文档库 最新最全的文档下载
当前位置:文档库 › 第五章 数列第5课时 数列的简单应用

第五章 数列第5课时 数列的简单应用

第五章 数列第5课时

数列的简单应用

1. (必修5P 14例4改编)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,这个剧场共有________个座位.

答案:820

2. 从2007年1月2日起,每年1月2日到银行存入一万元定期储蓄,若年利率为p ,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,到2013年1月1日将所有存款和利息全部取回,则可取回的钱的总数为________万元.

答案:1

p

[(1+p)7-(1+p)]

3. 某种细胞开始时有2个,1小时后分裂成4个并死去

1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按照此规律,6小时后,细胞的存活数是________.

答案:65

4. 办公大楼共有14层,现每一层派一人集中到第k 层开会,当这14位参加会议的人员上下楼梯所走路程的总和最小时,k =________.

答案:7或8

数列应用题常见模型 (1) 银行储蓄单利公式

利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y =a(1+rx). (2) 银行储蓄复利公式

按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,存期为x ,则本利和y =a(1+r)x (x ∈N 且x>1).

(3) 产值模型

原来产值的基础数为N ,平均增长率为p ,对于时间x 的总产值y =N(1+p)x (x ∈N 且x>1).

(4)分期付款模型

设某商品一次性付款的金额为a 元,以分期付款的形式等额地分成n 次付清,每期期末所付款是x 元,每期利率为r ,则x =ar (1+r )n

(1+r )-1

(n ∈N 且n>1).

[备课札记]

题型1 以等差数列为模型的实际问题

例1 某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.

(1) 求该企业使用该设备x 年的年平均污水处理费用y(万元);

(2) 为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?

解:(1) y =100+0.5x +(2+4+6+…+2x )

x

即y =x +

100

x

+1.5(x >0). (2) 由均值不等式得 y =x +

100

x

+1.5≥2x·100

x

+1.5=21.5, 当且仅当x =100

x ,即x =10时取到等号,

故该企业10年后需要重新更换新设备. 变式训练

(2013·江西文)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n ∈N *)为________.

答案:6

解析:S n =2×(1-2n )1-2

=2n +1

-2≥100,n ≥6.

题型2 以等比数列为模型的实际问题

例2 水土流失是我国西部大开发中最突出的问题,全国9 100万亩坡度为25°以上的坡耕地需退耕还林,其中西部占70%,2002年国家确定在西部地区退耕还林面积为515万亩,以后每年退耕土地面积递增12%.

(1) 试问,从2002年起到哪一年西部地区基本上解决退耕还林问题?

(2) 为支持退耕还林工作,国家财政补助农民每亩300斤粮食,每斤粮食按0.7元计算,并且每亩退耕地每年补助20元,试问到西部地区基本解决退耕还林问题时,国家财政共需支付约多少亿元?

解:(1) 设2002年起经x 年西部地区基本上解决退耕还林问题.依题意,得

515+515×(1+12%)+515×(1+12%)2+…+515×(1+12%)x -

1=9 100×70%,即

515×[1+1.12+1.122+…+1.12x -

1]=6 370,

1-1.12x -

1×1.121-1.12

=6 370515=1 274103 1.12x -10.12=1 274

103,

整理得1.12x ≈2.484 3

x ≈log 1.122.484 3=lg2.484 3lg1.12≈0.359 2

0.049 2

≈8.03.

又x ∈N ,故从2002年起到2009年年底西部地区基本解决退耕还林问题.

(2) 设到西部地区基本解决退耕还林问题时国家共需支付y 亿元. 首批退耕地国家应支付:515×104×(300×0.7+20)×8,

第二批退耕地国家应支付:515×104×(1+20%)×(300×0.7+20)×7, 第三批退耕地国家应支付:515×104×(1+20%)×(300×0.7+20)×6, …

最后一批退耕地国家应支付:515×104×(1+20%)7×(300×0.7+20)×1. y =515×104×(300×0.7+20)×(8+7×1.12+6×1.122+…+1×1.127)108,

令S =8+7×1.12+6×1.122+…+1×1.127,①

1.12S =8×1.12+7×1.122+6×1.123+…+1×1.128,②

②-①,得0.12S =-8×(1.12+1.122+1.123+…+1.127)+1×1.128, 即0.12S =-8+1.12-1.128×1.12

1-1.12

=-8+1.129-1.120.12≈-8+2.773-1.12

0.12

解得S ≈48.1,故y ≈(515×104×230×48.1)÷108≈569.7亿元.

故到西部地区基本解决退耕还林问题国家共需支付约570亿元. 备选变式(教师专享)

设C 1、C 2、…、C n 、…是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线y =

3

3

x 相切,对每一个正整数n ,圆C n 都与圆C n +1相互外切,以r n 表示C n 的半径,已知{r n }为递增数列.

(1) 证明:{r n }为等比数列;

(2) 设r 1=1,求数列????

??

n r n 的前n 项和.

(1) 证明:将直线y =

33x 的倾斜角记为θ,则有tanθ=33,sin θ=12

. 设C n 的圆心为(λn ,0),则由题意得r n λn =1

2,得λn =2r n ;同理λn +1=2r n +1,从而λn +1=λn

+r n +r n +1=2r n +1,将λn =2r n 代入,

解得r n +1=3r n ,故{r n }为公比q =3的等比数列.

(2) 解:由于r n =1,q =3,故r n =3n -1,从而n r n =n ×31-

n ,

记S n =1r 1+2r 2+…+n

r n

,则有

S n =1+2×3-

1+3×3-

2+…+n ×31-

n ,①

S n 3

=1×3-1+2×3-2+…+(n -1)×31-n +n ×3-

n ,② ①-②,得

2S n 3

=1+3-1+3-2+…+31-n -n ×3-

n =1-3-

n 23

-n ×3-

n =32-???

?n +32×3-n , ∴S n =94-12????n +32×31-n =9-(2n +3)×31-

n

4

. 题型3 数列中的综合问题

例3 已知各项均为正数的等比数列{a n }的公比为q ,且0<q <12

.

(1) 在数列{a n }中是否存在三项,使其成等差数列?说明理由;

(2) 若a 1=1,且对任意正整数k ,a k -(a k +1+a k +2)仍是该数列中的某一项. (ⅰ) 求公比q ;

(ⅱ) 若b n =-loga n +1(2+1),S n =b 1+b 2+…+b n ,T r =S 1+S 2+…+S n ,试用S 2 011

表示T 2 011.

解:(1) 由条件知a n =a 1q n -

1,0<q <12,a 1>0,所以数列{a n }是递减数列.若有a k ,a m ,

a n (k <m <n)成等差数列,则中项不可能是a k (最大),也不可能是a n (最小),

若2a m =a k +a n 2q m -k =1+q n -

k ,(*)

由2q m -k ≤2q <1,1+q h -

k >1,知(*)式不成立, 故a k ,a m ,a n 不可能成等差数列.

(2) (ⅰ) (解法1)a k -a k +1-a k +2=a 1q

k -1

(1-q -q 2)=a 1q

k -1

???

?-????q +122

+54, 由-????q +122

+54∈????1

4,1,知a k -a k +1-a k +2<a k <a k -1<…, 且a k -a k +1-a k +2>a k +2>a k +3>…,

所以a k -a k +1-a k +2=a k +1,即q 2+2q -1=0, 所以q =2-1.

(解法2)设a k -a k +1-a k +2=a m ,则1-q -q 2=q m -

k , 由1-q -q 2∈????

14,1知m -k =1,即m =k +1, 以下同解法1. (ⅱ) b n =1n

(解法1)S n =1+12+13+…+1

n

T n =1+????1+12+????1+12+13+…+(1+12+13+…+1n ) =n +n -12+n -23+…+n -(n -1)

n

=n(1+12+13+…+1n )-(12+23+3

4+…+n -1n )

=nS n -[(1-12)+(1-13)+(1-14)+…+(1-1

n

)]

=nS n -????(n -1)-????12+13+…+1n =nS n -????n -????1+12+13

+…+1n =nS n -n +S n

=(n +1)S n -n ,

所以T 2 011=2 012S 2 011-2 011.

(解法2)S n +1=1+12+13+…+1n +1n +1=S n +1

n +1,所以(n +1)S n +1-(n +1)S n =1,

所以(n +1)S n +1-nS n =S n +1,

2S 2-S 1=S 1+1, 3S 3-2S 2=S 2+1, … …

(n +1)S n +1-nS n =S n +1,

累加得(n +1)S n +1-S 1=T n +n ,

所以T n =(n +1)S n +1-1-n =(n +1)S n -n =(n +1)(S n +b n )-1-n

=(n +1)???

?S n +1

n +1-1-n =(n +1)S n -n ,

所以T 2 011=2 012S 2 011-2 011. 备选变式(教师专享)

已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n }的前三项.

(1) 分别求数列{a n }、{b n }的通项公式;

(2) 设T n =a 1b 1+a 2b 2+…+a n

b n (n ∈N *),若T n +2n +32n -1n

c ∈Z )恒成立,求c 的最小值.

解:(1) 设d 、q 分别为等差数列{a n }、等比数列{b n }的公差与公比,且d>0.

由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3有b 1=2,b 2=2+d ,b 3=4+2d. (2+d)2=2(4+2d),d 2=4. ∵ d>0,∴ d =2,q =b 2b 1=4

2

=2,

∴ a n =1+(n -1)×2=2n -1,b n =2×2n -

1=2n .

(2) T n =a 1b 1+a 2b 2+…+a n b n =12+322+5

23+…+2n -12n ,①

12T n =122+323+5

24+…+2n -12

n +1.② ①-②,得12T n =12+????12+122+1

23+…+12n -1-2n -12

n +1,

∴ T n =1+1-12n -1

1-12-2n -12n =3-1

2n -2-2n -12n =3-2n +32n .

∴ T n +2n +32n -1n =3-1

n <3.

∵ 3-1

n 在N *上是单调递增的,

∴ 3-1

n

∈[2,3).

∴ 满足条件T n +2n +32n -1

n

【示例】 (本题模拟高考评分标准,满分16分)

已知数列{a n }是首项为1,公差为d 的等差数列,数列{b n }是首项为1,公比为q(q >1)的等比数列.

(1) 若a 5=b 5,q =3,求数列{a n ·b n }的前n 项和;

(2) 若存在正整数k(k ≥2),使得a k =b k .试比较a n 与b n 的大小,并说明理由. 审题引导: ① 等差数列与等比数列对应项的积错位相减求和;② 作差比较.

规范解答: 解: (1) 依题意,a 5=b 5=b 1q 5-

1=1×34=81,

故d =a 5-a 15-1

=81-14=20,

所以a n =1+20(n -1)=20n -19.(3分)

令S n =1×1+21×3+41×32+…+(20n -19)·3n -

1,①

则3S n =1×3+21×32+…+(20n -39)·3n -

1+(20n -19)·3n , ② ①-②,得-2S n =1+20×(3+32

+…+3n -1

)-(20n -19)·3n

=1+20×3(1-3n -

1)

1-3

(20n -19)·3n

=(29-20n)·3n -29,

所以S n =(20n -29)·3n +292.(7分)

(2) 因为a k =b k , 所以1+(k -1)d =q

k -1

,即d =q k -

1-1

k -1

故a n =1+(n -1)q k -

1-1

k -1

.

又b n =q n -

1,(9分)

所以b n -a n =q n -1

-????

??1+(n -1)q k -1

-1k -1 =1k -1

[(k -1)(q n -1-1)-(n -1)(q k -

1-1)] =

q -1k -1

[(k -1)(q n -2+q n -3+…+q +1)-(n -1)(q k -2+q k -

3+…+q +1)].(11分)

(ⅰ) 当1<n <k 时,由q >1知 b n -a n =q -1k -1

[(k -n)(q n -2+q n -3+…+q +1)-(n -1)(q k -2+q k -3+…+q n -

1)] <

q -1k -1

[(k -n)(n -1)q n -2-(n -1)(k -n)q n -

1] =-(q -1)2q n -

2(k -n )(n -1)k -1

<0;(13分)

(ⅱ)当n >k 时,由q >1知 b n -a n =q -1k -1

[(k -1)(q n -2+q n -3+…+q k -1)-(n -k)(q k -2+q k -

3+…+q +1)] >

q -1k -1

[(k -1)(n -k)q k -1-(n -k)(k -1)q k -

2] =(q -1)2q k -

2(n -k) >0,(15分)

综上所述,当1<n <k 时,a n <b n ;当n >k 时,a n >b n ;当n =1,k 时,a n =b n .(16分) (注:仅给出“1<n <k 时,a n <b n ;n >k 时,a n >b n ”得2分)

错因分析: 错位相减时项数容易搞错,作差比较后学生不能灵活倒用等比数列求和公

式1-q n =(1-q)(1+q +q 2+…+q n -

1).

1. 已知公差不为0的等差数列{a n }满足a 1,a 3,a 9成等比数列,S n 为数列{a n }的前n 项和,则S 11-S 9

S 7-S 6

=________.

答案:3

解析:设公差为d ,则(a 1+2d)2=a 1(a 1+8d),∴ a 1d =d 2,又d ≠0,∴ a 1=d , 则

S 11-S 9S 7-S 6=66a 1-45a 1

28a 1-21a 1

=3. 2. (2013·福建)已知等差数列{a n }的公差d =1,前n 项和为S n . (1) 若1,a 1,a 3成等比数列,求a 1; (2) 若S 5>a 1a 9,求a 1的取值范围.

解:(1) 因为数列{}a n 的公差d =1,且1,a 1,a 3成等比数列, 所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2) 因为数列{}a n 的公差d =1,且S 5>a 1a 9,

所以5a 1+10>a 21+8a 1;

即a 2

1+3a 1-10<0,解得-5

3. 设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列. (1) 求数列{a n }的公比;

(2) 证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.

(1) 解:设公比为q ,则2a 3=a 5+a 4,得2a 1q 2=a 1q 4+a 1q 3.又q ≠0,a 1≠0,q ≠1,∴ q =-2.

(2) 证明:S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1=2a k +1+a k +1·(-

2)=0,∴ S k +2,S k ,S k +1成等差数列.

4. 已知数列{a n }前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数都成立. (1) 求a 1,a 2的值;

(2) 设a 1>0,数列????

??

lg 10a 1a n 前n 项和为T n ,当n 为何值时,T n 最大?并求出最大值.

解:(1) 取n =1时,a 2a 1=S 2+S 1=2a 1+a 2,①

取n =2时,a 22=2a 1+2a 2. ② 由②-①得,a 2(a 2-a 1)=a 2. ③ 若a 2=0,由①知a 1=0;

若a 2≠0,由③知a 2-a 1=1. ④

由①④解得a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2.

综上所述,a 1=0,a 2=0或a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2. (2) 当a 1>0时,a 1=2+1,a 2=2+2. n ≥2时,有(2+2)a n =S 2+S n , (2+2)a n -1=S 2+S n -1,

∴ (1+2)a n =(2+2)a n -1, 即a n =2a n -1(n ≥2),

∴ a n =a 1(2)n -1=(2+1)(2)n -

1. 令b n =lg

10a 1

a n =1-n -12

lg2, 故{b n }是递减的等差数列,从而b 1>b 2>…>b 7=lg 10

8>lg1=0,

n ≥8时,b n ≤b 8=12lg 100128<1

2lg1=0,

故n =7时,T n 取得最大值,T 7=7-21

2

lg2.

1. 某科研单位欲拿出一定的经费奖励科研人员,第1名得全部资金的一半多一万元,第2名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第10名恰好资金分完,则此科研单位共拿出________万元资金进行奖励.

答案:2 046

解析:设第10名到第1名得到的奖金数分别是a 1,a 2,…,a 10,则a n =1

2S n +1,则a 1

=2,a n -a n -1=????12S n +1-????12S n -1+1=12(S n -S n -1)=1

2a n ,即a n =2a n -1,因此每人得的奖金额组成以2为首项,以2为公比的等比数列,所以S 10=2(1-210)

1-2

=2 046.

2. 在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c =________.

答案:1

解析:由已知a =12,第1行的各个数依次是:1,32,2,5

2,3;第2行的各个数依次是:

12,34,1,54,32.∴b =52×???123=516,c =3×???124=316,∴a +b +c =12+516+316

=1.

3. 我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a 1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a 1,a 2,…,a n 是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金

就变为a 1(1+r)n -1,第二年所交纳的储备金就变为a 2(1+r)n -

2,…,以T n 表示到第n 年所累计的储备金总额.

(1) 写出T n 与T n -1(n ≥2)的递推关系式;

(2) 求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列. (1) 解:由题意可得:T n =T n -1(1+r)+a n (n ≥2). (2) 证明:T 1-a 1,对n ≥2反复使用上述关系式,得

T n =T n -1(1+r)+a n =T n -2(1+r)2+a n -1(1+r)+a n =…=a 1(1+r)n -1+a 2(1+r)n -

2+…+a n

-1(1+r)+a n ,①

在①式两端同乘1+r ,得

(1+r)T n =a 1(1+r)n +a 2(1+r)n -

1+…+a n -1(1+r)2+a n (1+r),②

②-①,得rT n =a 1(1+r)n +d[(1+r)n -1+(1+r)n -

2+…+(1+r)]-a n =d r [(1+r)n -1-r]

+a 1(1+r)n -a n .

即T n =

a 1r +d r 2(1+r)n -d r n -a 1r +d r 2

. 如果记A n =

a 1r +d r 2(1+r)n

,B n =-a 1r +d r 2-d r n ,则T n =A n +B n .其中{A n }是以a 1r +d r 2

(1+r)为首项,以1+r(r>0)为公比的等比数列;{B n }是以-a 1r +d r 2-d r 为首项,以-d

r 为公差的等

差数列.

4. 甲、乙两大超市同时开业,第一年的全年销售额均为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a

2

(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多????23n -1

a 万元.

(1) 设甲、乙两超市第n 年的销售额分别为a n 、b n, 求a n 、b n 的表达式;

(2) 若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?

解:(1) 假设甲超市前n 年总销售额为S n ,则S n =a

2

(n 2-n +2)(n ≥2),因为n =1时,

a 1=a ,则n ≥2时,a n =S n -S n -1=a 2(n 2-n +2)-a

2

[(n -1)2-(n -1)+2]=a(n -1),故a n =

?

????a ,n =1,(n -1)a ,n ≥2.又b 1=a ,n ≥2时,b n -b n -1=????23n -1

a ,故

b n =b 1+(b 2-b 1)+(b 3-b 2)+…

+(b n -b n -1)=a +23a +????232a +…+????23n -1a =????1+23+???

?232+…+????23

n -1a =1-????

23n

1-23

a =

?

??

?3-2·????

23n -1

a ,

显然n =1也适合,故b n =?

??

?3-2·????23n -1

a(n ∈N *).

(2) 当n =2时,a 2=a ,b 2=35a ,有a 2>12b 2;n =3时,a 3=2a ,b 3=199a ,有a 3>1

2b 3;当n ≥4

时,a n ≥3a ,而b n <3a ,故乙超市有可能被甲超市收购.

当n ≥4时,令1

2a n >b n ,

则12(n -1)a>?

???3-2·????23n -1a n -1>6-4·???

?23n -1

.即n>7-4·???

?23n -1

.

又当n ≥7时,0<4·???

?23n -1

<1,

故当n ∈N *

且n ≥7时,必有n>7-4·???

?23n -1

.

即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.

1. 深刻理解等差(比)数列的性质,熟悉他们的推导过程是解题的关键,两类数列性质既有类似的的部分,又有区别,要在应用中加强记忆.同时用好性质也会降低解题的运算量,从而减少差错.

2. 等比数列的前n 项和公式要分q =1,q ≠1两种情况讨论,容易忽视.

3. 在等差数列与等比数列中,经常要根据条件列方程(组),在解方程组时,仔细体会两种情形下解方程组的方法的不同之处.

课札记]

理科数学高考真题分类训练专题六 数列 第十八讲 数列的综合应用答案

高中复习系列资料

专题六 数列 第十八讲 数列的综合应用 答案部分 2019年 1.解析:对于B ,令2 104x λ-+=,得12 λ=, 取112a = ,所以211 ,,1022n a a == ?? ?…, 10n n a a +->,{}n a 递增,

当4n …时,11 13 2122 n n n n a a a a +=+>+=, 所以54 65109 3 23232a a a a a a ?>???> ???? ?>??M ,所以6 10432a a ??> ???,所以107291064a > >故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得 11124,333a d a d a d +=+=+, 解得10,2a d ==. 从而* 22,n a n n =-∈N . 由12,,n n n n n n S b S b S b +++++成等比数列得 () ()()2 12n n n n n n S b S b S b +++=++. 解得()2 121n n n n b S S S d ++= -. 所以2* ,n b n n n =+∈N . (2 )*n c n = ==∈N . 我们用数学归纳法证明. ①当n =1时,c 1=0<2,不等式成立; ②假设() *n k k =∈N 时不等式成立,即12h c c c +++

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

第18讲 数列的综合应用

专题六 数列 第十八讲 数列的综合应用 一、选择题 1.(2017新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家 学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是0 2,接下来的两项是0 2,1 2,再接下来的三项是0 2,1 2,2 2,依此类推.求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330 C .220 D .110 2.(2016年全国Ⅲ)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项 为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同 的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个 3.(2015湖北)设12,, ,n a a a ∈R ,3n ≥.若p :12,, ,n a a a 成等比数列;q : 22 2121()n a a a -++ +?22 2 22312231()()n n n a a a a a a a a a -+++=++ +,则 A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件 C .p 是q 的充分必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.(2014新课标2)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = A .()1n n + B .()1n n - C . ()12 n n + D . ()12 n n - 5.(2014浙江)设函数21)(x x f =,),(2)(2 2x x x f -=|2sin |31)(3x x f π= ,99 i i a =, 0,1,2,,99i =???,记10|()()|k k k I f a f a =-+21|()()|k k f a f a -+???+ 9998|()()|k k f a f a -,.3,2,1=k 则

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

2012届高三数学一轮复习 5.5 数列的综合应用课时训练解析 新人教A版

第五章 第五节 数列的综合应用 (时间60分钟,满分80分) 一、选择题(共6个小题,每小题5分,满分30分) 1.(2011·济南模拟)已知数列{a n }是首项为a 1=4的等比数列,且4a 1,a 5,-2a 3成等差数列,则其公比q 等于( ) A .1 B .-1 C .1或-1 D. 2 解析:依题意有2a 5=4a 1-2a 3,即2a 1q 4 =4a 1-2a 1q 2 ,整理得q 4 +q 2 -2=0,解得q 2 =1(q 2 =-2舍去),所以q =1或-1. 答案:C 2.等差数列{a n }的前n 项和为S n ,且S 2=10,S 4=36,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N * )的直线的一个方向向量的坐标可以是( ) A .(-1 2,-2) B .(-1,-1) C .(-1 2 ,-1) D .(2,1 2 ) 解析:设数列{a n }的公差为d ,则有????? 2a 1 +2×12 d =104a 1 +4×3 2 d =36,解得d =4,于是直线PQ 的 斜率k = a n +2-a n n +2-n =d =4,故直线的一个方向向量的坐标可以是(-1 2 ,-2). 答案:A 3.(2011·福州模拟)等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( ) A .156 B .52 C .26 D .13 解析:∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6(a 4+a 10)=24,a 4+a 10=4, ∴S 13=13a 1+a 13 2=13a 4+a 102 =26. 答案:C 4.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2 -b n x +2n 的两个零点,则 b 10等于( ) A .24 B .32

第14讲数列求和及数列的综合应用

三、解答题 6. (2016 山西太原市二模)数列{a n }的前n 项和记为S n , a 1 = t,点(S n , a n +1)在直线y = 3x + 1 上,n € N . (1) 当实数t 为何值时,数列{a n }是等比数列; 第14讲 数列求和及数列的综合应用 1111专题突破,限时训练 |||| [P 82] 一、选择题 1 1.设函数f(x) = x m + ax 的导函数f ' (x)= 2x + 1,则数列{f-^} (n € N )的前n 项和是(C ) n + 2 B.^ 解析:因为 f ' (x)= 2x + 1,所以 f(x)= x 2 + x, 1 111 乔=1 —市,易求得其和为 C. f(n 2.右正项数列{ a n }满足 Ig a n +1 = 1 + l g a n ,且玄2001 + a 2002 + a 2003 +…+ a 2010= 2013,则 a 2011 + a 2012 + a 2013 + …+ a 2°2o 的值为(A ) 10 11 A. 2013 X 10 B.2013 X 10 C. 2014X 1010 D.2014 X 1011 a n +i “ a n +i 解析:由 lg a n +1= 1 + lg a n ,可得 lg = 1, = 10, a n a n 10 10 a 2011 + a 2012 + a 2013+ …+ a 2020 =(82001 + 82002+ a 2oo3 + …+ a 2O1o ) X 10 = 2013 X 10 . 3.设某商品一次性付款的金额为 a 元,以分期付款的形式等额地分成 n 次付清,若每期 利率r 保持不变,按复利计算,则每期期末所付款是(B ) a n 一 口 ar(1+ r £ 一 A .;(1+「)元 B. 1+宀1 元 C.a (1 + r )n —1 元 D.屮二元 n' ' 1 + r — 1 解析:设每期期末所付款是 x 元,则各次付款的本利和为 x(1 + r)n — 1 + x(1 + r)n —2+ x(1 + r)n 3 + …+ x(1 + r)+ x = a(1 + r)n ,即 x 「十「) = a(1 + r)n ,故 x =\ . r (1 + r ) — 1 二、填空题 4.(原创题)已知数列{a .}满足a 1=— 1, ? n € N *, a n + a *+1= 2,其前n 项和为S n ,则 屜仃 2015 . m - 2016 - __________________________________________________________ 解析:S 2017= a 1+ (a 2 + a 3)+ (a 4 + a 5)+ …+ (a 2016+ a 2017)= — 1 + ~2 x 2 = 2015. 5.(2016湖南十三校联考)已知数列{a n }的前n 项和为S n ,且S n = 2n — a .,则数列{a n }的 1 通项公式a n = 2—(1)n —1 . 解析:当n = 1时,a 1= 1; 当 n >2 时,a n = S n — S n -1,所以 2a n = a n -1+ 2, 则 2(a n — 2) = a n - 1— 2, n. 所以 a n — 2 = (a i — n — 1,a n = 2—(捫1

求数列极限的方法总结

求数列极限的方法总结 万学教育 海文考研 教学与研究中心 贺财宝 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大.极限的计算是核心考点,考题所占比重最大.熟练掌握求解极限的方法是得高分的关键. 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数. 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算.以下我们就极限的内容简单总结下. 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法. 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限. 与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验0()f x '存在的定义是极限000(+)-()lim x f x x f x x ???→ 存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限.

常见的数列求和及应用

常见的数列求和及应用 常见的数列求和及应用 一、自主探究 1、等差数列的前n项和公式:。 2、等比数列的前n项和公式: ①当时,; ②当时, = 。 3、常见求和公式有: ①1+2+3+4+…+②1+3+5+…+(2n-1)= ※③※④ 二、典例剖析 (一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。 例1 已知,求数列{}的前n项和。 变式练习:已知,求数列{}的前n项和。 (二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。特别地,当数列形如,其中是等差数列,可采用此法 例2 求和:() 变式练习:已知数列的通项公式,求数列{}的前n

项和。 (三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。 例3 求和: (四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。 例4 求在区间内分母是3的所有不可约分数之和。 变式练习:已知且 .求 (五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。 例5 求和: 变式练习:求和: 三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。任何一个数列的前n项和都是从第1项一直加到第n项。数列的求和主要有以下几种方法。⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:① = ;

2013届高三数学二轮复习 专题三 第2讲 数列求和及数列的综合应用教案

第2讲 数列求和及数列的综合应用 自主学习导引 真题感悟 1.(2012·大纲全国卷)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列??? ? ? ? 1a n a n +1的前100项和为 A. 100101 B.99101 C.99100 D.101 100 解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15, ∴? ???? a 1+4d =5,5a 1+5×5-1 2d =15,, ∴???? ? a 1=1d =1, ∴a n =a 1+(n -1)d =n . ∴ 1 a n a n +1= 1n n +1=1n -1 n +1 , ∴数列{1 a n a n +1}的前100项和为1-12+12-13+…1100-1101=1-1101=100101 . 答案 A 2.(2012·浙江)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N +,数列{b n }满足a n =4log 2b n +3,n ∈N +. (1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n . 解析 (1)由S n =2n 2+n ,得 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1. 所以a n =4n -1,n ∈N +. 由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N +. (2)由(1)知a n b n =(4n -1)·2n -1,n ∈N +,

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

第2讲 数列求和及简单应用(教案)

第2讲 数列求和及简单应用 高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想. 热点一 分组转化求和 有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. 例1 (2017届安徽省合肥市模拟)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式; (2)若2(1)n a n n n b a =+-?,求数列{b n }的前n 项和T n . 解 (1)∵{a n }为等差数列, ∴??? S 4 =4a 1 +4×3 2 d =24,S 7 =7a 1 +7×6 2 d =63?????? a 1=3,d =2 ?a n =2n +1. (2)∵2(1)n a n n n b a =+-? =22n +1+(-1)n ·(2n +1) =2·4n +(-1)n ·(2n +1), ∴T n =2(41 +42 + (4) )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n -1) 3 +G n , 当n =2k (k ∈N *)时,G n =2×n 2=n , ∴T n =8(4n -1)3+n , 当n =2k -1(k ∈N *)时, G n =2×n -1 2-(2n +1)=-n -2, ∴T n =8(4n -1)3 -n -2,

∴T n =??? ?? 8(4n -1) 3 +n ,n =2k ,k ∈N *,8(4n -1)3-n -2,n =2k -1,k ∈N * . 思维升华 在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式. 跟踪演练1 (2017届北京市朝阳区二模)已知数列{a n }是首项a 1=13,公比q =1 3 的等比数列.设 13 2log 1()n n b a n *=-∈N . (1)求证:数列{b n }为等差数列; (2)设c n =a n +b 2n ,求数列{c n }的前n 项和T n . (1)证明 由已知得a n =13·????13n -1=????13n , 所以13 12log ()121(N )3 n n b n n * =-=-∈, 则b n +1-b n =2(n +1)-1-2n +1=2. 所以数列{b n }是以1为首项,2为公差的等差数列. (2)解 由(1)知,b 2n =4n -1, 则数列{b 2n }是以3为首项,4为公差的等差数列. c n =a n +b 2n =????13n +4n -1, 则T n =13+1 9+…+????13n +3+7+…+(4n -1) =13×????1-????13n 1-13+(3+4n -1)·n 2. 即T n =2n 2+n +12-12·????13n (n ∈N * ). 热点二 错位相减法求和 错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.

第11讲 数列的综合应用(教案)

第十一讲 数列的综合应用 【复习要求】 灵活运用等差数列、等比数列公式与性质解决一些综合性问题. 【复习重难点】 掌握一些简单的递推数列、子数列问题的处理方法及一些数列证明题的证明方法. 一、【基础训练】 1. 若等差数列的前6项和为23,前9项和为57,则数列的前n 项和S n =________. 答案:56n 2-76 n 解析:由条件得 ???S 6=6a 1+6× 52d =23,S 9=9a 1 +9×82d =57,即???a 1=-13,d =53,故a n =56n 2 -76n . 2.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和.若a 1,a 2,a 5成等比数列,则S 8=________. 答案:64 解析:a 22=a 1a 5,即(1+d)2=1×(1+4d),所以d =2,故S 8=8+8×72 ×2=64. 3. 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足关 系式S n =n 90 (21n -n 2-5)(n =1,2,…,12),按此预测,在本年度内,需求量超过1.5万件的月份是________. 答案:7、8 解析:由S n 解出a n =130 (-n 2+15n -9), 再解不等式130 (-n 2+15n -9)>1.5,得6

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

5-5第五节 数列的综合应用练习题(2015年高考总复习)

第五节 数列的综合应用 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.各项都是正数的等比数列{a n }中,a 2,1 2a 3,a 1成等差数列,则a 4+a 5a 3+a 4 的值为( ) A.5-12 B.5+12 C.1-52 D.5-12或5+12 解析 设{a n }的公比为q (q >0),由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.而a 4+a 5a 3+a 4 =q =1+5 2. 答案 B 2.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( ) A .10秒钟 B .13秒钟 C .15秒钟 D .20秒钟 解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d 2=240,即2n +n (n -1)=240,解得n =15. 答案 C 3.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列???? ?? 1f (n )(n

∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析 由f ′(x )=mx m -1+a =2x +1得m =2,a =1. ∴f (x )=x 2 +x ,则1f (n )=1n (n +1)=1n -1 n +1 . ∴S n =1-12+12-13+13-14+…+1n -1 n +1 =1- 1n +1=n n +1 . 答案 A 4.已知数列{a n }的通项公式为a n =log 2n +1 n +2(n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n ( ) A .有最小值63 B .有最大值63 C .有最小值31 D .有最大值31 解析 ∵a n =log 2n +1 n +2 =log 2(n +1)-log 2(n +2), ∴S n =a 1+a 2+…+a n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2). 由S n <-5,得log 2(n +2)>6, 即n +2>64,∴n >62,∴n 有最小值63. 答案 A 5.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2 -b n x +2n 的两个零点,则b 10等于( ) A .24 B .32

2020年高考文科数学二轮复习:专题三 第二讲 数列的综合应用

2020年高考文科数学二轮复习: 专题三 第二讲 数列的综合应用 一、选择题 1.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3 =( ) A .2 B .4 C .5 D.52 解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2 n +2=22,所以令n =3,得a 7a 3=22=4,故选B. 答案:B 2.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24 D .23 解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23 的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473 >0,得n <23.5,所以使a k ·a k +1<0的k 值为23. 答案:D 3.已知数列{a n }满足a 1=1,a n +1=????? 2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( ) A .16 B .20 C .33 D .120 解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C. 答案:C 4.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44 D .44+1 解析:因为a n +1=3S n ,所以a n =3S n -1(n ≥2), 两式相减得,a n +1-a n =3a n , 即a n +1a n =4(n ≥2), 所以数列a 2,a 3,a 4,…构成以a 2=3S 1=3a 1=3为首项,公比为4的等比数列,所以a 6=

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

相关文档
相关文档 最新文档