0.30 -0.28 0.80 0.91 1.95 1.77 1.80 0.56 -0.11 0.10 -0.56 -1.34 - 2.47 0.07 -0.69 -1.96 0.04 1.59 0.20 0.39 1.06 -0.39 -0.16 2.07 1.35 1.46 1.50 0.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05 ; procgplot data=example3_1; plot x*time=1; symbolc=red i=join v=star; run; 建立该数据集,绘制该序列时序图得: 根据所得图像,对序列进行平稳性检验。时序图就是一个平面二维坐标图,通常横轴表示时间,纵

轴表示序列取值。时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的X围有界的特点。如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳。 procarima data=example3_1; identifyvar=x nlag=8; run; 图一 图二样本自相关图 图三样本逆自相关图

平稳时间序列预测法

7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录 7.1 概述 时间序列取自某一个随机过程,则称: 一、平稳时间序列 过程是平稳的――随机过程的随机特征不随时间变化而变化过程是非平稳的――随机过程的随机特征随时间变化而变化回总目录 回本章目录 宽平稳时间序列的定义: 设时间序列 ,对于任意的t,k和m,满足: 则称宽平稳。 回总目录

回本章目录 Box-Jenkins方法是一种理论较为完善的统计预测方法。 他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方 法。使ARMA模型的建立有了一套完整、正规、结构 化的建模方法,并且具有统计上的完善性和牢固的理 论基础。 ARMA模型是描述平稳随机序列的最常用的一种模型; 回总目录 回本章目录 ARMA模型三种基本形式: 自回归模型(AR:Auto-regressive); 移动平均模型(MA:Moving-Average); 混合模型(ARMA:Auto-regressive Moving-Average)。回总目录 回本章目录 如果时间序列满足 其中是独立同分布的随机变量序列,且满足:

则称时间序列服从p阶自回归模型。 二、自回归模型 回总目录 回本章目录 自回归模型的平稳条件: 滞后算子多项式 的根均在单位圆外,即 的根大于1。 回总目录 回本章目录 如果时间序列满足 则称时间序列服从q阶移动平均模型。或者记为。 平稳条件:任何条件下都平稳。

三、移动平均模型MA(q) 回总目录 回本章目录 四、ARMA(p,q)模型 如果时间序列 满足: 则称时间序列服从(p,q)阶自回归移动平均模型。 或者记为: 回总目录 回本章目录 q=0,模型即为AR(p); p=0,模型即为MA(q)。 ARMA(p,q)模型特殊情况: 回总目录 回本章目录 例题分析 设 ,其中A与B 为两个独立的零均值随机变量,方差为1;

第六章 非平稳时间序列分析

第六章非平稳时间序列分析前几章讨论的都是平稳时间序列,然而在实际应用中,特别是在经济和商业中出现的时间序列大多是非平稳的,如非常数均值的时间序列,非常数方差的时间序列,或者二者皆有。第一节非平稳性的检验该方法即是利用时间序列资料图,观察趋势性或周期性。如果序列存在着明显的趋势或周期变化,则表明该序列可能是非平稳时间序列。这种方法直观简单,但主观性较强。一个零均值平稳时间序列的自相关和偏自相关函数,要么拖尾,要么截尾。如果零值化的时序既不拖尾,也不截尾,而是呈现出缓慢衰减或者周期性衰减,则认为可能存在趋势或周期性,应视为非平稳。该方法是首先对序列拟合一个恰当的模型,再针对该模型计算其对应特征方程的特征根。如果它的所有特征根均在单位圆之外,则该序列平稳;否则非平稳。该方法可以检验序列是否存在单调趋势。原理:将序列分成几段,计算每一段的均值或方差,组成新的序列。若原序列无明显趋势变化则均值(或方差)序列的逆序总数不应过大或过小,过大说明原序列有上升的趋势,过小说明序列有下降趋势。原理:在原序列与趋势变化的原假设下,原序列的每个值与序列均值对比后的符号序列的游程不应过小或过多。过小或过多均表示原序列存在某种趋势。1、DF 统计量的分布特征给出三个自回归模型前面所述的单变量模型只含有一阶的滞后,当模型中含有更高阶滞后项时,有类似的分析结论。此时对β是否等于1的检验称为ADF 检验。(2)根据不同的模型选用DF 或ADF 统计量,每个统计量均有三种情况选择:含截距项、含截距项和趋势项以及不含截距项和趋势项。(3)DF (ADF )

检验采用的是最小二乘估计。(4)DF (ADF )检验是左侧单边检验。当DF (ADF )<临界值时,拒绝H0 ,即序列为平稳的;当DF (ADF )>临界值时接受H0 ,即序列为非平稳的。第二节平稳化方法本节介绍三种常用的平稳化方法:差分、季节差分以及对数变换与差分结合运用。普通差分第三节齐次非平稳序列模型齐次非平稳第四节非平稳时间序列的组合模型组合模型建模步骤* 数据图检验法自相关、偏自相关函数检验法特征根检验法系统的平稳性即可以用特征根表示,也可以用模型的自回归参数表示。要检验一个系统的平稳性,可以先拟合适应的模型,然后再根据求出的自回归参数来检验。参数检验法逆序检验法逆序列检验步骤:首先,将原序列分成M段,求出每一段的均值或方差。第二步,计算均值序列或方差序列的逆序总数。第三步,计算统计量进行检验在原假设条件下,A具有以下期望与方差其中,M为数据个数。统计量渐近服从N(0,1) 。游程检验法游程检验步骤:首先,将原序列每个值与其均值对比,得到记号序列。第二步,设序列长度为N,。在序列没有趋势的原假设条件下,游程总数r服从r 分布。当大于15 时统计量单位根检验其中是平移项(截距项),是趋势项。设显然对于以上三个模型,当时,时,是平稳的,当是非平稳的。若,统计量渐进服从标准正态分布。若,统计量若的分布将会有很大不同定义,当统计量DF 收敛于维纳过程的函数。时,此极限分布不能用解析的方法求解,通常要用模拟和数值计算方法进行研究。对于三个模型β是否等于1的检验称为DF 检验。2、单位根检验过程:(1)一般地二阶差分一阶差分例:对温度序列作一阶差分。

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 - -c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2λ=3λ=

非线性动力学——时间序列分析读书报告

非线性动力学时间序列分析读书报告 Email:dragon_hm@https://www.wendangku.net/doc/564357545.html,

1.时间序列分析简介 用随机过程理论和数理统计学方法研究随机数据序列所遵从的统计规律,以用于解决实际问题。由于在大多数问题中,随机数据是依时间先后排成序列的,称为时间序列。它包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于随机序列的最优预测、控制和滤波等内容。 经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,用 x(t)表示某地区第 t月的降雨量,*x(t),t=1,2,…+是一时间序列。对t=1,2,…,T记录到逐月的降雨量数据x(1),x(2),…,x(T)称为长度为T的样本序列。依此,即可使用时间序列分析方法,对未来各月的雨量x(T+i) i=1,2,…进行预报。 时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界之目的,而且运用时间序列模型还可以预测和控制现象的未来行为。时间序列分析在第二次世界大战前就已应用于经济预测。二次大战中和战后,在军事科学、空间科学和工业自动化等部门的应用更加广泛。 2.时间序列概述 时间序列包含一系列数据,这些数据是随时间或者其他变量的增加而得到的,并随着时间的改变,变量值的序列组成了一个时间序列。例如,股票每天的收盘价格就是一个时间序列,每年客运流量是一个时间序列,某种商品的销售数量也是一个时间序列,时间序列存在于日常生活之中。 2.1 时间序列的定义 时间序列是指按照时间顺序获得的一系列观测值。从数学意义上讲,如果对某一过程中的某一变量或一组变量 X(t)进行观察测量,在一系列时刻t1,t2,…,t n (t 为自变量,且t1

SAS分析非平稳时间序列

运用SAS对谷物产量进行分析 一、摘要 利用SAS软件(程序见附录)判断谷物产量数据为平稳序列且为非白噪声序列,然后先后通过模型的识别、参数的估计、模型的优化、残差白噪声检验,确定AR(1)模型拟合时间序列显著有效。由于时间序列之间的相关关系,且历史数据对未来数据有一定的影响,对未来5期的谷物生产量进行预测。 二、理论准备 首先判断序列的随机性和平稳性。通过随机性检验,判断该序列是否为白噪声序列,如果是白噪声序列,就认为该随机事件没有包含任何值得提取的有用信息,我们就应该终止分析。通过平稳性检验,序列可以分为平稳序列和非平稳序列。如果序列平稳,通过相关计算进行模型拟合,并利用过去行为对将来行为进行预测,达到预测效果。如果序列为非平稳,再确定模型为非平稳序列中四大类模型中的哪种种模型或者几种模型对序列的综合影响,通过把序列转化为平稳序列,再进一步分析。 三、数据选取 本实验采用某地区连续74年的谷物产量(单位:千吨),如下所示: 0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.18 1.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.81 0.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.93 0.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25 0.79 1.19 0.69 0.92 0.86 0.86 0.85 0.90 0.54 0.32 1.40 1.14 0.69 0.91 0.68 0.57 0.94 0.35 0.39 0.45 0.99 0.84 0.62 0.85 0.73 0.66 0.76 0.63 0.32 0.17 0.46 四、数据进行平稳性与纯随机性的检验与判别 (一)序列的纯随机性检验 图1序列延迟6阶LB检验结果 序列纯随机性检验结果显示延迟6阶LB检验统计量的P值小于1%的显著性水平0.0001,说明序列之间蕴含着很强的相关信息,即该序列是非随机性序列,为非白噪声。

非线性时间序列分析及其应用

抄完温师兄的笔记,觉得蛮过瘾;于是继续抄抄抄...这两天终于抄累了,决定不再抄了.已经整理成电子版的,尽量发文发上来,就此作罢;天知道怎么会抄e版笔记也会抄上瘾?看来真有点控制不住自己,就跟小时候逃课去打街机一个德性... 再不抄了,就此作罢. 非线性时间序列的例子 1.Logistic模型x n+1=Rx n(1-x n) R=1.5时,不管初始状态x0在何处,随时间的演化,系统都将单调地趋向于1/3, R=2.9时,不管初始状态x0在何处,随时间的演化,系统都将交替地趋向于19/29, Logistic模型R=3.3时, 不管初始状态x0在何处,随时间的演化,系统都将在0.48和0.82两个状态之间周期性地变化, R=4时,随时间的演化,系统将出现不规则的振荡,看起来好像是随机的-- ->表明系统对初值具有非常敏感的依赖性,也说明这样的系统只能进行短期预测,要进行较长时间的预测会变得不正确. 2.弹簧振子受迫振动 3.Lorenz系统 dx/dt=sigma (y-z) dy/dt=x(r-z)-y dz/dt=xy-bz 取sigma=10,r=28,b=8/3时,系统是混沌的. 4.实际问题中的实测时间序列 股票指数时间序列 太阳黑子数时间序列 Chapter 2:单变量非线性时间序列分析 例2.1 Henon映射: x n+1=1-1.4x n2+y n y n+1=0.3x n 该系统实际上只与状态变量x n的前两个时刻的状态有关. 相空间重构的基本原理是F.Takens和R.Mane的延迟嵌入定量,它建立了观测信号系统时间波动和动力系统特征之间的桥梁. 基本思想: 通过观测或实验获得单变量时间序列{x n},做以下相空间重构: x n=(x n,x n-tao,…,x n-(m-1)*tao) 从而形成m维状态空间,在重构的m维状态空间中可以建立数学模型: x n+1=G(x n) F.Takens和R.Mane证明了只要适当选取m和tao,原未知数学模型的混沌动力系统的几何特征与重构的m维状态空间的几何特征是等价的,它们具有相同的拓扑结构,这意味着原未知数学模型的混沌动力系统中的任何微分或拓扑不变量可以在重构的状态空间中计算,并且可以通过在重构的m维状态空间中建立数学模型对原未知数学模型的动力系统进行预测,进一步解释/分析/指导原未知数学模型的动力系统. 相空间重构

第三章平稳时间序列分析

t P p t t t t t x B x x B x Bx x ===---M 221第3章 平稳时间序列分析 一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。 3.1 方法性工具 3.1.1 差分运算 一、p 阶差分 记 t x ?为t x 的1阶差分:1--=?t t t x x x 记t x 2 ?为t x 的2阶差分:21122---+-=?-?=?t t t t t t x x x x x x 以此类推:记 t p x ?为t x 的p 阶差分:111---?-?=?t p t p t p x x x 二、k 步差分 记t k x ?为t x 的k 步差分:k t t t k x x x --=? 3.1.2 延迟算子 一、定义 延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。记B 为延迟算子,有 延迟算子的性质: 1. 10 =B 2.若c 为任一常数,有1 )()(-?=?=?t t t x c x B c x c B 3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B 4. n t t n x x B -= 5.)!(!!,)1()1(0 i n i n C B C B i n i i n n i i n -= -=-∑=其中 二、用延迟算子表示差分运算 1、p 阶差分 t p t p x B x )1(-=? 2、k 步差分 t k k t t t k x B x x x )1(-=-=?- 3.2 ARMA 模型的性质 3.2.1 AR 模型 定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p): t s Ex t s E Var E x x x x t s t s t t p t p t p t t t πΛ?=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε (3.4) AR(p)模型有三个限制条件: 条件一: ≠p φ。这个限制条件保证了模型的最高阶数为p 。 条件二: t s E Var E t s t t ≠===,0)(,)(,0)(2εεσεεε。这个限制条件实际上是要求随机干扰序列 }{t ε为 零均值白噪声序列。 条件三:t s Ex t s π?=,0ε。这个限制条件说明当期的随机干扰与过去的序列值无关。 通常把AR(p)模型简记为: t p t p t t t x x x x εφφφφ+++++=---Λ22110 (3.5)

非平稳时间序列

第七章非平稳时间序列 时间序列数据被广泛地运用于计量经济研究。经典时间序列分析和回归分析有许多假定前提,如序列的平稳性、正态性等,,如果直接将经济变量的时间序列数据用于建模分析,实际上隐含了这些假定。在这些假定成立的条件下,进行的t检验、F检验与2 等检验才具有较高的可靠度。但是,越来越多的经验证据表明,经济分析中所涉及的大多数时间序列是非平稳的。那末,如果直接将非平稳时间序列当作平稳时间序列来进行分析,会造成什么不良后果?如何判断一个时间序列是否为平稳序列?当我们在计量经济分析中涉及到非平稳时间序列时,应作如何处理呢?这就是本章要讨论的基本内容。 第一节伪回归问题 经典计量经济学建模过程中,通常假定经济时间序列是平稳的,而且主要以某种经济理论或对某种经济行为的认识来确立计量经济模型的理论关系形式,借此形式进行数据收集、参数估计以及模型检验,这是20世纪70年代以前计量经济学的主导方法。然而,这种方法所构建的计量经济模型在20世纪70年代出现石油危机后引起的经济动荡面前却失灵了。这里的失灵不是指这些模型没能预见石油危机的出现,而是指这些模型无法预计石油危机的振荡对许多基本经济变量的动态影响。因此引起了计量经济学界对经典计量经济学方法论的反思,并将研究的注意力转向宏观经济变量非平稳性对建模的影响。人们发现,由于经济分析中所涉及的经济变量数据基本上是时间序列数据,而大多数经济时间序列是非平稳的,如果直接将非平稳时间序列当作平稳时间序列进行回归分析,则可能会带来不良后果,如伪回归问题。 所谓“伪回归”,是指变量间本来不存在有意义的关系,但回归结果却得出存在有意义关系的错误结论。经济学家早就发现经济变量之间可能会存在伪回归现象,但在什么条件下会产生伪回归现象,长期以来无统一认识。直到20世纪70年代,Grange、Newbold研究发现,造成“伪回归”的根本原因在于时间序列变量的非平稳性。他们用Monte Carlo模拟方法研究表明,如果用传统回归分

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析 很多时间序列表现出非平稳的特性:随机变量的数学期望和方差随时间的变化而变化。宏观经济数据形成的时间序列中有很多是非平稳时间序列。非平稳时间序列与平稳时间序列具有截然不同的特征,研究的方法也很不一样。因此,在对时间序列建立模型时,必须首先进行平稳性检验,对于平稳时间序列,可采用第七章的方法进行分析,对于非平稳时间序列,可以将采用差分方法得到平稳时间序列,然后采用平稳时间序列方法对差分数据进行研究,对于多个非平稳时间序列则可以采用协整方法对其关系进行研究。 8.1 随机游动和单位根 8.1.1随机游动和单位根 如果时间序列t y 满足模型 t t t y y ε+=-1 (8.1) 其中t ε为独立同分布的白噪声序列, ,2,1,)(2==t Var t σε,则称t y 为标准随机游动 (standard random walk )。随机游动表明,时间序列在t 处的值等于1-t 时的值加上一个新息。如果将t y 看作一个质点在直线上的位置,当前位置为1-t y ,则下一个时刻质点将向那个方向运动、运动多少(t ε)是完全随机的,既与当前所处的位置无关(t ε与1-t y 不相关),也与以前的运动历史无关(t ε与 ,,32--t t y y 不相关),由质点的运动历史和当前位置不能得出下一步运动方向的任何信息。这便是 “随机游动”的由来。 随机游动时间序列是典型的非平稳时间序列。将(8.1)进行递归,可以得出 010 211y y y y t s s t t t t t t t +==++=+=∑-=----εεεε (8.2) 。如果初始值0y 已知,则可以计算出t y 的方差为2)(σt y Var t =。由此看出随机游动在不同 时点的方差与时间t 成正比,不是常数,因此随机游动是非平稳时间序列。下图给出了随12机游动时间序列图: 图8.1 随机游动时间序列图 将随机游动(8.1)用滞后算子表示为 t t y L ε=-)1( (8.3) ,滞后多项式为L L -=Φ1)(。显然1=L 是滞后多项式的根,因此随机游动是一个单位根过程(unit root process )。随机游动是最简单的单位根过程。 随机游动的概念可以进行推广。如果时间序列t y 满足 t t t y c y ε++=-1 (8.4)

非线性时间序列 第五章

127 第五章 非参数密度估计 5.1 引论 在非参数函数估计中,平滑是最基本的方法之一,通常被称为一维散点图平滑和密度估计. 在多维框架下,平滑是建立非参数估计的有用的构建模块. 平滑首先从时间序列中的谱密度估计中产生. 在对Bartlett (1946)的富有创新的文章的讨论中,Henry E. Daniels 指出,谱密度估计的一个可能的修正可以通过平滑周期图来实现. 然后,这一问题的理论和方法由Bartlett (1948,1950)系统地发展起来. 这样,早在半个世纪以前,平滑方法便已是时间序列分析的一个重要部分. 平滑问题在时间序列分析的各个方面经常出现. 平滑方法为概述一个给定的时间序列的边缘分布提供了有用的图解工具. 它们还可用于估计和消除慢变时间趋势. 这就产生了时域平滑. 研究一个时间序列和它的延迟序列联系的需要产生了状态域平滑. 这些方法能够容易地推广到估计一个时间序列的条件方差(波动性). 为了检验周期形式和别的特征,比如时间序列的功率谱,平滑方法常常用来估计谱密度. 在拟合一个时间序列数据时,一个重要的问题是拟合模型的残差的行为是否像白噪声. 对这类非参数拟合优度检验,非参数函数估计提供了有用的工具. 这个内容将本章和下一章中讨论. 最简单的非参数函数估计问题可能是密度估计. 这种简单结构对理解非参数建模和推断中更复杂的问题提供了有用的工具. 这就是我们在本章中讨论非参数密度估计的目的. 5.2 核密度估计 国库券收益的分布是什么?直方图是回答这类问题的经典的方法. 核密度估计是对直方图方法的改善. 它用来验证数据集合的所有分布特征. 这些包括密度峰和谷的数目和位置以及密度的对称性. 它是揭示非参数函数估计基本特性的最简单的工具. 对密度估计和它的应用的全面的讨论在Devroye 和Gy ?rfi (1985),Silverman (1986)以及Scott (1992)给出. 给定T 个数据点1,,T X X ,通过对每一个观测点乘以量1/T 可得到这些数据点的 经验分布函数: 1 1()()T t t F x I X x T ==≤∑. 这个累积分布函数是非降的,对验证给定分布的全面的结构不是太有用的. 当人们论及分布时,其脑海里常常有密度函数. 然而,经验分布函数的密度是不存在的. 对经验分布函

非线性时间序列分析在气候中的应用研究进展

非线性时间序列分析在气候中的 应用研究进展 彭跃华1,2 于江龙3 (1.解放军理工大学气象学院,南京211101; 2.中国科学院大气物理研究所; 3.总参气象水文空间天气总站) 提 要:非线性时间序列分析方法在气候领域中的应用主要包括如下三个方面:观 测数据处理、气候突变和气候预测。综述众多文献的结果表明,有许多学者为非线性时间序列分析方法在气候领域中的应用做了大量的工作,大部分文章用到了非线性时间序列分析方面较新的方法,几乎每种方法都能在某个方面取得一定的成功。但这些大多是个例的研究,得出的结论有待更多的验证和理论上更系统的阐述;可用于业务预测且可提高预报技巧的方法仍需探求。非线性时间序列分析在气候中的应用还是任重而道远。关键词:非线性 时间序列分析 气候 Research Advances of Nonlinear Time Series Analysis Applying in Climatology Peng Yuehua 1,2 Yu Jianglong 3 (1.Institute of Meteorology ,PLA University of Science and Technology ,Nanjing 211101; 2.Institute of Atmospheric Physics ,Chinese Academy of Sciences ; 3.Meteorology ,Hydrology and Space Weather Terminal Center of G eneral Staff ) Abstract :The application of nonlinear time series analysis in climatology mainly includes three as 2pects as follows :observation data processing ,abrupt change of climate and climatological predic 2tion.The results of summarizing many papers show that ,a great deal of scholars contribute a lot to the application of nonlinear time series analysis in climatology.Most of the papers have used new methods in nonlinear time series analysis and almost every method can come to the top in some fields.However ,they are just results with case study on the whole ,the inclusions need more validation and more systemic illustration ;it is necessary to hunt methods used in operational prediction and enhancing forecast skill.There is still a long way to go.K ey Words :nonlinear time series analysis climate  收稿日期:2009年4月23日; 修定稿日期:2009年7月1日 第35卷,第10期2009年10月 气 象 M ETEOROLO GICAL MON THL Y  Vol.35No.10 October ,2009

相关文档
相关文档 最新文档