文档库 最新最全的文档下载
当前位置:文档库 › 以太网

以太网

以太网
以太网

包含了一系列构成互联网基础的网络协议。这些协议最早发源于美国国防部的DARPA互联网项目。TCP/IP字面上代表了两个协议:TCP传输控制协议和IP 互联网协议。

时间回放到1983年1月1日,在这天,互联网的前身Arpanet中,TCP/IP 协议取代了旧的网络核心协议NCP(Network Core Protocol),从而成为今天的互联网的基石。最早的的TCP/IP由Vinton Cerf和Robert Kahn两位开发,慢慢地通过竞争战胜了其它一些网络协议的方案,比如国际标准化组织ISO的OSI模型。TCP/IP的蓬勃发展发生在上世纪的90年代中期。当时一些重要而可靠的工具的出世,例如页面描述语言HTML和浏览器Mosaic,导致了互联网应用的飞束发展。

随着互联网的发展,目前流行的IPv4协议(IP Version 4,IP版本四)已经接近它的功能上限。IPv4最致命的两个缺陷在与:

地址只有32位,IP地址空间有限;

不支持服务等级(Quality of Service, Qos)的想法,无法管理带宽和优先级,故而不能很好的支持现今越来越多的实时的语音和视频应用。因此IPv6 (IP Version 6, IP版本六) 浮出海面,用以取代IPv4。

TCP/IP成功的另一个因素在与对为数众多的低层协议的支持。这些低层协议对应与OSI模型中的第一层(物理层)和第二层(数据链路层)。每层的所有协议几乎都有一半数量的支持TCP/IP,例如: 以太网(Ethernet),令牌环(Token Ring),光纤数据分布接口(FDDI),端对端协议( PPP),X.25,帧中继(Frame Relay),ATM,Sonet, SDH等。

目录

TCP/IP协议栈组成

整个通信网络的任务,可以划分成不同的功能块,即抽象成所谓的” 层” 。用于互联网的协议可以比照TCP/IP参考模型进行分类。TCP/IP协议栈起始于第三层协议IP(互联网协议) 。所有这些协议都在相应的RFC文档中讨论及标准化。重要的协议在相应的RFC文档中均标记了状态: “必须“ (required) ,“推荐“ (recommended) ,“可选“ (elective) 。其它的协议还可能有“ 试验“(experimental) 或“ 历史“(historic) 的状态。

必须协议

所有的TCP/IP应用都必须实现IP和ICMP。对于一个路由器(router) 而言,有这两个协议就可以运作了,虽然从应用的角度来看,这样一个路由器意义不大。实际的路由器一般还需要运行许多“推荐“使用的协议,以及一些其它的协议。

在几乎所有连接到互联网上的计算机上都存在的IPv4 协议出生在1981年,今天的版本和最早的版本并没有多少改变。升级版IPv6 的工作始于1995年,目的在与取代IPv4。ICMP 协议主要用于收集有关网络的信息查找错误等工作。

推荐协议

每一个应用层(TCP/IP参考模型的最高层) 一般都会使用到两个传输层协议之一: 面向连接的TCP传输控制协议和无连接的包传输的UDP用户数据报文协议。

其它的一些推荐协议有:

TELNET (Teletype over the Network, 网络电传) ,通过一个终端(terminal)登陆到网络(运行在TCP协议上)。

FTP (File Transfer Protocol, 文件传输协议) ,由名知义(运行在TCP协议上) 。

SMTP (Simple Mail Transfer Protocol,简单邮件传输协议) ,用来发送电子邮件(运行在TCP协议上) 。

DNS (Domain Name Service,域名服务) ,用于完成地址查找,邮件转发等工作(运行在TCP和UDP协议上) 。

ECHO (Echo Protocol, 回绕协议) ,用于查错及测量应答时间(运行在TCP 和UDP协议上) 。

NTP (Network Time Protocol,网络时间协议) ,用于网络同步(运行在UDP 协议上) 。

SNMP (Simple Network Management Protocol, 简单网络管理协议) ,用于网络信息的收集和网络管理。

BOOTP (Boot Protocol,启动协议) ,应用于无盘设备(运行在UDP协议上)。可选协议

最常用的一些有

支撑万维网WWW的超文本传输协议HTTP,

动态配置IP地址的DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),

收邮件用的POP3 (Post Office Protocol, version 3, 邮局协议) ,

用于加密安全登陆用的SSH (Secure Shell,用于替代安全性差的TELNET) ,用于动态解析以太网硬件地址的ARP (Address Resolution Protocol,地址解析协议) 。

范例: 不同计算机运行的不同协议

一个简单的路由器上可能会实现ARP, IP, ICMP, UDP, SNMP, RIP。

WWW用户端使用ARP, IP, ICMP, UDP, TCP, DNS, HTTP, FTP。

一台用户电脑上还会运行如TELNET, SMTP, POP3, SNMP, ECHO, DHCP, SSH, NTP。

无盘设备可能会在固件比如ROM中实现了ARP, IP, ICMP, UDP, BOOT, TFTP (均为面向数据报的协议,实现起来相对简单)。

TCP/IP基础讲座-1:1层,2层,3层?

读过关于网络的课程的,都知道ISO-OSI 7层协议这个名词,许多书籍都会具体的画出那幅图,然后标注上物理层,数据链路层,网络层等等.背的大家要死.但是却又不知道具体这些层次干吗用的勒?

其实在互联网中,由于实际使用的是TCP/IP模型,也就是DOD模型(现在不知道没关系,后面会说).所以7层模型在现实网络环境中只是一个理论上,学究派的东西.这个模型中,我们真正关心的是下面的3层.

1.物理层 .哦.是的.这个名词还算容易了解.网卡还有那些网线构成了这一层.那些在网线中传播的二进制数据流是这层的具体表象.也就是说,这一层上面没有什么协议(不是很精确的说法,但是你可以这么理解).有的都是电流而已.我们把两台机器用网线连起来.或者用HUB把机器都连起来,这些工作就是物理层的工作.

有2个设备属于物理层的,一个是中继器,一个是HUB.大家知道.物理上面的连线距离一长就会产生电信号的衰减.为了重新加强这个信号,我们就需要在一定距离之后加上一个信号放大器,这就是中继器(repeater)

恩...这个比较容易理解.repeater就是连接在2根网线之间的么.没有做任何处理.所以只是一个物理设备.属于1层的.

那么集线器(HUB) 呢?这个怎么会是在1层???似乎非常难以理解.

当我说出HUB的本质,大家就能够清楚了解了

HUB的本质其实只是一个多口中继器(MULTI PORT REPEATER) .啊...这样大家能够理解了.HUB不叫多口中继器其实只是为了销售上面的策略.他的本质就是连接多根网线的一个物理设备.也是不对经过的电信号做任何逻辑处理的.

2.数据链路层

欧~这个名词有些别扭了.DATA LINK层.英文似乎更加容易理解.

这个层面上面的东西不再是电信号了.而是DATA了.对,既然是DATA就有了逻辑关系了.这个层面上面的基本单位是帧(Frame) .这层和物理层的接触是最紧密的.他是把从网线上面传输的电流转换成0和1的组合.

物理层只是网卡对网线发出或者接受各种电平信号,那就是说物理层是无法判别电流的来源和目标的.那么把电流打成0和1的帧之后.里面就有逻辑数据了.有了数据,就可以判别数据从何而来,到何处去.所以也就可以真正的形成LINK.

既然可以判别地址,那么地址是按照什么来判别的呢?

那就是最重要的概念之一:MAC地址

大家肯定都听说过我们的网卡都有MAC地址

有些人可能也知道MAC地址都是唯一的.

对.MAC地址是全球唯一的.也就是说你的网卡虽然便宜.但是他也是世界上独一无二的.

有些人说他可以改MAC.那就不是唯一了.对.虽然可以更改,那只是欺骗上层对封包里面的MAC地址进行改写.你网卡真正的MAC地址是固化的.无法修改的.

我们有了MAC地址了.这样就可以有针对性对所有连接在一起的计算机进行通讯了.是的.我们终于可以在一个局域网内通讯了.

但是有个问题我们前面没有提到.就是既然物理层传输的是电信号.那么如果我有2台机器一起发电信号,信号岂不是混乱了么?

非常正确.这个问题在网络里面成为"碰撞",所以协议里面规定了如果你需要往外发数据,一定需要先看看电缆里面有没有别的信号.如果没有,那就可以发.如果2者同时发送,检测到碰撞之后2者分别等待一个随机时间,然后重发.这个就是重要的"碰撞检测".

哈.看来问题解决了.不是么.现在整个网络可以正常运行了.

确实如此.但是如果连接在网络上的计算机越来越多,那么碰撞的现象会越来越频繁.这样效率一定很低了.恩.这里还有一个重要概念"冲突域".在同一个物理上连接的网络上的所有设备是属于同一个冲突域的.

接着就需要引入我们的2层设备来分割冲突域了.

网桥(Bridge) 就是连接2个不同的物理网络的.主要功能是在2个网络之间转发Frame.因为从实际中我们可以知道.其实很多时候并非整个网络都在相互通讯.最多相互通讯的一组计算机我们可以分在一个小的冲突域内.这样分割以后可以减少冲突域,也就相对的减少了冲突的机会.而之间使用网桥来桥接,由于网桥两边的通讯不是非常频繁,所以使用网桥来为2边作为"代言人".这样任

意一个小网络里面产生冲突的机会就少了.

交换机(Switch)是我们最熟悉的设备了,交换机的本质其实就是一个多口网桥(Multi port Bridge) .同理可得.交换机的每个口后面都是一个冲突域.我们都说交换机比HUB快,就是因为交换机分割了所有的冲突域.

由于现在交换机非常便宜.所以一般我们都是直接在交换机的口上接计算机.这样每台计算机都是一个独立的冲突域.这样碰撞的问题就没有了.所以速度是比HUB快.

而前面说过.2层设备主要是个转发的功能.交换机的主要功能就是转发包.而

不是让所有的冲突域直接物理连接.所以交换机有CPU,有内存,可以对frame 进行处理等等.这些也是交换机和HUB的区别.

3.网络层

我们前面的一些技术就可以构建出局域网了.有了网络层以后.数据才能够真正的在整个世界间传送

由于伦纳德?博萨卡(Leonard Bosack)和姗蒂?雷纳(Sandy Lerner)为了解决他们之间的通信问题(关于路由器发明的版本有很多.你听到的别的说法可能

比这个说法更准确,但是谁知道呢.呵呵).路由器被发明用来解决"信息孤岛"问题.而且如果是由SWITCH来构建整个网络,那么整个网络将会有"中心节点",这样也不符合ARPANET的初衷.所以我们有了这一层.(这样说可能会感觉本末倒置,但是先这么理解吧.)

这一层的基本单元是包(Packet) .所有的包都有一个IP头.啊.听起来很熟悉不是么.IP就是用来在这层上面标识包的来源和目的地址的.

这层的一个主要概念就是"路由",也就是和switch一样,把包转发到其他的地方.不过有个不同的地方,switch只有知道具体的MAC在哪里的情况下才能够发送给指定的计算机,而路由则不需要知道最终IP所在的计算机在哪个位置,只要知道那个途径可以过去就可以工作.

这3层构建了整个网络的基础.由于TCP/IP模型将最下面2层合并成为一层,所以在TCP/IP里面总共这2层也是整个构架最基础的内容.而网络方面要做的工作也都是针对于这2层做的.

2: TCP/IP.真实世界的模型

上一讲里面我们说过OSI 7层模型只是一个理论模型,而实际中只需要保证7层的功能能够实现,实际分层无需按照7层来分.而且如果真的分7层.那么数据

处理的速度便要慢许多.

在实际应用中.使用最多的便是DoD模型.也成为TCP/IP协议簇

DoD模型(Department Of Defanse Model 美国国防部模型) 顾名思义,是美国国防部设计的一个网络模型.最早用于ARPANET.这些话可能在许多教材的第一章就会讲了.但是一般教材对于DoD模型与OSI模型对应关系都没有讲到.或者很多是模糊或者错误的.

在这里我就要描述一下2者对应关系.OSI模型有7层我们已经知道了,而DoD模型则只有4层.下面是对应关系

OSI DoD

7.Application ┐

6.Presentation |-> 4. Application/Process

5.Session ┘

4.Transport ---> 3. Host to Host

https://www.wendangku.net/doc/5a4388674.html,work ---> 2. Internet

2.Data Link ┬-> 1. Network Access

1.Physical ┘

由于我不会制表符.所以图有些难看.其实就是OSI的1.2层对应DoD的第1层

OSI的5.6.7对应DoD的第4层

其实这个还是比较容易记忆的

由于物理层和数据链路层非常密切.所以分为一个.然后上面依次对应,最上面的一大块成为应用层(处理层)

现在我们有了一个可用的实际模型了.不过一般我们在描述某个设备或者协议的时候.还是会使用OSI的模型,比如我们在讨论SWITCH的时候,就会说他是一个2层的设备.而路由器是一个3层的设备,还会有一些特殊的设备,比如3层交换机,4层交换机.这些都是使用OSI模型进行分类的.这点大家不要搞混淆了.

我们一直听说TCP或者UDP.还有什么SMTP.POP3.这些协议到底是在哪一层定义的那?接下来的一张图会给大家一个非常清晰的概念了(不能算是图

拉:D ).

4. APPLICATION

HTTP,FTP,telnet,SNMP,SMTP,POP3,DNS 等等

3.Host to Host

TCP,UDP

2.internet

ICMP,ARP,RARP,IP

https://www.wendangku.net/doc/5a4388674.html,work Access

Ethernet,FastEthernet,Token Ring 等等

恩...这下清楚了.让我们从下至上来看看

首先是最下层的.包括了以太网,快速以太网,还有现在的千M以太网等等的协议,这些协议规定了线缆的绞数.连接方式等等物理层的东西.还有底层使用MAC 通讯的方式等等.

接下来是IP.ARP这些.IP在OSI模型的时候也说过.通过IP地址.我们在转发包的时候无需知道具体目标机的位置.而路由器自然会根据路由表来转发.最后一站一站的慢慢传递.达到最终目标.而ARP协议就是在IP和MAC之间转换用的.

我在上一章提过,由于有了路由器,IP,整个网络才真正能够覆盖全球.所以这一层叫做internet大家也应该容易记忆了.

WOW.TCP,UDP是我们听说最多的了.他是属于控制网络连接的.在OSI称为Transport.传输层.在DoD内是Host to Host 端对端.意思其实是一样的.就是在在2台计算机之间构建出一个虚拟的通讯通道来.

最上面一层就无穷无尽了.所有的最终应用层的东西都在这里,你甚至可以定义你自己的协议类型.这些都是完全可以的.因为本身这一层就是提供给开发人员自行发挥的.只是上面列举的都经过标准化了.

TCP包头结构

源端口16位

目标端口16位

序列号32位

回应序号32位

TCP头长度4位

reserved 6位

控制代码6位

窗口大小16位

偏移量16位

校验和16位

选项32位(可选)

这样我们得出了TCP包头的最小大小.就是20字节.

UDP包头结构

源端口16位

目的端口16位

长度16位

校验和16位

恩...UDP的包小很多.确实如此.因为UDP是非可靠连接.设计初衷就是尽可能快的将数据包发送出去.所以UDP协议显得非常精简.

有一个问题,似乎这些头里面怎么没有IP地址啊.没有IP地址这些包往哪里发送那?

对.你观察的很仔细.TCP和UDP的头里面确实没有任何IP信息.我们回头想一下TCP和UDP是属于DoD的哪一层的? 对了!是第3层. 而IP则位于模型的第二层.也就是他们两者虽然有联系.但是不属于同一层.

模型的一个重要规则就是.当发送端发送一个数据,上一层将数据传往下一层的时候.上一层的包就成为了下一层包的数据部分.

而到接受端接受到数据.下一层将本层的头部信息去掉后交给上一层去处理.

那么我们来看看实际例子:

假使我们通过SMTP协议发送数据AAA到另外一段.那么数据先会被加上SMTP的头.成为[SMTP]AAA.往下发送到TCP层.成为[TCP][SMTP]AAA.再往下送到internet层[IP][TCP][SMTP]AAA.然后成为

[MAC][IP][TCP][SMTP]AAA

这样通过enternet或者FastEnternet发送到路由器.路由器得到后替换自己的MAC地址上去.传到下一级的路由器.这样经过长途跋涉.最终这个数据流到达目标机.

目标机先从下面一层开始.去掉MAC,成为[IP][TCP][SMTP]AAA往上到IP 层,恩,比对后是发送给我这个IP的.去掉,成为[TCP][SMTP]AAA.TCP接到了查看校验和,没错.往上[SMTP]AAA.最后SMTP协议去解释.得到了AAA.

万里长征终于结束.我们也将AAA发送到了目标机.大家也应该明白了为何TCP包头和UDP包头里面没有IP地址那?因为IP位于他们下面一层.TCP和UDP的包头信息是作为IP包的数据段来传送的.

IP层可不管那许多.他只管他那层的协议,也就是管把从上面层来的数据加上自己的头,传到下面一层.把从下面一层来的数据去掉头.传到上面一层.

每层都是这么干的.完美的契合完成了数据包的最终旅程.

TCP/IP的通讯协议

这部分简要介绍一下TCP/IP的内部结构。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。

TCP/IP整体构架概述

TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:

应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。

传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。

互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。

网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。

TCP/IP中的协议

以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:

1.IP

网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。

IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP 层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。

高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。

也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。

2. TCP

如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向…上?传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。

TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。

面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。

3.UDP

UDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP 不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。

欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。

4.ICMP

ICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的…Redirect?信息通知主机通向其他系统的更准确的路径,而…Unreachable?信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接…体面地?终止。PING是最常用的基于ICMP 的服务。

5. TCP和UDP的端口结构

TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。

两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:

源IP地址发送包的IP地址。

目的IP地址接收包的IP地址。

源端口源系统上的连接的端口。

目的端口目的系统上的连接的端口。

端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是…广为人知?的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。

2020.5.21 Softing 车载以太网解决方案

车载以太网解决方案 ——2020年5月21日Softing中国 近年来,为了满足智能网联汽车的开发要求,车载以太网技术开始逐渐进入人们的视野。而以太网技术已经成为下一代车载网络架构的趋势之一,其发展之迅猛,使得各主机厂纷纷产生了浓厚的兴趣并投入研发。 一、为什么使用车载以太网 1、对高带宽的要求 随着驾驶辅助系统(ADAS)、信息娱乐系统等技术的发展,目前对车载网络带宽的要求越来越高,已经超出了CAN、CAN FD等传统网络的承载能力。这也促进了车载以太网技术的快速发展和应用。

2、线束成本 传统汽车上的线束相对较多,并且布线重量较重。而博通公司研发的BroadR-Reach技术,采用单对的非屏蔽双绞线进行信号传输,使得电缆重量减轻30%,降低连接成本可达80%。 3、新的电气架构 传统的分布式电子电气架构已经难以承载汽车越来越复杂的功能,未来则是按照不同功能域集中控制ECU 的划分思路,采用域控制器的方法解决这一问题。 二、车载以太网协议架构 和传统以太网相比,车载以太网对物理层进行了修改。引入了新的100BASE-T1、1000BASE-T1。车载以太网协议通常被认为是一个5层协议系统:应用层、传输层、网络层、数据链路层、物理层,每一层都具有不同的功能。

三、业务范围 我们公司提供全流程的解决方案。覆盖电子电器架构开发、规范定义、原型车辆开发、测试与验证的解决方案。横跨了汽车开发的生命周期。 1、电子电气架构开发 电子电气架构开发是汽车电子电气系统的顶层设计,其目的是在功能需求、法规和设计要求等特定约束下,通过对功能、性能、成本和装配等各方面进行分析,得到最优的系统方案。我们可以根据客户的需求,提供以下六大部分内容的服务:

以太网学习总结

Ethernet学习综述 一、 名词解释 1. OPB:On‐chip Peripheral Bus; 2. IPIF:IP Interface; 3. MII:Media Independent Interface; 4. CSMA/CD:Carrier Sense Multiple Access with Collision Detection; 5. FCS:Frame Check Sequence; 6. SFD:Start of Frame Delimiter 7. TX:transmitter; 8. RX:receiver; 9. CRS:Carrier Sense Signal; 10. CRC:Cyclical Redundancy Check; 11. LLC:Logic Link Control; 二、 学会的概念 1.OSI模型 层1:物理层 层2:数据链路层层3:网络层 层4:传输层 层5:会话层 层6:表示层 层7:应用层 2.通信层划分 传输层——数据段(Segment) 网络层——分组(数据包)(Packet)——路由器 通信层 数据链路层——数据帧(Frame)——交换机、网桥 物理层——比特(Bit)——集线器、中继器

3. 数据链路层 9 链路就是数据传输中任何两个相邻的结点间的点到点的物理线路。 9 数据链路层分为逻辑链路控制子层(LLC )和媒体访问控制子层(MAC ) 9 逻辑链路层与物理层是相关的。 9 针对不同的物理层,提供不同的MAC 子层来访问。 4. 半双工(Half Duplex )与全双工(Full Duplex ) 9 任一时刻只能接收或发送 9 采用CSMA/CD 工作机制 半双工9 同一时刻可以发送和接收 全双工 9 最大吞吐量达到双倍速率 与半双工相比,提高了灵活性,降低了成本。 5. 集线器(HUB )与交换机(Switch ) 9 半双工机制 9 一般,一条总线 9 物理层网络设备 HUB 9 全双工机制 9 数字交叉网络 9 数据链路层网络设备 itch Sw 交换机与HUB 的最大区别就是能够做到端口到端口的转发。 6. CSMA/CD 所谓的 CSMA/CD 就是一种来避免多个设备在同一时刻抢占线路的情况 的冲突检测和避免的机制,称为带碰撞检测的载波监听多路访问。 7. 流量控制 如果发送结点的发送能力大于接收结点的接收能力,将导致接收方来不 及接收。流量控制所要解决的就是控制发送方的速率,使其不超过接收方所能承受的能力。

Ethernet信 测试方法

Ethernet信号测试方法 一、Ethernet物理层测试 1、简介 在PC和数据通信等领域中,以太网的应用非常广泛。以太网的技术从1990年10Base-T标准推出以来,发展非常迅速,目前普及的是基于双绞线介质的10兆/百兆/千兆以太网,同时10G以太网的技术也逐渐开始应用。 为了保证不同以太网设备间的互通性,就需要按照规范要求进行响应得一致性测试。测试所依据的标准主要是IEEE802.3和ANSI X3.263- 1995中的相应章节。根据不同的信号速率和上升时间,要求的示波器和探头的带宽也不一样。对于10Base-T/100Base-Tx/1000Base-T的测试需要1GHz带宽。对于10G以太网的测试,由于其标准非常多,如10GBase-CX、10GBase-T、10GBase-S等,有的是电接口,有的是光接口,不同接口的信号速率也不一样。10GBase-CX、XAUI、10GBase-T的测试至少需要8G带宽的实时示波器,10GBase-S等光接口的测试,根据不同速率则需要相应带宽的采样示波器。 要进行一致性测试,首先要保证的是测量的重复性,由于以太网信号的摆幅不大,如1000Base-T的信号幅度只有670~820mv,XAUI信号最小摆幅只有200mv,如果测量仪器噪声比较大,就会造成比较大的测量误差。

2、10M/100M/1000M以太网测试方法 对于10M/100M/1000M以太网的信号测试,可以选择Agilent 9000系列示波器,也可以选择90000系列示波器。 要进行Ethernet信号的测试,只有示波器是不够的,为了方便地进行以太网信号的分析,还需要有测试夹具和测试软件。测试夹具的目的是把以太网信号引出,提供一个标准的测试接口以方便测试,测试夹具的型号是N5395B。下图是夹具的图示。 在N5395B测试夹具上划分了不同的区域,可以分别进行10Base-T/100Base-Tx/1000Base-T的测量。另外还有专门区域可以连接网络分析仪进行回波损耗的测量。夹具附带的短电缆可以连接夹具和被测件,附带的小板用于回波损耗的测量时进行网络仪校准。 IEEE802.3规定了很多以太网信号的参数,对于10Base-T/100Base-Tx/1000Base-T的电气参数,可以分别参考IEEE802.3规范的14、25和40节。如果不借助相应的软件,要完全手动进行这些参数的测量是一件非常烦琐和耗时耗力的工作,为了便于用户完成以太网信号的测量,Agilent在8000/90000系列的Infiniium系列示波器上都提供了以太网的一致性测试软件N5392A。 下图是N5392A 以太网一致性测试软件提供的测试项目。

RS232串口转以太网

可将 RS232 串口设备连接至以太网 支持网口升级固件程序、功能全面 支持TCP服务器、TCP客户端、UDP模式 支持虚拟串口、Web登录或使用VirCom 进行配置 ZLSN2103 概述 ZLSN2103嵌入式联网模块是卓岚一款RS232和TCP/IP之间协议转化内嵌模块。ZLSN2103基于ZLSN2003模块开发,功能强大,具有网络在线升级程序功能。该联网模块可以方便地使得串口设备连接到以太网和Internet,实现串口设备的网络化升级。 ZLSN2103是一款高性价比的联网模块,RS232接口支持全双工、不间断通信,支持DHCP、DNS,可轻松实现异地远程设备监控。支持虚拟串口,原有串口PC端软件无需修改。 特点 支持在线网络升级固件程序,用户可以从卓岚公司获得软件升级工具和升级firmware,可自行升级到最高版本。 使用配置的ZLVircom工具可以搜索、管理局域网内(支持跨网段搜索)、Internet上的ZLSN2003模块。可一键式配置模块的所有参数。设备配置、管理非常方便。 支持DHCP功能,可以动态获得局域网内的DHCP服务器分配的IP。 支持DNS,自动解析目的域名为IP,目的IP可以为动态域名。 作为TCP Server(TCP服务器端)时,支持独有的100个连接的强大连接能力。 作为TCP Client(TCP客户端)的,支持连接8个目标服务器。作为TCP客户端时,可以在断线后自动进行重连。支持隐含心跳技术,保证网线断线后的恢复。 支持UDP、UDP组播等功能。 支持虚拟串口。 规格 网络界面 串口界面

软件特性 电器特性 机械特性 工作环境 可将 RS-232 串口设备连接至以太网

SK-811以太网报警升级模块使用说明书

产品概述 报警系统网络扩展模块(SK-811,简称网络模块)是配合时刻系列报警主机及时刻综合接警中心软件,实现网络报警及回控的产品。它从报警主机键盘口采集状态信息,将报警主机的状态信息由局域网、城域网或广域网向报警中心发送报告;并可以由时刻综合接警中心上模拟主机键盘,网络模块接收软件下达的指令,对时刻主机进行撤布防、旁路及旁路恢复、遥控编程等回控操作,从而建立了有线电话线报警、无线GSM网络报警之外的第三条报警通道,进一步提升了关键部门的安全防范水平。 功能特点 ☆设备升级:将具有电话线报警功能的报警设备升级为网络报 警,提高数据传送速率,增大数据传送量。 ☆体积小:体积小巧,可直接嵌入报警主机内。 ☆功能新颖:采用模拟键盘对主机进行远程布撤防、使用板载联动继电器对现场输出控制信号,可远程查看网络模 块的版本信息、主机编号、网络配置参数等。

☆配置灵活:报警主机编号、密码、组号、报警主机IP地址、端口号、网关、DNS,子网掩码等信息可进行异地远 程设置。 ☆扩展性强:可支持16路防区报警,同时还可扩展16路无线防区报警。 ☆系统安全:数据通信经过双层加密,采用软件看门狗,密码加密,对系统各项操作都需管理员密码,确保系统的 安全系数达到最高。 ☆兼容性强:可升级ADEMCO安定宝、C&K、Vista系列、SHIKE时刻等主流品牌报警器。并提供相应的SDK二次开发 包,方便用户进行软件整合,与时刻以太网综合接 警系统、SK-2008多路综合接警系统等中心软件兼 容,支持事件记录、实时信息传输,回控或视频、 报警信息双监控。 注意:请根据报警主机型号使用对应的SK811模块,各模块只能支持对应的报警主机!!

以太网概念

以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的 一个。人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。 1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。 梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltz er曾经在麻省理工学院MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。 它不是一种具体的网络,是一种技术规范。 该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。 [编辑本段] 以太网的分类和发展 一、标准以太网 开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接,并且在I EEE 802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。

Atm主干和快速以太网交换至桌面设计方案

第二部分ATM主干和快速以太网交换至桌 面设计方案

第一章概述 根据用户提出的需求,在第一部分中,我们针对ATM交换至桌面进行了方案设计投标。ATM交换至桌面具有高效高速的性能特征,但是投资巨大,要求用户一次性投入进行如此大规模的ATM网络建设对用户而言是很重的负担,而且在用户目前的网络用户数量不大的情况下也没有必要采用ATM交换至桌面的方式。 我们从实际情况出发,一方面保证用户的初期网络规模(40个工作站点左右)下的网络高速高效传输,另一方面保护用户投资,留有系统良好的扩展余地,将用户的网络设计了ATM主干传输,快速以太网(Fast Ethernet)交换至桌面的解决方案。ATM交换至桌面的传输速率为155Mbps,快速以太网为100Mbps,在用户当前的网络规模和数据流量的条件下完全能够满足需求。

第二章网络结构 联想天鹤600 网络结构图如下所示: 网络主交换机采用3 CoreBuilder 7000HD,与ATM交换至桌面的解决方案向上兼容,用户可以在需要时平滑过渡到ATM交换至桌面的方案。主交换机和二级交换机之间采用622M多模ATM交换连接,服务器与主交换机之间采用155M

多模ATM交换连接,保证了数据的高速传输。 二级交换机采用3 3C16980可堆叠式10/100M交换机+ATM交换模块,至桌面的传输速率为100Mbps,在目前条件下完全可以满足需要。在将来的应用中可用于第三级交换。

第三章网络设备 3.1 ATM主干交换机 ATM主干交换机采用3公司的CoreBuilder 7000HD交换机,具体配置:

现场总线与工业以太网学习笔记

现场总线与工业以太网 第一章 1、控制系统的发展阶段:模拟仪表控制系统——集中式数字控制系统——集散控制系统(DCS)——现场总线控制系统(FCS)。FCS作为新一代控制系统,一方面突破了DCS系统采用专用通信网络的局限,另一方面,把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。可以说,开放性、分散性和数字通信是FCS最显著的特征。 2、现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络,有通信就必须有协议。故现场总线实质上就是一个定义了硬件接口和通信协议的标准。是将自动化最底层的现场控制器和现场智能仪表设备互联的实时控制通信网络。而FCS是用开放的现场总线通信网络,实现将自动化最底层的现场控制器和现场智能仪表设备互联的实时网络控制系统。 3、现场总线和局域网的区别 现场总线是连接自动化最底层的现场控制器和现场智能仪表设备互联的实时控制通信网络。传输小批量数据信息,如检测信息、状态信息、控制信息等,但传输速率低,实时性高。简言之,现场总线就是一种实时控制网络。局域网用于连接局部区域的各台计算机,网络上传输的是大批量的数字信息,但不要求实时性。局域网是一种高速

信息网络。. 可以采用各种通讯介质,如双绞线、电力线、光纤、无现场总线局域网需要用专用电缆,如同轴电缆、光纤等。线射频、远红外等。4、 现场总线控制系统体系结构企业管理层NT服务器(数据网络)局域网过程监控层 其他工作站监控工作站(数据网络)现场总线接口现场总线网段现场控制层(控制网络)差压变送器温度变送器调节阀差压变送器差压变送器现现现现现现现现现现现现5、开放性、分散性、低成本性是现场总线最显著的3大特征 6、具有代表性的现场总线 (1)CAN(控制器局域网络)总线;(2)LonWorks总线 (3)HART总线;(4)ModBus总线 (5)CC-Link总线 第二章基金会现场总线 1、FF总线系统是现场总线基金会推出的总线系统。FF总线是一种全数字的、串行的、双向传输的通信系统,是一种连接现场中各种传信号传输系统。感器、控制器、执行单元的. 2、基金会现场总线(FF)以ISO/OSI开放系统互联参考模型为基础,并对其进行了改造而成,保留了第1层的物理层,第2层的数据链路层和第7层的应用层作为FF通信模型的相应层,将应用层分为现场总线存取和应用服务两部分,并在应用层上增加了用户层。

以太网串口通信的纯软件实现

以太网串口通信的纯软件实现 1 纯软件实现以太网串口通信的原理 串口,一般就是指计算机的RS-232口或者RS-485口,是工业通信最常用的接口。本文介绍的就是如何利用以太网先组成局域网,再让2台或多台计算机都安装上即时通信软件进行联系,然后将即时通信软件接收到的信号发送到计算机的串口,并且可以将串口收到的信号通过即时通信软件发送到正在进行即时通信联系的远端计算机。这样就用纯软件方法实现了以太网串口通信。 近年来,随着网络技术高速发展,即时通信软件得到了大量的使用,包括基于以太网(局域网)的企业即时通讯软件和基于互联网的个人即时通讯软件。即时通信软件使得任何两个甚至多个用户借助于局域网或者互联网可以进行通信,但是目前仅仅局限于数据、文件等交换,还没有实现串口通信的功能。本文的方法在本质上就是把串口要发送的数据按照TCP/IP协议进行重新排列后通过即时通讯软件发送到以太网连接的局域网,同时也把以太网通过即时通讯软件从局域网收到的数据按照TCP/IP格式提取出来后再按照串口通信的格式组合后接收。常用的串口通信格式为(9600,N,8,1),意思就是通信的速率(波特率)为9600bps,即每秒9600位,N表示无奇偶校验位,8表示用8个字节表示一个数,1就是最后再加上1位附加位。以太网TCP/IP协议的数据包括帧同步、地址、类型、数据、校验。把串口要发送的一个数据去掉校验位和附加位提取出8个字节的纯数据,然后将它填充到以太网帧的数据部分,并且再补充任意38个字节到46个字节就可以构成一帧以太网的数据包发送出去。同理,把以太网收到的一帧数据包去掉帧同步、地址、类型和校验后得到46个字节的纯数据,只取前面的8个字节,然后加上校验位和附加位按照波特率由串口接收。 2 局域网串口即时通信软件 串口即时通信软件是一种在局域网甚至互联网内实现串口即时通信的软件。好灵通V11是局域网版本。只要2台或者多台计算机位于一个局域网内,那么借助于好灵通软件可以实现这些计算机的串口之间的即时通信,也可以实现透明传输和多机通信。好灵通V11同时是一款功能齐全的局域网聊天工具,最新的版本不再依赖特定的串口转换器,因而可以零硬件成本用纯软件实现以太网的串口通信。(专利:基于即时通信软件的串口控制器ZL201120133429) (1)好灵通是一种能够实现串口硬件控制的即时通信软件,不仅仅能够即时交换信息,而且还能够对远端的串口设备进行控制。是世界上唯一具有串口通信功能的即时通信产品。(2)局域网版的好灵通v11可以在同一局域网段内部实现即时通信和串口控制,包括有线的以太网局域网和无线WIFI局域网。是一款很实用的局域网通信及串口控制工具,可以发送文字、文件、对话等、还可以设置串口COM号、波特率等。(3)可以实现有线或无线局域网内串口的透明传输。甚至不同波特率和格式也可以。(4)完全可以作为局域网聊天工具!可以聊天、

10M以太网升级到100M和1000M所要解决的主要技术问题

10M以太网升级到100M和1000M所要解决的主要技术问题 高见 E-Mail:gaojiangigi@https://www.wendangku.net/doc/5a4388674.html, 海南大学信息学院2000电本2000714050 摘要:根据以太网技术发展的情况,介绍高速以太网的几种物理层标准,比较传统局域网与高速局域网的差异,以及如何用现有的网络升级到高速甚至更高速网络。 关键字:CSMA/CD,以太网,交换机,路由器。 10M Ethernet upgrades the main technological problem that 100M and 1000M should solve gaojian gaojiangigi@https://www.wendangku.net/doc/5a4388674.html, (Hainan University Information Technology College 2000 Electron Department, Haikou, 570228) Summary:According to the situation of the technical development of Ethernet, introduce several kinds of physics and one layer of standards of high-speed Ethernet, the difference of traditional LAN and high-speed LAN, and how to upgrade to the even more high-speed network of the high speed with the existing network. Keywords: CSMA/CD ,Ethernet, the exchanger , the router. 1.引言:以太网以它的设备简单,经济实惠等优点,成为中小型网络的主要结构。它占据着局域网90%的份额。是目前最流行的组网方式。随着经济的快速发展,传统的局域网已远远不能满足社会的需求。人们希望在网上可以得到更多更快的服务,不仅仅满足于以往的文本方式的浏览,这些因素促使我们将对现有局域网的改造提上日程。在部署吉比特以太网时经常要面对的问题是不得不重新布线,以便将基础设施升级为光纤。随着IEEE在1999年确定5类铜线上可以传输1GB/S以太网,这一问题得到解决。可以在经济利益和网络速率间找到平衡点。本文以下内容就传统以太网和高速以太网在技术上的异同展开讨论。 2.以太网简介:以太网技术被定义在20世纪70年代,它是根据IEEE的802.3标准来组建网的。它的主要技术规范是:CSMA/CD协议,以太网桢或数据包,全双工,流

RJ45以太网接口EMC设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计以太网口的EMC设计方案。 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC 问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明:

(1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。 图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值μF~μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2)

网络测试方案

青岛武船网络测试方案

目录 测试原则 一种好的测量方法不仅可以有效监视网络性能、找出网络瓶颈,将性能测量引起的流量降为最低,而且在故障发生时能迅速分离出故障点。理想情况下,一种测量方法应满足以下原则: 不需要额外的结构。尽可能的利用已有的网络拓扑,避免单纯为了测量而重新构造一套新的基础设施。

避免重复测量。尽可能充分的利用测量的结果,避免由于测量而引起网络资源过多的消耗。由测量引起的流量不应对网络原有的服务造成冲击,引起网络性能的下降,否则将与网络管理及性能测量的初衷相违背。 简便。在能满足上述各原则的前提下,测量方法还应尽可能的简便。尽量使用已有的测量工具,使用得到广泛支持的和充分实现的协议。例如:ICMP协议在几乎各种主机和路由器上都得到支持,因此使用ping工具来测量往返延时和丢包率就是十分简便的方法。尽管ping的方法所测得的数据有一定的局限性,其性能和其他TCP、UDP或其他IP协议有一定的出入(一般,路由器给ICMP协议的优先性较低),但考虑ping工具及ICMP协议实现的普遍性,利用ping工具测量全网的性能,尤其在测量端到端性能的时候,是最普遍的做法。 网络测试 网络设备测试 网络设备测试主要是对网络设备的运行情况、设备参数进行测试,验证网络设备参数的正确,网络运行的稳定。 测试对象:核心交换机(S12508)、汇聚交换机(S7503E)、接入交换机(S5120/S3100)。 核心交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机 测试内容:

1. QW-FLHX-1交换机

232串口转以太网232串口联网服务器

232串口转以太网,232串口联网服务器、 详细信息 ZLAN2100232串口转以太网可将RS-232 串口设备连接至以太网业界首款全双工、不间断、低成本服务器 支持TCP服务器、TCP客户端、UDP模式 支持虚拟串口、Web登录或使用VirCom 进行配置 概述 232串口转以太网服务器是一款工业级RS232和TCP/IP之间协议转化器。该串口服务器可以方便地使得串口设备连接到以太网和Internet,实现串口设备的网络化管理。和同类产品相比,其显著特点是稳定性(可以全双工、不间断发送大批量数据而不丢失一字节)和适中的价格。 特点 通过内嵌Web服务器可配置其网络参数、串口参数、登录口令等。 Web服务器支持密码登录,以防止随意修改。 支持跨网关:能够将串口服务器和任何Internet上有公网IP的主机连接。 支持1200~115200波特率。 支持9位数据发送功能:第9位可以为无、奇校验、偶校验、1、0,五种方式方便在485通信中区分数据帧和地址帧。 ZLVirCom配置工具可在网络上自动寻找设备联网服务器。 支持虚拟串口。 支持数据写保护,防止随意篡改。 支持默认配置启动。 LINK灯连接指示。 硬件流控CTS/RTS。 1KV网络浪涌保护。 外壳采用抗辐射的SECC板,保证在高电磁辐射区也能够正常工作。 规格 网络界面

串口界面 软件特性 电器特性 机械特性 工作环境 本文档将指导用户选择合适的串口转以太网方案,并且介绍各产品型号的差别。 1.串口服务器和串口转以太网模块的差别

图 1 串口服务器与串口转以太网模块 用户首先需要考虑是选择串口服务器还是串口转以太网模块。图 1所示,左边是串口服务器右边为串口转以太网模块。差别 如下: 1. 从外观上说,串口服务器是串口转以太网模块加一个外壳,该外壳具有抗电磁辐射的能力,但是如果用户是将串口转以 太网产品装到自己的机壳内,则串口服务器的外壳并没有多大意义。体积上模块在4×4×1cm 左右,串口服务器在10×8×2cm 左右。 2.从价格上说,串口转以太网模块的用户一旦使用,用量较大,模块价格为串口服务器价格的二分之一左右。对于量大用户选择模块合适。 3.从功能上说,串口服务器和串口转以太网模块的功能完全一样。 总结以上差别: 1.如果你的串口设备是一个现成的设备,而且设备机壳无法打开并放入模块的,那么你可以选择串口服务器,它可以外置使用。但是价格相对较高。 2.如果你是该串口设备的厂家,具有重新组装设计设备的能力,且用量较大,需要降低成本的,可以考虑采用串口转以太网模块,并将该模块内置到你的设备内部,并将模块的RJ45网口留到机壳外面。 2.各类串口转以太网模块的比较 接下来选择不同类型的串口转以太网模块。如图 2和图 3所示为 ZLSN2000、ZLSN3000、ZLSN4000、ZLSN2100、ZLSN3100的图片。 图 2 ZLSN2000、ZLSN3000、ZLSN4000串口转以太网模块

低端以太网交换机版本升级指导 zxr10(2609)

低端以太网交换机版本升级指导 编著:李忠武 审核:朱长飞 中兴通讯数据用服部

修改记录

目录 第1章升级准备 (1) 1.1相关说明 (1) 1.2准备工作 (1) 1.2.1 升级前的准备 (1) 1.2.2 TFTP服务器软件设置 (5) 第2章BOOTROM升级 (7) 2.1注意事项 (7) 2.2升级步骤 (7) 2.2.1 Bootrom升级步骤 (7) 2.3应急处理办法 (10) 2.4B OOTROM烧录指导 (12) 第3章软件版本升级 (17) 3.1注意事项 (17) 3.2升级步骤 (17) 3.2.1 系统正常时的版本升级 (17) 3.2.2 系统异常时的版本升级 (18) 3.3升级后的测试 (21) 3.4应急处理办法 (22)

第1章升级准备 摘要: 本文详细介绍了低端以太网交换机的升级过程,包括boot升级和版本升级,内容涵盖 28、29、50、51所有设备及衍生设备。由于每种设备,每个版本都有一些自身的特点, 所以升级还是要看具体的版本发布说明,尤其要看注意事项,升级前要做好充足的准备 工作,尤其要做好数据的备份工作,升级前后都要进行业务测试,保证升级后业务正常,重点掌握紧急情况下的回退步骤。 1.1 相关说明 一般情况下无须升级bootrom,如果发现某设备用kernel.Z无法启动,而用kernel文件可以启动,则说明该设备bootrom较老,此时如为了节省flash空间必须使用kernel.Z,则必须升级bootrom 版本。如果版本跨度太大,也会出现新版本和老boot不兼容的问题,现象是使用新版本不能正常启动,而倒换原来的老版本正常,详细看《版本发布说明》中的版本和哪些boot兼容。版本升级一般都是由于原来的版本存在某些缺陷或者需要增加某些功能,版本升级一定要得到公司技术支持部门的批准方可进行。版本升级前一定要看《版本发布说明》中,版本支持哪些功能,版本和哪些boot兼容,以确定是否要升级boot版本,如果boot或版本升级操作不当,可能会导致升级失败,造成系统无法启动。 适用人群:本文档适用于对ZXR10低端交换机的原理和操作非常熟悉,接受过相关的产品培训的人员,在进行版本升级之前,仔细阅读《版本发布说明》,认真学习升级步骤。 1.2 准备工作 1.2.1 升级前的准备 1.2.1.1 基本项目的检查和准备 1.确认交换机Console口和串口线的可用性. 一般情况下,现场都会有相应设备的配置线,但还是建议在去现场之前和用户确认一下, ZXR10低端交换机使用的配置线是一头RJ45网口(连接交换机Console口),一头是DB9 串行接口。(连接笔记本电脑,如果你的笔记本不支持串行接口,还需要使用USB转串 口线);(注:你也可以使用ZXR10全系列以太网交换机所有产品的配置线进行配置,它 们线序一致,另外和思科也一致) 串口连接配置采用VT100终端方式,建议使用功能强大的SecureCRT工具(具体的使用

各种不同以太网帧格式

各种不同以太网帧格式 利用抓包软件的来抓包的人,可能经常会被一些不同的Frame Header搞糊涂,为何用的Frame的Header是这样的,而另外的又不一样。这是因为在Ethernet中存在几种不同的帧格式,下面我就简单介绍一下几种不同的帧格式及他们的差异。 一、Ethernet帧格式的发展 1980 DEC,Intel,Xerox制订了Ethernet I的标准; 1982 DEC,Intel,Xerox又制订了Ehternet II的标准; 1982 IEEE开始研究Ethernet的国际标准802.3; 1983迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式; 1985 IEEE推出IEEE 802.3规范; 后来为解决EthernetII与802.3帧格式的兼容问题推出折衷的Ethernet SNAP 格式。 (其中早期的Ethernet I已经完全被其他帧格式取代了所以现在Ethernet只能见到后面几种Ethernet的帧格式现在大部分的网络设备都支持这几种Ethernet 的帧格式如:cisco的路由器在设定Ethernet接口时可以指定不同的以太网的帧格式:arpa,sap,snap,novell-ether) 二、各种不同的帧格式 下面介绍一下各个帧格式 Ethernet II 是DIX以太网联盟推出的,它由6个字节的目的MAC地址,6个字节的源MAC地址,2个字节的类型域(用于表示装在这个Frame、里面数据的类型),以上为Frame Header,接下来是46--1500 字节的数据,和4字节的帧校验) Novell Ethernet 它的帧头与Ethernet有所不同其中EthernetII帧头中的类型域变成了长度域,后面接着的两个字节为0xFFFF用于标示这个帧是Novell Ether类型的Frame,由于前面的0xFFFF站掉了两个字节所以数据域缩小为44-1498个字节,帧校验不变。

以太环网解决方案

以太环网解决方案 1、介绍 在数据通信的二层网络中,一般采用生成树(STP)协议来对网络的拓扑进行保护。STP协议族是由IEEE实现了标准化,主要包括STP、RSTP和MSTP等几种协议。STP最初发明的是目的是为了避免网络中形成环路,出现广播风暴而导致网络不可用,并没有对网络出现拓扑变化时候的业务收敛时间做出很高的要求。实践经验表明,采用STP协议作为拓扑保护的网络,业务收敛时间在几十秒的数量级;后来的RSTP对STP机制进行了改进,业务收敛时间在理想情况下可以控制在秒级左右;MSTP主要是RSTP的多实例化,网络收敛时间与RSTP基本相同。 近几年,随着以太网技术在企业LAN网络里面得到广泛应用的同时,以太网技术开始在运营商城域网络发展;特别是在数据,语音,视频等业务向IP融合的趋势下,增强以太网本身的可靠性,缩短网络的故障收敛时间,对语音业务,视频等业务提供满意的用户体验,无论对运营商客户,还是对于广大的企业用户,都是一个根本的需求。 为了缩短网络故障收敛时间,H3C推出了革新性的以太环网技术——RRPP(Rapid Ring Protection Protocol,快速环网保护协议)。RRPP技术是一种专门应用于以太网环的链路层协议,它在以太网环中能够防止数据环路引起的广播风暴,当以太网环上链路或设备故障时,能迅速切换到备份链路,保证业务快速恢复。与STP协议相比,RRPP协议具有算法简单、拓扑收敛速度快和收敛时间与环网上节点数无关等显著优势。 H3C基于RRPP的以太环网解决方案可对数据,语音,视频等业务做出快速的保护倒换,协同高中低端交换机推出整体的环网解决方案,为不同的应用场景提供不同的解决方案。 2、技术应用背景 当前多数现有网络中采用星形或双归属组网模型,多会存在缺乏有效保护和浪费网络资源等诸多问题,如下图所示: 图1 城域网现网存在的问题 环网优化后的结果如下图所示: 图2 环网应用到城域网中的优势

以太网入门基础-学习总结

1、什么是以太网。 ?以太网是以C S M A / C D作为M A C算法的一类L A N。 ●CS:载波侦听。 在发送数据之前进行监听,以确保线路空闲,减少冲突的机会。 ●MA:多址访问。 每个站点发送的数据,可以同时被多个站点接收。 ●CD:冲突检测。 边发送边检测,发现冲突就停止发送,然后延迟一个随机时间之后继续发送。 2、以太网的MAC地址 ●M A C地址有4 8位,但它通常被表示为12位的点分十六进制数,例如: 00e0.fc39.8034。 ●M A C地址全球唯一,由I E EE对这些地址进行管理和分配。每个地址由两 部分组成,分别是供应商代码和序列号。其中前2 4位二进制代表该供应商代 码。剩下的24位由厂商自己分配。 ●如果48位全是1,则表明该地址是广播地址。 ●如果第8位是1,则表示该地址是组播地址。 3、以太网的帧结构 ●以太网帧结构有5种:Ethernet V1(1980)、Ethernet V2(ARPA,1982)、RAW 802.3 (Novell,1983)、IEEE802.3/802.2 LLC(1985)、IEEE802.3/802.2 SNAP(1985)。目 前比较常见的为Ethernet V2和IEEE802.3。 ●区分两种帧:根据源地址段后的前两个字节的类型不同。如果值大于1500 (0x05DC),说明是以太网类型字段,EthernetII帧格式。值小于等于1500,说明 是长度字段,IEEE802.3 帧格式。因为类型字段值最小的是0x0600。而长度最大 为1500。 4、以太网通信的原则: ●同一时刻只能有一台主机在发送,但可以有多台主机同时接收——广播;如果一个 以太网报文被完全发送出去则在链路上肯定不会发生冲突,即理论上不再需要发送 第二次。 5、共享式以太网的缺点 ●在共享式以太网中,所有的主机都以平等的地位连接到同轴电缆上,但如果以太网 中主机数目较多,则存在以下严重问题:介质可靠性差、冲突严重、广播泛滥、无 任何安全性 6、传统以太网连接设备HUB ●所有的HUB都是半双工的,HUB仅仅改变了以太网的物理拓扑 ●HUB仅仅是物理上的连接设备。

网络测试方案

xx武船网络测试方案 测试原则 一种好的测量方法不仅可以有效监视网络性能、找出网络瓶颈,将性能测量引起的流量降为最低,而且在故障发生时能迅速分离出故障点。理想情况下,一种测量方法应满足以下原则: 不需要额外的结构。尽可能的利用已有的网络拓扑,避免单纯为了测量而重新构造一套新的基础设施。 避免重复测量。尽可能充分的利用测量的结果,避免由于测量而引起网络资源过多的消耗。由测量引起的流量不应对网络原有的服务造成冲击,引起网络性能的下降,否则将与网络管理及性能测量的初衷相违背。 简便。在能满足上述各原则的前提下,测量方法还应尽可能的简便。尽量使用已有的测量工具,使用得到广泛支持的和充分实现的协议。例如:ICMP协议在几乎各种主机和路由器上都得到支持,因此使用ping工具来测量往返xx和丢包率就是十分简便的方法。尽管ping的方法所测得的数据有一定的局限性,其性能和其他TCP、UDP或其他IP协议有一定的出入(一般,路由器给ICMP协议的优先性较低),但考虑ping工具及ICMP协议实现的普遍性,利用ping工具测量全网的性能,尤其在测量端到端性能的时候,是最普遍的做法。 网络测试 网络设备测试 网络设备测试主要是对网络设备的运行情况、设备参数进行测试,验证网络设备参数的正确,网络运行的稳定。 测试对象:核心交换机(S12508)、汇聚交换机(S7503E)、接入交换机(S5120/S3100)。 核心交换机 基本测试

测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FLHX-1交换机 2. QW-FLHX-2交换机 汇聚交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FLHJ-1交换机 2. QW-FLHJ-2交换机 S5120接入交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FL6-4

以太网学习笔记

DM9000模组学习笔记 摘要:本文主要介绍我学习使用DM9000以太网模组以及TCP/IP协议过程中的一些心得体会,希望能对接触此模块及网络相关领域的伙伴们提供一些参考。 1 TCP/IP协议体系简单认识 简单理解,TCP/IP协议族是一整套把各种系统连接在一起并保证数据数据准确快速传输的规定和格式。通常我们把TCP/IP协议族抽象成为一种具有四层结构的模型:链路层、网络层、运输层、应用层。每层各负责一个或一系列独立的功能。接下来将简单介绍各层的功能。其中需要注意的一点是——地址标识的概念。协议族中每一层都会有自己特有的身份识别方式。如同我们要读取某个存储器单元的数据需要有地址一样,对等的层与层之间也是依靠某些标志性信息识别传输对象的。这一点在各层的简单介绍中都会提及。 1) 应用层: 应用层直接面向用户,必须具有清晰的会话过程。如常见的HTTP协议、FTP协议等。直观来说,就是为用户提供有特定的功能的一些应用实例。 2) 运输层: 运输层提供的服务可以让应用层的程序或者进程可以通过特定的通道或特定的标志(如端口)获取流入本机的网络数据或者将应用层的数据加上这些特定的标识信息后送入发送队列中。如,A机器的某个应用程序进程PA需要传输一个文件给B机器的一个应用程序进程PB,则进程PA可以通知运输层需要占用某个端口PortA来进行通讯,并告知其需要送到的目的地址与端口号PortB。那么,进程PA通过端口PortA写入给运输层的数据就会被准确的传送到目的地B主机的PortB端口。此时,如果主机B上的进程PB已经将PortB设置为自己的监听端口,那么运输层就会将此数据送给进程PB,从而完成端到端的数据传输。可以看出,运输层就是依靠这种端到端的身份识别实现的通讯。TCP协议和UDP协议是该层中的主要协议。其中,TCP协议是基于连接、确认机制的协议,可以提供可靠的传输服务,两个进程通讯之前必须建立一条TCP连接通道,每次发送数据,对方接收到之后必须回传确认信号以表示数据的接收成功,从而保证数据从某台主机的某个端口准确传输到另一台主机的某个端口;UDP协议提供不可靠的传输服务,它仅提供最大努力的端口到端口的交付服务,并不保证数据的正确,也没有数据到达的确认机制。 3) 网络层: 网络层让信息可以发送到TCP/IP网络上的任一主机上,IP协议是该层中传送数据的主要协议。该层实现了主机到主机的通信,使得TCP/IP网络上任意两台主机之间可以准确传递数据,为上层协议的端到端通信提供了基础。事实上,站在应用层的角度,TCP/IP网络的几乎所有的数据报都是以IP数据报的形式传递的。IP协议依靠主机的IP地址传递数据。另外,网络层还包含另外两个协议:ICMP(Internet 控制报文协议)和IGMP(Internet组管理协议)。其中,ICMP协议传递差错报文以及一些其他需要注意的信息。这些差错报文被交付给IP协议或上层协议使用以便实现差错控制等。 4) 链路层: 控制着同一物理网络上的不同网络设备之间相互传递数据。链路层包含网络接口设备的驱动程序以及ARP(地址解析协议)、RARP(逆地址解析协议)等协议,依靠网络设备的硬件地址(MAC地址)

相关文档
相关文档 最新文档