文档库 最新最全的文档下载
当前位置:文档库 › University advisors

University advisors

University advisors
University advisors

Computer Science

Thesis no: MCS-2006:18

January 2007

An Optimization Model for Sea Port

Equipment Configuration

Case study: Karlshamn-Klaipeda Short Sea Shipping Link Author: Gideon Mbiydzenyuy

Department of

Interaction and System Design

School of Engineering

Blekinge Institute of Technology

Box 520

SE – 372 25 Ronneby

Sweden

This thesis is submitted to the Department of Interaction and System Design, School of Engineering at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies.

Contact Information:

Author

Gideon Mbiydzenyuy

E-mail: gmby79@https://www.wendangku.net/doc/5b4592985.html,

University advisors:

Dr. Jan A. Persson Dr. Lawrence E. Henesey

jan.persson@bth.se larry.henesey@bth.se

Department of Systems and Software Engineering

Department of

Interaction and System Design Blekinge Institute of Technology Box 520

SE – 372 25 Ronneby

Sweden Internet : www.bth.se/tek Phone : +46 457 38 50 00 Fax : + 46 457 102 45

Abstract

Today, freight volumes on roads have gone up to a level that there is a need for alternative transport modes. Short Sea Shipping (SSS) is one alternative with a potential that can help reduce the high traffic on roads. Most SSS systems use vessels whereby cargo is rolled on and off using a ramp with very small capacities usually less than 500 TEU, but with increasing cargo traffic, it is not clear if such solutions will be efficient. For ports involved in SSS to meet up this new wave of change, the challenge to make appropriate investments and analysis tools is important. The type of vessel suitable for a SSS operation (such as roll-on roll-off (RoRo), lift-on lift-off (LoLo) etc) has been addressed in this thesis based on their compatibility and cost effectiveness with the terminal equipments

The purpose of this study is to develop an optimization model that can be incorporated into a Computer Decision Support System (DSS) for selecting equipments including ships at a strategic level for investments in handling unitised cargo at port terminals in the context of Short Sea Shipping (SSS). The main contribution of the thesis is the application of computer science techniques in the domain of strategic decision making related to the configuration of complex systems (e.g. interrelationships between ships and equipments) with choices of handling equipment.

From modelling the selection of port terminal equipments for SSS, we realised that while integer linear programming is a promising approach for studying such systems, it remains a challenge to handle complex issues in depth especially in relation to the quay crane due to interdependencies between time, cost and capacity of equipments. Model results indicates that a LoLo vessel with a capacity between (500 and 1000 TEU) capable of completing a SSS voyage such that handling is done within 48 hours will be less costly than a RoRo that does it with multiple voyages or one voyage each for multiple RoRo vessels for TEU volumes greater than 1000. But RoRo vessels remain useful for trailers that cannot be transported by LoLo vessels.

Keywords: modelling, optimization, handling equipments, containers.

Acknowledgements

I am deeply indebted to my supervisors Dr. L. Henesey and Dr Jan Persson, who did not only gave me the opportunity to share their great ideas, but helped me acquire the necessary impetus to be part of the entire academic research community. Their commitment kept me motivated and inspired.

I am most grateful to the port of Karlshamn in Sweden, port of Klaipeda in Lithuania, DFDS Tor Line and the East West Research Project Team, for creating a conducive environment necessary to carry out this research work.

To my fellow student colleagues at BTH, not forgetting my network of friends worldwide, I must say it has been a unique moment of my life, sharing different ideas from all around the world has added value to my education.

Without the love and kindness of the Swedish people within the Karlshamn neighbourhood, life outside academic cycles would not have been so enriching, notably, my sincere gratitude goes to the entire H?glund family and a host of several other families, I most say thanks for their constant motivation.

I feel a deep sense of gratitude for my entire family, particularly my dad and mum, for their relentless efforts to keep me on the right track for the whole of my life.

And finally to the Almighty God, the architect of all creation, for enabling me once more to cross this junction, I remain thankful.

The journey is long…

but he who asked, never get missing!!!

Grace Suinyuy (1992).

CONTENTS

1 Introduction (9)

1.1 Background of theThesis (9)

1.1.1 Some Foot Prints of Globalisation (9)

1.1.2 Problem Background (10)

1.2 Scope of the Study (12)

1.3 Purpose of the Study (12)

1.4 Discussion of the Problem (12)

1.5 Research Questions (13)

1.5.1 Main Problem (13)

1.5.2 Sub Problems (13)

1.6 Lay out of the Thesis (13)

2 Research Design (14)

2.1 Introduction (14)

2.2 An Overview of the Research Method (14)

2.3 Research Design (14)

2.4 Data and Information Collection (15)

2.4.1 Secondary Data Collection (15)

2.4.2 Primary Data Collection (15)

2.5 Research Evaluation (16)

2.5.1 Evaluation (16)

3 The Structure of SSS; A Problem Perspective (17)

3.1 How is SSS Defined? (17)

3.2 What are the Current Problems Associated With SSS? (18)

3.2.1 The Cost Dimension for SSS (18)

3.2.2 The Capacity Dimension for SSS (20)

3.3 What are the Requirements Imposed by SSS Practices on Sea Ports? (22)

4 Terminal Handling Technologies for SSS (23)

4.1 Literature Review (23)

4.1.1 What are the Current Trends toward Handling Problems for SSS? (23)

4.1.2 ICT Technology and the Marine Industry-Case of Ports and Terminals (24)

4.2 Handling Systems for Port Terminals (25)

4.2.1 A Literature Review of Handling Systems; Categorisations (26)

4.2.2 Handling Systems and Performance Measure (27)

4.3 The Concept of Automated Handling (28)

4.3.1 Automated Handling Equipments (29)

4.3.2 Non-automated Handling Equipments (30)

5 Karlshamn-Klaipeda Case Study (33)

5.1 The Case Study (33)

5.2 Port of Karlshamn – Sweden (34)

5.2.1 General Description (34)

5.2.2 Infrastructure and Port Equipment (35)

5.3 Port of Klaipeda – Lithuania (35)

5.3.1 General Description (36)

5.3.2 Infrastructure and Equipments (36)

5.4 Marine Leg Karlshamn-Klaipeda (37)

6 Model Development (39)

6.1 Mathematical Modelling Techniques (39)

6.2 Integer Linear Programming Optimization Model (ILP) for Port Terminals (41)

6.3 Model Description (42)

6.3.1 ILP Fundamental Assumptions (42)

6.3.2 Decision Variables (43)

6.3.3 Objective (43)

6.3.4 Constraints (44)

6.4 ILP Mathematical Formulation (44)

7 Results and Analysis (47)

7.1 ILP Input Data (47)

7.2 ILP Model Configuration (47)

7.3 ILP Model Output (48)

7.4 Output Analysis (50)

7.5 Sensitivity Analysis (54)

7.6 Research Limitations (55)

8 Conclusion and Future Work (56)

8.1 Conclusion (56)

8.2 Future Work (57)

9 Bibliography (58)

Appendix Glossary of Container Terminals Used in this Thesis (61)

Figure 2-1 OR Process Radon (2000) (15)

Figure 4-1 Displacement time graphs for vertical and horizontal ship reloading systems (26)

Figure 4-2 A fleet of fully Automated Guided Vehicles transporting containers (29)

Figure 4-3 RTG with GPS system (30)

Figure 4-4 Mafi Platform showing position for securing a tugmaster (31)

Figure 4-5 Rail Mounted Gantry (RMG) crane (31)

Figure 4-6 Kalmar CSC Straddle Carrier (31)

Figure 4-7 Side view FLT's lifting a container (32)

Figure 5-1 Karlshamn-Klaipeda link over the Baltic Sea (33)

Figure 5-2 Growth in RoRo container traffic for the port of Karlshamn 2001 to 2005 (35)

Figure 5-3 Container growth, port of Klaipeda 1997-2006 (36)

Figure 5-4 Ship’s traffic over the Baltic Sea and the Karlshamn Klaipeda Shipping link (38)

Figure 5-5 Forecast of freight growth units in the Karlshamn-Klaipeda link (38)

Figure 6-1 Simple generic ILP Model represented as a tree (42)

Figure 7-1 Variation in number of ships with TEU demand for a 24 Hour handling (51)

Figure 7-2 Variation in number of ships with TEU demand for a 48 hour handling (51)

Figure 7-3 Variation in number and type of ships with yard vehicles (52)

Figure 7-4 Variation of yard vehicles with TEU Volume for different handling periods (52)

Figure 7-5 Cumulative reuse of equipments fork lift, yard vehicles and quay crane (53)

Figure 7-6 Investment point in ships with demand for different TEU volumes (53)

Figure 7-7 Total cost per TEU variation with TEU demand (54)

Table 3-1 Cost estimates for RoRo Vs LoLo (19)

Table 5-1 Some handling equipments in the port of Karlshanm (35)

Table 5-2 Some handling equipments used in the port of Klaipeda (37)

Table 7-1 Model parameters (48)

Table 7-2 Out Put results with Handling Time Window = 30 Hours (49)

Table 7-3 Output results with Handling Time Window = 48 Hours, (49)

Table 7-4 Estimated number of trucks and train capacity (50)

Table 7-5 Analysis of model sensitivity (55)

Chapter 1

1Introduction

This section introduces the thesis work. It begins with a motivation, purpose and discussion of the research problem. The research question, scope and layout of the work are presented.

1.1Background of the Thesis

The purpose of this study is to develop an optimization model that can be incorporated into a Computer Decision Support System (DSS) for selecting equipments at a strategic level for investments in handling unitised cargo at port terminals in the context of Short Sea Shipping (SSS). In the simplest of terms SSS is the transport of passengers or cargo by water without crossing an ocean. The type of vessel suitable for a SSS operation (such as RoRo, LoLo etc) has been addressed based on the compatibility and cost effectiveness with the terminal equipments. We consider unitised cargo, in comparing handling systems based on the cost, and capacity vectors. We therefore combine all these and model as a single system in order to formulate an integer linear optimization model (ILP) as a first step toward realising a decision support tool for terminal handling.

In trying to model equipments selection for the entire container terminal a large number of constraints and variables needs to be taken into account. The challenge with modelling such a system is that constraints and variables have interdependencies with logical connections that require intuition. By modelling different problem segments as sub systems, and solving in an integrated model, such difficulties can be minimised.

The thesis contributes to the modelling of equipments in container terminals using the linear programming method of optimization, building the body of knowledge on unitised terminal handling performance, especially in the interdisciplinary area of logistics, computer science, operational research and engineering. The thesis is developed from an applied computer science perspective. The main contribution of the thesis is the application of computer science techniques in the domain of strategic decision making related to the configuration of complex systems (e.g. interrelationships between ships and equipments) with choices of handling equipment.Such an approach could be useful in applying computer science to model similar areas such as cargo handling in the air plane industry, facility usage for industrial production planning processes, product life cycle along a supply chain etc. An integrated approach for the distributed segments of a transport chain will cumulate into a synergic cohesion of the entire chain. This is of relevance in integrating the supply chain which needs to continuously adjust in order to coup with increasing globalization.

1.1.1Some Foot Prints of Globalisation

The dawn of the 21st century has ushered in new business opportunities alongside new challenges. The discrepancies separating national economies have received significant attention under the umbrella of globalization with the international community mobilising resources to alleviate the underprivileged nations of the world. There is so much trade in the world today especially between developed or “privileged” nations, that is exacerbating the need for new techniques. Changes in the structure of the global economy, e.g., out-sourcing, Just-in-time, more focus on supply chain

management, etc and the ever widening free trade zones resulting from the dissolution of national boundaries (e.g. EU, EFTA, and NAFTA etc) has led to increasing needs for superior logistic solutions. Real time logistic solutions are increasingly becoming an important issue on many business agendas due to such practices as Just-In-Time (JIT), Supply Chain Management (SCM) etc.

Within Europe, geographic conditions, (as in the UK) cause them to be dependent on shipping for trade. For EU member states SSS is increasingly becoming an important mode of transport e.g. over three-quarters of the unitized cargo shipped in the UK today is by, bound for, or originated from short sea. The use of intermodal transport networks is approximately 70% road, 20% rail and about 8% SSS and the rest distributed between pipeline and air1. This indicates that the potential of SSS is yet to be fully exploited. The evolution of international shipping since the introduction of the container has affected ports than any other terminal. The marine side is increasingly creating a capacity imbalance with the land side, adding more problems to handling operations. Consequently, SSS is gaining much attention due to its potential use in alleviating some of the problems of congestion, pollution, increasing cargo volumes, and related negative environmental impacts as a result of road transport.

1.1.2Problem Background

Numerous challenges (bottle necks) have been encountered in suggesting SSS solutions e.g. the lack of intermodal liability regime, unequal distribution of incentive measures, lack of comparable statistical data on SSS and other issues in relation to vessels speed and capacity, up to terminal handling and management issues2. Managing cargo flows between ports and inland destinations has remained a challenge for terminal operators (Chadwin & Talley, 1990, Notteboom, 1997). Often, terminal operators need to overcome congestion issues when serving huge ships loaded with thousands of containers. The ships have huge capacities that are reaching nearly 10,000 TEU+ whereas the capacities of trucks are between 1-2 TEU. This situation is fast becoming a common occurrence in many parts of the world. For shippers, delay in ports means rising costs, adding to customer pressure for goods to be delivered just in time. Clearly, there is much attention on terminal operators to solve these issues. In order to reach their goals or objectives many terminal operators need technical assistance when selecting handling equipments from a strategic level (for investments), tactical and operational level (for deployment) in order to handle their operations. This necessitates the use of computer support in managing operations.

Numerous books and scientific articles have been written about managing problems in a container terminal. So far; M. Katta et al (2005), presents a Decision Support System for operations in a container terminal, and discusses the mathematical models and algorithms used in designing the DSS.

A literature survey of container terminal problems by H. Rashidi & E. P. K. Tsang (2005) indicates that most problems in a container terminal can be formulated as constraint satisfaction and optimization problems. The conclusion from the study is that most container terminals place a high level of importance on efficient use of their terminal equipment. One important decision that terminal managers must consider is the efficient allocation of quay cranes so as to satisfy a ship time-window or minimize the waiting times of ships in the port. The decision on whether to invest on quay cranes or not becomes even more critical, especially when comparing the handling performance of a quay crane and its impact on the entire handling process with the cost of investing in a quay crane. An Intelligent Decision Support System for crane scheduling using optimization techniques has been proposed by Guohua WAN (March 2004). This study indicates that the operations of a quay crane needs significant attention from terminal management in order to evaluate their handling capability well in advance to make intelligent investment decisions.

1EU Director General Report 2005

Techniques of simulation and optimization along with other Information and Communication Technology (ICT) related tools have offered significant contributions in addressing some problems in container terminals (H.O. Gunter and K.H. Kim; 2005). A mix integer based optimization approach to study the interactions between Quay Cranes (QCs), Automated Guided Vehicles (AGVs) and Automated Yard Cranes (AYCs) in an integrated model by Henry et al. (2005) indicates that a single optimization model can be rather complex when considering different problems due to problem variation and constraints in a container terminal. Therefore one has to consider few but sufficient issues to address in an integrated model. An attempt to an integrated study of scheduling various types of equipments in an automated container terminal using a beam search heuristics algorithm has been provided by P. J. Meersmans & A. P. M. Wagelsmans (2001). The study shows that a long term planning horizon for scheduling problems is important so as to take account of information updates. Given another look one may say scheduling problems should be addressed from the point of an investment decision, to take account of optimising facilities. The technical performance of RoRo vs. LoLo has been compared (J. Igeilska; June 1996) leading to a RoRo preferred choice. Little attention has been given to the comparison of their performance with respect to the handling configuration at terminals. J. A. Ottjes et al (May 2006) has come up with a proposed generic simulation model structure for the design and evaluation of multiterminal systems for container handling which has been applied to the Rotterdam port terminals. The simulation helped determine the handling requirements for deep-sea quay lengths, storage capacities, as well as equipments for interterminal transport systems

A similar study carried out by S.Francesc et al (2006), to analyze the internal transport subsystem in a marine container terminal and investigates the effect of the type of handling equipment used, came up with the conclusion that “assignment of the handling equipment resources to an individual wharf crane in a particular berth is not advisable, since any decentralized decision system involves more resources. The handling equipment resources must be assigned to the berth as a whole to obtain greater efficiency, but then a focus on operation planning and reliability is required”.

From the above studies it can be seen that a lot of research work has been carried out in developing models of container terminal operations that are or can be incorporated into DSSs. Most of the studies indicate that it is difficult to model the entire container terminal in a single integrated optimization model. Consequently, most of the studies have focused on developing models to solve individual problems related to specific terminal equipments (especially the quay crane) and not integrated or combine problems relating all handling equipments. On the other hand L. M. Gambardella and A. E. Rizzoli (2000) argue that it is necessary for the terminal yard and quays to be managed in an integrated fashion i.e. with simultaneous regard for parallel processes. D. Steenken et al (2004) identifies the need to focus on investigating ‘integrated optimization’ problems since few studies as at now have addressed ‘integrated problems’ with an optimization perspective.

Such problems, as selecting which equipments to invest on or to deploy, may need to be approached from an integrated perspective since they concern the entire terminal. The decision about which equipments to invest on may not be difficult for terminals handling small volumes of cargo. However such a decision can be difficult to consider for different types of equipments, with increasing cargo volumes and stricter customer requirements, when several factors, such as congestion, performance, safety etc needs to be taken into accounts. Since the decision about selecting which handling equipments to use have a Boolean (true or false) character, this makes such a system suitable for modelling with an Integer based optimization model. To make use of advanced optimization tools (e.g. CPLEX), the model can be formulated using linear relationships, thus we model the entire system using Integer Linear Optimization Model (ILP).

With ILP based models, the modelling task can greatly be reduced since ILP models have a natural and accurate representation of many practical optimization problems (R. Fourer et al; 2003). Partly due to their simplicity, and partly because of their potential in arriving at solutions for problems with a multitude of constraints (of the order of hundreds), container terminals can be a land of

opportunities for applying ILP based models. One important thing to consider in the use of such models is their high computer memory resource demand.

An ILP model for selecting handling equipments will enable port terminals such as Karlshamn and Klaipeda to preview what kind of handling tools shall be required as freight volumes increases at a strategic level. Based on demand forecast the tool can be suitable for choosing handling systems to deploy at tactical level.

1.2 Scope of the Study

The study is focused on terminal operators as well as shipping lines involved in SSS practices. We hope to improve their understanding of the effects of cost, capacity and time on the different handling systems employed. In particular, we will focus on two ports in the context of a case study. The port of Kalshamn, situated in the South East of Sweden, west of the Baltic Sea, and the port of Klaipeda that lies along the Eastern coast of the Baltic Sea, south of Lithuania, considered an important link involved in SSS between the east and the west in the Baltic Sea Region.

In addition to a systematic literature review on SSS and handling systems that has been carried out, the goal of the study has also been to use appropriate optimization tools and techniques to address a “real-life” practical problem. Thus relevant assumptions necessary to apply these techniques have been made in developing the model following the Operational Research process (L. Radon 2000) while minimising the gap from physical reality.

1.3 Purpose of the Study

The purpose of this study is to develop an optimization model that can be incorporated into a Computer Decision Support System (DSS) for selecting equipments used in handling unitised cargo at port terminals in the context of Short Sea Shipping (SSS). The type of vessel suitable for a SSS operation (such as RoRo, LoLo etc) has also been addressed based on the compatibility and cost effectiveness with the terminal equipments. We consider unitised cargo, in comparing handling systems based on the cost, and capacity vectors. We therefore formulate this in an optimization model as a first step toward realising a decision support tool for terminal handling.

It is our aim to model and represent the process of selecting terminal equipments including choice of ships in a unitised3 cargo terminal (ports of Karlshamn and Klaipeda) as an ILP based model to exploit the advantages of such models (e.g. ease of real world representation). The goal is to develop a model which can be incorporated into a decision support tool that can assist terminal managers in selecting handling equipments. Based on this model we expect to be able to compare the performance of different handling systems by considering their cost and capacity. Based on the performance of the handling systems we expect to be able to suggest suitable shipping systems between LoLo and RoRo for SSS at different capacity levels.

1.4Discussion of the Problem

The operations in a unitised terminal can basically be classified into three main phases; loading/unloading of ships by Quay cranes, transfer of cargo units to and from yard area (primary and secondary) between yard crane and quay crane and the handling of inbound/outbound cargo units between yard cranes and external trucks and train. The cyclic movement is initiated each time a ship arrives a terminal for loading or unloading, however most of the work needs to be completed

before the actual operations begin i.e. a tactical plan, at best operational plan, needs to be put up, to be able to manage the resources in compliance with capacity demands and customer requirements efficiently.

Our interest is in previewing the requirements for handling imposed by different levels of TEU demand i.e. TEU capacity, useful for strategic decision making. The nature of handling requirements considered includes the type and number of ships, cranes, yard vehicles and other terminal facilities such as berths, ramps, and yard area. We consider the set of equipments used at the terminal level for handling a particular level of TEU capacity as a handling system. Our optimization model is intended to select between different equipments and hence different handling systems based mainly on their cost and capacity. We formulate an ILP model to consider the entire set of equipments together.

1.5Research Questions

1.5.1Main Problem

Which optimization model is suitable for developing a Decision Support System that can be used in selecting handling equipments, at different demand levels, in a port terminal involved in SSS?

The question has a broad scope; therefore we have narrowed it down to several specific issues (sub-questions) and considered a practical case.

1.5.2Sub Problems

I.Which optimization models are used in port terminals and which could be used for

developing a decision support tool?

II.Which handling equipments, used by sea ports involved in SSS, can be modelled using integer linear programming?

III.What are the requirements of SSS on sea port terminals?

The purpose of the first question is to help us understand the necessary optimization techniques in used by terminals today. The second question helps us understand the current handling situation and narrow our scope to equipments suitable for SSS and the associated problems that can be addressed using an ILP approach, while the last question helps in understanding the context within which such problems exist.

1.6Lay out of the Thesis

Section two of the thesis presents the scientific methodology, while section three consists of a literature review on SSS. Section four addresses terminal handling related problems as well as Information and Communication (ICT) technology commonly in use at port terminals, existing categorisations of handling systems, the different approaches for measuring handling performance and a description of some handling equipments commonly in used by port terminals for handling unitised cargo. In section five, is a brief introduction to the main elements of the case study(ports of Karlshamn and Klaipeda). Section six presents a description of the proposed Integer Linear Programming Optimization (ILP) model for unitised cargo terminals. Model results, analysis and validation are presented in section seven while section eight ends with a conclusion and a proposal of future work.

Chapter 2

2Research Design

This chapter explains the scientific methodology that is used in this thesis. The research design is presented.

2.1Introduction

In designing a research, one tries to formally address the primary issues of aims, purpose, intentions

and plans within constraints of location, time, money and availability of other resources. It is also

important that the chosen research design clearly makes it possible to differentiate solid traditional ideas from innovative ideas and makes clear the preferences of those who pay for the research work

and have to live with the finished results (Hakim, 1987). The main target is therefore to select strategies and methods or techniques appropriate for the question to be answered, which eventually sums up to a research work (C. Robson 2002).

2.2An Overview of the Research Method

The research has been designed following a system thinking view of the real world, with the entire system sub divided into three sub systems; Port of Karlshamn, Port of Klaipeda and the marine link between the two ports. The ILP model is developed following the operational research process. First, a literature review of current research on SSS and handling systems has been conducted. This helped understand the context and conditions under which terminal operators take decisions about handling equipments. We then develop an optimization model that can support such decisions, in the context of a case study. We proceeded by iteratively modelling the real world system (case study), developing a computer model of the system, obtaining the output, interpreting the results, and then comparing these results with the real world case and adjusting the model accordingly. This process is repeated iteratively until a point where model behaviour is seen to represent a reasonable approximation of the real world behaviour.

2.3Research Design

The research design describes the framework that has been used to address the research problem in order to establish facts which can be verified and/or used to build new ideas. In order to answer the research question, developing a computer model to select handling systems at different capacity levels, it was thought necessary to treat capacity demand as an independent variable, and the rest of the variables (e.g. handling equipments) as dependent variables for developing such a model. Such an approach is similar to a parametric research design which involves incorporating a range of several levels or values of an independent variable into an experiment so that a complete picture of it effects can be obtained (C. Robson 2002). However in developing our model, we applied the operational research methodology (L. Radon 2000) on a case study (see figure 2-1) consisting of the following steps:

?Observe the real world (case study) to identify decision problem and collect relevant information.

?Formulate an optimisation model of the real world decision problem.

?Run the model using computer system and obtain the results.

?Interpret the results and compare with real world observations (analysis & inference)

?Adjust the model accordingly until it behaviour and output can reasonably be approximated to real world observation.

?Perform a sensitivity analysis and validate the model with relevant data from different sources.

Figure 2-1 OR Process Radon (2000)

Our observation of the real world was with focus on our cases study. One way of conducting case studies is to identify the basis of the level of unit of analysis. A study where the concern remains at a single global level will be considered as a holistic case study (Yin, 1994). In our study we are interested on how a given combination of handling systems meets the handling capacity requirements of the terminal while keeping cost minimal. We consider such a case study to be holistic. The appropriateness of a holistic case study lies in the theoretical understanding of a clear, unambiguous and non-trivial set of circumstances where predicted outcomes are likely to reside (C. Robson 2002).

2.4Data and Information Collection

Data is a key issue in developing optimization models. How well the model behaves depends to a greater extent on the type of data used during model development. It is therefore necessary to get accurate data as much as possible. Most of the data used in this thesis is collected through interviews and discussion with persons involved with the issues addressed. In particular port authorities and representatives of shipping lines was our main sources of primary data. Literature reviews of scientific publications and other documentation (e.g. annual reports) enable us with secondary data. Our interest has been on empirical data.

2.4.1Secondary Data Collection

Secondary data consists of data collected from both internal and external data sources. Data collected from sources outside the case studied e.g. books, academic journals, publications and other scientific literature are considered as secondary data. One advantage with such data lies in the ease of acquisition.

2.4.2Primary Data Collection

Data a researcher sets out to collect, for the purpose of conducting a research, using a suitably designed approach can be regarded as primary data. An empirical researcher set as target to establish evidence based on empirical data collected using methods such as interviews, questionnaires, surveys

etc. Priority is usually given to primary than secondary data sources. However it is difficult to obtain data from primary sources. Besides the scarcity of primary data, where available, it is most often considered confidential thus building a barrier between the researcher and the data. Where an empirical approach does not fit well, there is every reason to consider a qualitative approach. The main approach we used to obtain primary data was through formal as well as informal interviews. Discussions (informal interviews) were seen to be valuable where the subject(s) freely express his/her views.

2.5Research Evaluation

Practically, several limitations are encountered during data collection. Some data turns out to be missing either because it is not available or it is available and treated as confidential. In other cases data that was collected for different purposes such as accounting data has to be made use of. The result of these difficulties is that some data end up in the form of estimates thereby compromising data accuracy. Evaluating the validity of data sources could minimise the risk associated with data inaccuracies.

2.5.1Evaluation

T he credibility of research wok lies in the evidences established to support the facts generated. The evidences can be built as logical arguments with references to concrete facts or as pointers to trivial issues that can be verified. Therefore in evaluating data sources one needs to ascertain these evidences by considering the following;

Validity; Lekvall and Wahlbin (1993)4 argue that the validity of a study addresses the question as to whether the researcher is actually measuring what he intends to measure. In mathematical programming, the validity of a model is the degree to which inferences drawn from the model hold for the real world (L. Radon 2000).We evaluate the internal validity of our model by running the model and comparing output results for different scenarios. While data has a direct impact on model development and behaviour, some data inaccuracies can be detected from model behaviour. Therefore model development and data collection and validation needs to be taken simultaneously. Reliability; reliability is concerned with the accuracy margin in relation to consistency. If research findings can guarantee consistency, then predictability can be made, based on the findings. To ensure that data sources are reliable it is necessary to ensure that the sources used are relevant for the question addressed in context. Further, such data can be compared with data obtained from similar cases outside the scope of the study. In the case of optimization models, consistency in model behaviour may help detect inaccuracies and hence question the reliability of some data sources. Focusing on persons directly involved in terminal handling operations as a reference we hoped the information obtained is reliable.

4

Lekvall & Whalbin, 1993, p. 211 ff.

Chapter 3

3The Structure of SSS; A Problem Perspective

In this section, we consider problems associated to SSS especially for port terminals and shippers. We find out the definition of the concept of SSS, bottlenecks and some proposed solutions with special interest on capacity, cost, and performance. To coup with SSS, terminals and shippers have to meet some basic requirements that needs corporation e.g. delivery speed.

3.1How is SSS Defined?

The concept of SSS has been widely acclaimed for it potential in combating congestion and other road traffic related problems. This means that any SSS solution has to meet some minimum requirement. Other specific qualifiers such as linking particular marine channels with given corridors do exist and varies from one region to another. As a result of these, the concept of SSS lacks a classical/coherent definition as suggested by the Canada-U.S. Memorandum of Cooperation (July 2003). The European Union (EU) Commission5has chosen to define it as follows; (1) SSS means the movement of (2) cargo and passengers by sea between ports situated in geographical Europe or between those ports and ports situated in non-European countries having a coastline on the enclosed seas bordering (3) Europe. SSS includes (4) domestic and international maritime transport including (5) feeder services along the coast to and from the islands (6) rivers and lakes. The concept of SSS also extends to maritime transport between the member States of the union and Norway and Iceland and other States on the Baltic Sea, the Black Sea and the Mediterranean. This definition suit fairly well, in line with the expectations from SSS in geographical Europe.

On the other hand the US Maritime Administration (MARAD) presents a working definition for SSS as “the commercial waterborne transportation that does not transit an ocean. It is an alternative form of commercial transportation that utilizes inland and coastal waterways to move commercial freight off already congested highways, thereby providing more efficient and safer roadways for car passengers while alleviating congestion at critical choke points. Beyond this, MARAD include the following specific requirement; a secondary effect of SSS would be reduction of air pollution and overall fuel consumption through economies of scale. Without building more highways, SSS can provide additional capacity with the National Transportation System through greater use of waterborne carriage and can enhance linkages to our North and South American trading partner (Mary R. Brooks et al; March 2006).

Worth noting, is the fact that while the definition presented by the EU uses a regional geographic criteria, the MARAD definition is based more on a functional criteria, showing how the same concept has been given different views all correct within their respective contexts. Thus, in it generalised form and for the purpose of this study we consider SSS to embrace all movement by water of passengers and/or cargo that do not include a trans-oceanic voyage and offers a feasible intermodal connection. This includes marine transport across lakes, peninsular, seas and coastal water ways shuttling between major and/or feeder ports with feasible intermodal connections. The Karlshamn-Klaipeda shipping

link can therefore be considered as a SSS link. SSS is more than just a simple marine transfer, since the intermodal connections makes the operations sophisticated with a myriad of complex dimensions (Mary R. Brooks et al; March 2006), each of which needs examination and resolution in order to render the service viable. Therefore any good attempt in characterising SSS should not only be based on the marine leg but should as well consider port terminals and particularly with regards for intermodality (integrated), which is vital in achieving a seamless flow of goods in a transport chain.

3.2What are the Current Problems Associated With SSS?

The cost incurred in investing and operating a given type of equipment is a key determinant factor considered by most terminal operators, such cost affects the price of services rendered to customers. Therefore most handling problems are closely attached to cost e.g. cost of quay crane is so high that terminals find it difficult to invest in when they are not sure of sufficient cargo traffic. This makes it necessary to consider a cost perspective in addressing some handling related problems.

3.2.1The Cost Dimension for SSS

Cost may be difficult to estimate but the main challenge lies in calculating the benefits which are not always obvious (J. T?rnquist, 2006). Although port authorities do understand SSS from an operational stand point, they often find it difficult to quantify the benefits and cost6. Not only are shippers and terminal operators unwilling to share their vital costs information, but pricing of such aspects as environmental effects, quality of service, handling performance etc may lack standards and consequently could be rather subjective. Cost estimates seem to indicate that the establishment of new regular shipping links would be considerably less costly than the construction of corresponding new land infrastructure7. S. P. Strandenes, P. B. Marlow (2000) argues that with regard to port operations, advocates of cost based pricing who point out that the basis for efficient pricing should be marginal instead of the traditional average cost pricing, take the economic point of departure. Since economies of scale exist both in providing port infrastructure and for cargo handling equipments, this pricing rule requires subsidies for ports to cover the total costs unless capital expenditure is recouped with the fixed element representing a substantial share of total cost, 80% for containers and 60% for break bulk.

In their work on the competitiveness of SSS, A. C. Paixao Casaca and P. B. Marlow identified some factors on which to develop a robust strategy for SSS, sighting cost of service (freight rates) and reliability/quality as a key factor (C. P. Casaca & P. B. Marlow; December 2005). Within the context of the U.S. industry standard cost model, the U.S. transport research board8 identifies some key cost components in a SSS projects including, cost of vessel, terminal, equipments, administration and sales, empty repositioning. These components form an operating ratio that may be used as a reference, though not unique relative to other modes of transport. Beyond this, other components such as cost of fuel, environmental effects, security, and IT systems do contribute to total cost incurred in SSS operations at the terminal level.

i.Cost of Vessel

While the capital cost of a ship is always difficult to estimate in general it can be divided into fixed cost and variable cost. Fixed costs include construction (capital), crewing, maintenance, and insurance. Whereas cost such as fuel, depreciation and amortization, can be regarded as variable cost.

6 Technical Memorandum 1, Technical findings (June 2005); Short-Sea and Coastal Shipping Options Study, Site;

http://144.202.240.28/pman/projectmanagement/Upfiles/reports/summary278.pdf last access 2006-08-06.

US Government Accountability Office (GAO, July 2005); Freight Transport: Report to Senate site;

https://www.wendangku.net/doc/5b4592985.html,/new.items/d05768.pdf last access 2008.08.07

8 I-95 Corridor Coalition (November 2005); Short Sea and Coastal Shipping Options, site;

The part of the capital varies between 20% to 70% and employment (operation) between 5% to 30%

(P. Beverskog, et a;l December 2003). Acquisition of a vessel goes beyond determining such key

pointers as vessel yard, type, quality, size, performance and terms of delivery up to key market

competitive factors and taxation policies. Most stake holders involved in SSS are of the opinion that

high-speed vessels (capable of attaining speeds of 25 to 30 knots) are necessary to support short-sea

shipping operations, but these vessels are expensive to construct and maintain, requiring a long-term

commitment by shippers who would use a short-sea service9. By the very fact that it takes about 2

years to build and deploy a vessel in water, whereas market dynamics incrementally fluctuate with

respect to infinitesimal time changes, the decision to acquire a vessel is highly strategic. As an

example, within the European market standards the cost estimate for RoRo Vs LoLo

vessel/operation carried out by A. Sj?ris on the port of G?vle indicate is shown below (Table 3.1).

RoRo LoLo

Capital Cost of Vessel (MSEK) 375 380

Port Service (MSEK/yr) 54 100

Ships (operational cost) (MSEK/yr) 143 194

Table 3-1 Cost estimates for RoRo Vs LoLo Source; third European Research Round Table Conference on

SSS, pages 86 & 138

However, such a cost structure will vary on a case by case base for different regions but investment in

vessels remains attractive from a cost perspective owing to the fact that payment is usually distributed

over a considerable time window.

ii.Cost of Terminal

Due to geographic and economic variations port terminals can vary greatly. Such variations could play

a great role in shaping the investment strategy and the type of handling systems suitable for the given

terminal. More generally some points to consider include; types of facilities and equipments to service

vessels and move cargo, difficulties of constructing berths and acquiring ramps, staging and stowage

area required, terminal access and gates, security, containers stacking patterns, environmental effects

and intermodal compatibility. B. Zigic and V. Renner 1996 highlight the cost of some of these

determinants within the Swedish economic standards: terminal access (track); 10,000 SEK/metre,

staging and stowage area (ground work); 450 to 650 SEK/square meter, equipments and facilities; 1.5

to 3.5 MSEK/ piece. These figures are indicative of the fact that in the case where land isn’t very

expensive to acquire (as in Sweden), the cost of investing in a new terminal is largely shifted to the

type of equipments and facilities required by the terminal and hence handling. The U.S. transport

research board gives an estimated operating ratio for a terminal to stand at 32.5%10, representing the

largest cost component for a SSS investment project.

iii.Cost of Equipments and Handling

As a result of diverse environmental fluctuations, cargo of different types and quality, handling

systems are the centrepieces of today’s modern terminals with an increasing need for accurate,

rational and rapid movement of material with the need to also benefit from scale economies. Among

all port activities, cargo handling is of special relevance since the cost of this service generally

represents about 80% of the costs incurred by a ship loading or unloading goods at a port (De Rus et

al. 1994; Suykens 1996). Viewed from a SSS perspective, it has been argued by some stake holders

that since shipping operators must pay dockworkers to lift cargo on or off ships, the cost of these

9I-95 Corridor Coalition (November 2005); Short Sea and Coastal Shipping Options, site;

http://144.202.240.28/pman/projectmanagement/Upfiles/reports/full343.pdf last access 2008.08.07

10 I-95 Corridor Coalition (November 2005); Short Sea and Coastal Shipping Options, site;

“lifts” will make SSS services less competitive with other modes11. It therefore follows that the decision to configure a given type of handling system for sea ports which need to derive the benefits of SSS is highly critical. Estimates from the US transport research board12 put the operating ratio for equipments in a SSS investment project to stand at 12 % including maintenance and repairs.

iv.Cost of Administration and Sales

Administrative procedures, besides imposing other bottlenecks (e.g. item declaration) at terminals on the seamless flow of goods that SSS seeks to achieve, have also been shown to constitute a significant share (estimated at 21.5% by the US Transport Research Board) of the cost structure for a SSS project. In defining the maritime policy for the EU the European Maritime Pilot Association (EMPA) included measures that encourage short sea shipping and the use of inland waterways. In particular they propose that administrative burden should at least be reduced to a level comparable to other modes of transport used for intra European traffic. However cost of administration is not an issue for ports that simply restructure to adapt to SSS, since such ports may rely on the already existing administrative body.

v.Environmental Effects

Due to their special features, sea ports are very complex systems with a wide range of environmental issues such as releases to water (e.g. waste waters, accidental releases during loading/unloading operations etc), releases to air (including gases, solid particles, energy etc) (R.M. Darbra et al; 2005). These call for a much stricter measure on ports and shipping as a whole regarding the environment, which in it natural sense has no boundaries, and thus should be approached from a corporate/global perspective. While a SSS implementation can be capable of redirecting as much as 2400 containers or 6400 truck trips from highly congested corridors, it associated high frequencies may contribute significantly to occasional discharge of pollutants (diesel, and related hydrocarbon products) from ships. Thus, to secure the environmental advantages of SSS on a regional basis, care should be taken to ensure that the diesel emission reductions gained in the urban corridors are not simply shifted to an equal or even greater amount of diesel emissions at the ports (H. D. Le-Griffin & J. E. Moore 2006). Such goals can only be attained through strong environmental pricing, and political regulations. Of 13 projects selected from 92 proposals by the EU Marco Polo program to promote government initiative for SSS, the average environmental efficiency for the 13 projects is 15 i.e. for every 1 EUR of subsidy spent 15 EUR of society external costs are saved13.These policies may vary greatly among different port and organizations, making it difficult to evaluate environmental cost parameters in it generalised sense. However for a procedure for identifying and prioritizing relevant environmental aspects in a sea port see R. M. Dabra et al (2005).

3.2.2The Capacity Dimension for SSS

The growth in world sea-born trade of containerized cargo has outstripped the growth in world trade in general since the introduction of the container in the 1950s. The sea-born volume reached an astonishing 73 million TEU in 2001, which in turn generated 230 million lift in the ports. With an average growth in container friendly cargo of 7%, it is not unlikely to expect a doubling of sea born shipment during 2001 to 2010 (P. Beverskog et al; December 2003). While this capacity growth may not pose a major challenge for maritime transport, competing market forces may impose a trade off

11 Transport Research Board (Washington, January 2004); Alternative Freight Capacity: Opportunities and Challenges. Site;

https://www.wendangku.net/doc/5b4592985.html,/onlinepubs/security/144/Richardson.ppt

12 I-95 Corridor Coalition (November 2005); Short Sea and Coastal Shipping Options, site;

http://144.202.240.28/pman/projectmanagement/Upfiles/reports/full343.pdf last access 2008.08.07

13 Transport Research Board (Washington, January 2004); Alternative Freight Capacity: Opportunities and Challenges. Site;

竺可桢学院级混合班以及人文社科实验班培养方案

竺可桢学院级混合班以及人文社科实验班培养方案

浙江大学竺可桢学院 级混合班、人文社科实验班培养方案 培养目标: 以“为杰出人才的成长奠定坚实的基础”为宗旨,培养造就基础宽厚,知识、能力、素质、精神俱佳,在专业及相关领域具有国际视野和持久竞争力的高素质拔尖创新人才和未来领导者。 培养特色: 1.特别培养。每年从全校新生中选拔优秀学生,单独编班,因材施教,特殊培养。 2.宽厚基础。实施课程内容精、深、通的研究性教学,强化英语、计算机应用能力、数理、人文社科等基础培养,打好扎实的基本理论和基础知识,为优秀学生成长奠定坚实的基础和确认主修专业提供多种通道。 3.差异教育。以专业导师制为核心实行个性化专业培养,突出差异教育,在导师指导下制订个性化的专业培养方案。 4.科研训练。实施国家、省、校院级大学生科研训练计划项目,加强学生科研能力的培养,提高学生科学研究能力。 5.中外互通。开展广泛的跨国际交流项目,加强与国外学生的交流,培养学生胆识,激励成长,拓展学生的国际视野。在本科培养阶段,积极安排赴国外“目标学科”修读相关专业课程。

6.竞争机制。实行“滚动制”培养,根据学业等综合表现进行分流培养和择优递补,实施荣誉学籍和荣誉证书制度。 7.方法改革。实施研究性教学方法模式改革,以教学“高端化、研究化、国际化”为目标,注重教育内涵发展,逐步实现以教为主向以学为主转变、以课内学习为主向课内外结合转变、以结果评价向过程与结果评价结合转变,激发学生创造性、主动性学习。 培养面向:(含本大类包括的专业及所在院、系名称)竺可桢学院按照厚基础、宽口径的大类基础教育与自主性、个性化的专业培养相结合的培养模式,建立宽、专、交的多元化知识结构。强化学科知识基础、多种思维方式及人文素质的培养和训练。学生在修读相应大类课程的基础上,可在全校自主确认主修专业。 混合班: 数学与应用数学(含运筹学方向)、信息与计算科学(含信息处理与信息安全方向、计算机图形学方向)、统计学(含金融数学、保险精算、生物统计方向)、物理学、化学、地球信息科学与技术、地理信息科学、人文地理与城乡规划、大气科学、心理学、应用心理学(含心理咨询方向)、生物科学、生物技术、生

计算机文化基础答案

1. 简述计算机的几种主要类型,它们的主要应用领域是什么 2. 计算机内部的信息为什么要采用二进制编码表示 3. 一台服务器的网络地址是它是由四个十进制数表示的,在计算机内部 以二进制形式存储在 4个字节中。请写出该地址对应的 4个二进制数。 4. 简述冯·诺依曼型计算机的组成与工作原理。 5. 什么是计算机的指令系统机器指令通常有哪些类型 6. 简述操作系统的形成过程。操作系统的功能是什么 7. 进程的概念是什么举例说明在使用计算机过程中涉及到进程的一些操作 8. 在 Windows中,启动一个程序有哪几种途径 9. “文件”的概念是什么如何定义文件名和扩展名 10. 注册表的功能是什么 11. 利用 Delete键是否能够安全卸载某个应用程序为什么 12. 在 Windows中,应用程序之间的数据交换有哪些形式,它们各自的特点是什么 13. 什么是计算机网络,举例说明计算机网络有哪些应用 14. 简述计算机网络的基本组成(软硬件)。 15. 什么是计算机网络的拓扑结构常见的拓扑结构有哪几种 16. 什么是计算机网络协议说出 OSI七层协议的名称。 17. 什么是 Internet,举例说明 Internet上有哪些应用 18. Internet采用的标准网络协议是什么 19.在网络应用中采用客户机/服务器模式有什么好处 20. 在 Internet中,IP地址和域名的作用是什么它们之间有什么异同 21.什么是 HTML 什么是主页 22. 目前 Internet上主要的搜索引擎有哪些如果利用它们查找所需的信息 23.什么是电子邮件举例说明电子邮件地址的格式。 24. 计算机病毒通常由哪些危害请具体介绍你在自己学习或工作中使用的计算机上利用了哪些软件工具或使用了哪些方法防治计算机病毒的。 25. 请结合个人经验谈谈对于网络安全的认识。

中国传媒大学语言学及应用语言学专业方向介绍

中国传媒大学语言学及应用语言学专业方 向介绍 (感谢凯程罗老师对本文的有益指导.) 语言学及应用语言学专业(050102) 1.应用语言学方向 应用语言学方向是适应我国应用语言学发展需要设立的研究方向,它以“人机交际”和人际交际的语言理论和技能、技术为主要研究对象。作为跨学科的语言应用学科,它同人文科学、自然科学(数学、物理学、信息科学、计算机科学等)都有密切关系。 本方向有社会语言学和计算语言学两个研究领域。社会语言学,重在研究语言在社会生活中的应用。它结合中国社会的文化背景,对语言应用进行多角度、全方位的研究,总结社会生活不同领域(如旅游、交通、商贸、公关、司法、教育等)人际交往中语言应用的特殊规律,对语言实践提供理论指导,并为我国语言文字规范化工作服务。计算语言学是利用计算机对人类自然语言处理和加工的科学,它是适应信息时代的要求而产生和发展起来的一门边缘交叉性学科。机器翻译、自然语言理解、语音识别与合成等都是本方向研究的重要课题,这些课题的研究对人工智能计算机的研制,起着举足轻重的作用。 本方向将发挥中国传媒大学文、理、工多科院校、以及与教育部语言应用研究所合作的优势,为二十一世纪的应用语言学培养高层次专门人才。 2.对外汉语教学方向 本研究方向以对外汉语教学研究为重点。汉语教学法历来都是汉语言基础理论体系中的重要组成部分,汉语教学法研究,也是汉语言基础理论研究中不可缺少的部分。 自现代汉语诞生之日起,其教学过程即随之开始;应用语言学的产生和发展,更进一步推动了汉语教学研究的理论升华。特别是近几十年来,汉语教学研究,无论是对内的,还是对外的,都越来越受到重视。从建立完整的理论体系的角度说,我校有国内著名语言学家为学科带头人的现代汉语语法、修辞研究的深厚基础,最近又增添了应用语言学研究的雄厚实力,如果再加上汉语教学研究理论的参与,必将使汉语语言理论研究体系更趋完善。我校作为全国广播电视人才培养基地,多年来一直担负着为广播电视事业培养专门人才的重要任务。如何在汉语教学中把结构、意义和交际功能三者有机地结合起来,更好地培养学生实际运用语言的能力,也是多年来面临的理论与实际的大问题。随着时代要求的不断提高,矛盾日益突出。汉语教学如何借鉴心理学、教育学等相关学科的研究成果,结合语言应用实际,力求走出一条新路子。 对外汉语教学专业人才的需求,近年来不断加大,国内各汉语教学机构为了在来华留学生的市场竞争中占有更多的份额,都纷纷把对外汉语教学高学历师资的竞争放到了首位。此外,全球性“汉语热”方兴未艾,特别是在进入新世纪之后,国内外汉语教学师资的需求量呈上升趋势。本方向将竭力培养对外汉语教学方面的高层次专门人才。 3. 语言信息处理方向 语言信息处理是语言学与计算机科学交叉形成的一门新型学科,是应用语言学的重要组成部分。 我国“十五”发展规划的重要方针之一,是大力推进信息化进程,以信息化带动工业化。

微机原理与接口技术 期末试卷及答案详解 (西科大)

《微机原理及应用[B]》期末考试试卷(B卷) 课程代码:223194450命题单位:信息学院通信教研室学院:班级:姓名:学号: 一、单选题(每小题1分,共15分) 1.IBM PC微机中,有符号数是用(B)表示的。 A.原码B.补码C.反码D.BCD码 2.把输入和修改汇编源程序的过程称为(C)。 A.编译B.汇编C.编辑D.链接 3.逻辑地址2000H:1000H对应的物理地址为(D)。 A.1200H B.12000H C.2100H D.21000H 4.当RESET信号进入高电平状态时,将使8086的(A)寄存器初始化为0FFFFH。 A.CS B.DS C.SS D.ES 5.下列指令中,不影响进位的指令是(C)。 A.ADD AX,10 B.SAL AL,1 C.INC CX C.SUB AX,BX 6.PC系统中,中断号为08H的中断向量,存放在(B)双字单元的存储器中。 A.0000H:0008H B.0000H:0020H C.0000H:0032H D.0032H:0000H 7.8086有(B)位数据线。 A.8 B.16 C.32 D.64 8.8086CPU标志寄存器中用来表示进位标识的是(B) A.OF B.CF C.IF D.SF 9.以下哪个寄存器不是8086CPU中的段地址寄存器的是(D) A.CS B.DS C.SS D.SI

《微机原理及应用[B]》期末考试试卷(B卷)10.用2片8259A中断控制器组成2级中断控制系统,最多可以管理的中断源为(C)级。 A.8 B.16 C.15 D.31 11.可编程计数/定时器8253的工作方式有(D)种。 A.3 B.4 C.5 D.6 12.执行MOV AX,0A742H指令后,AL寄存器中的值为(D) A.0AH B.0A7H C.74H D.42H 13.在下列伪指令中定义双字节变量的是(B)。 A.DB B.DW C.DT D.DD 14.运算器由很多部件组成,其核心部分是(B)。 A.数据总线 B.算术逻辑单元(ALU) C.累加器 D.多路开关 15.计算机中单位Kb的含义是(D)。 A.1000个位 B.1000个字节 C.1024个位 D.1024个字节 二、判断题(每小题1分,共10分,正确的画“√”,错误的画“×”) 1.伪指令是指示性语句,不产生机器目标代码。(Y) 2.一个字节是8位,在8086系统中一个字是两个字节16位。(Y) 3.一个基本总线周期有三个T状态组成。(N) 4.Tw状态可以连续出现多次。(Y) 5.8086复位后执行的第一条指令存放在00000H处。(N) 6.MOV CS,AX是错误的指令。(Y) 7.中断向量是中断服务程序的返回地址。(N) 8.LOOP指令结束的条件是CX=0。(Y) 9.MUL指令固定将累加器作为乘数之一。(Y)

中国传媒大学百分制分数转换绩点(GPA)算法对应说明

中国传媒大学百分制分数转换绩点(GPA)算法对应说明 根据我校成绩管理规定,中国传媒大学必修课学分绩点(GPA)同百分制分数转换标准对应如下: 注:成绩单的学分绩点GPA算法(公选课学分不计入)采用北京大学的算法; 单门课程GPA=4-3(100-X)2/1600 (60≤X≤100),X为课程分数; 总的GPA=(∑每科GPA*学分数)/∑课程学分; 其中,100分绩点为4,60分绩点为1,60分以下绩点为0。 中国传媒大学教务处

Explanation of Grade Point (GPA) and the Hundred-mark Scores Conversion at Communication University of China According to the university’s per formance management regulations, t he conversion of the Percent Scale and GPA is shown below: Note: GPA is calculated based on the Peking University GPA Calculation Formula with optional courses excluded. Single course GPA=4-3(100-X)2/1600 (60≤X≤100), X refers to course grade Total GPA =∑course grade points/∑course credits 100=4.00, 60=1.00, for grades below 60=0. Academic Affairs Office Communication University of China

西科大文献检索期末测试

1. 单选题:(1.0分) 使用搜索引擎查找特定类型的文件的高级搜索语法命令为(D )。 A. filetype B. intitle C. site D. inurl 2. 单选题:(1.0分) 在检索文献的过程中,有时会遇到输出的篇数过少,你将如何调整检索策略,以达到最佳的检索效果。(B) A. 增加“AND”算符 B. 增加“OR”算符 C. 减少“OR”算符 D. 增加“NOT”算符 3. 单选题:(1.0分) 美国政府的四大科技报是我国广大科技工作者广泛使用的科技文献,请问下列哪一个是有关能源方面的报告?(C ) A. AD B. NASA C. DOE D. PB 4. 单选题:(1.0分) 如果你要在"西安科技大学学报"中查找"李树刚"老师发表的相关文献。请问以下那种表达式可以快速准确的检索到符合条件的文章。(A ) A. (作者=李树刚) + (篇名=西安科技大学学报) B. (作者=李树刚) * (刊名=西安科技大学学报) C. (作者=李树刚) * (篇名=西安科技大学学报) D. (作者=李树刚) + (刊名=西安科技大学学报) 5. 单选题:(1.0分) 中国重要会议论文全文数据库(CPCD)收录在以下哪个数据库系统中:(C) A. 万方数据库 B. 维普中文科技期刊全文数据库

C. CNKI全文数据库 D. 中国宏观经济数据库 6. 单选题:(1.0分) 一般来说,检索词出现在文献的不同字段表达的相关性不同,以表达的相关性从强到弱排序如下:(C )。 A. 关键词>标题>正文>文摘 B. 关键词>正文>文摘>标题 C. 标题>关键词>文摘>正文 D. 正文>文摘>关键词>标题 7. 单选题:(1.0分) Web检索工具是人们获取网络信息资源的主要检索工具和手段。以下(D )不属于Web检索工具的基本类型。 A. 目录型检索工具 B. 搜索引擎 C. 元搜索引擎 D. 语言应答系统 8. 单选题:(1.0分) 万方数据资源系统可以检索的文献类型是(D)。 A. 标准文献 B. 期刊 C. 学位论文 D. 以上都有 9. 单选题:(1.0分) 被誉为"工具书之王"、"没有围墙的大学"的是(A )。 A. 百科全书 B. 手册 C. 字词典 D. 索引

浙大老师之黑名单VS光荣榜 来源

浙大老师之黑名单VS光荣榜来源:时可的日志 浙大老师黑名单 鲁晓笑:广告视觉传达(选修) 卢经山:音响技术与家庭影院 麻美应:现代礼仪 曹惠军:中外名曲欣赏 徐明:现代管理基础 周勇光:工程图学 鲍江华:应用写作 蔡寿福:物理 赵学安:物理 鲍世宁:物理 陈小英:法律基础 郑其适:羽毛球 吴心忠:哲学 虞建辉:英语 沈宝明:复变与l氏变换 李俊杰:常微 数控线切割老师 计翔翔:《世界文明史》(有争议,有人认为他讲课很好,有人比如说在下就认为他不太负责) movie94学姐吐血经验: 卢小雁的课不要选,睡觉的课;沈爱国的课不错,吴飞也可以,易容是个好老师,可是知道在ZJG开不开课,她是美学博士,若有相关的课,不妨去听听看 嗯,那个基督教史的课很难听,睡觉的课 浙大老师光荣榜 说清必修选修呀~~~ 修改之“黑名单” my lady gaga 定向越野:吴叶海林时云 微积分:苏德矿吴明华龚乐春 大学物理:陈凤至 计算机组成:潘学增杨起帆(是不是走了?) 数据结构:王申康陈越 操作系统:李善平 physics:方本民潘正权(还在美国吧) 文学:潘一禾 天文学:刘广深 环境与人类文明:刘广深 政治经济学:戴文标舒泽虎蒋文华廖亦宏 中华人民共和国史:李立志(绝对精彩不容错过!他上完课后全班同学鼓掌致谢的!不过英年早逝。。。)中国近代军事史:姚杏民

褚良才 游泳:孙云龙 伦理学:张应杭 现代经济学陈君徐林危启才(好是好可是分不高考试之前话题) 盛晓明 网应:孟炳泉 大学物理:阮晓生陈凤至 邓论:熊卫平 政治经济学:包松 c:高济平王何宇 大学语文:许志强 复变:汪国昭 英语:王元春吴越民熊海虹(又可爱分又高) 军事学和国防科技:吕强 诗歌鉴赏与写作:黄杰 篮球:林燕萍 乒乓球:陈烽 线代:戴佳玲,陈维新 电路原理:贾爱民 付东黎:风景画入门 离散数学:王维维 心理学概论:符得江 中华人民共和国史:李立志 美学:易容(新闻系的老师) 社会学:徐敏(新闻系老师) 网球:何一兵(阳光大帅哥!!) 普通生物学:钱凯先 影视鉴赏:陈晓云 形体健美:卢芬 创新思维与开发:周耀烈(上节课,他还唱绍剧给我们听,还说以后大多是做游戏,考试可能是唱歌比赛)日语:张宏斌

2010年中国传媒大学考博语言学理论试题及答案

中国传媒大学2010年攻读博士学位研究生入学考 试 语言学理论试题 一.论述题。 1.必答题(40分) 就语言规划或语言规范化问题尽你所知进行论述。 2.选答题(30分,任选其一回答) A.就话语(也叫篇章、语篇)研究进行论述。 B.就形式主义语言学和功能主义语言学进行论述。 二.分析题(30分,每小题10分) 1.指出下面三个四字格之间的联系,分析形成的原因,并说明各自的表达效果。喜鹊登枝 喜上眉梢 喜上眉梢 2.下面两组句子,一组可逆,一组不可逆,请从认知角度解释。 我后悔死这件事了——这件事后悔死我了 我后悔这件事了——★这件事后悔我了 3.运用预设理论解释下面句子。

北京又要打击非法一日游了 中国传媒大学2010年攻读博士学位研究生入学考试 语言学理论试题 二.论述题。 1.必答题(40分) 就语言规划或语言规范化问题尽你所知进行论述。 (1)语言文字的合理发展,对一个国家或民族的发展具有不可估量的作用。国家或社会为了管理社会语言生活,对语言的现状及发展施加有计划有目的的影响以促进语言文字健康发展使其更好的尾社会服务而进行的各种工作就是语言规划。 (2)语言规划涉及的内容很多,主要包括民族共同语的确立和推广,民族共同语的规范和完善,语言选择,语言协调,语言调查,科技术语的统一和标准化,文字的创制和改革等。 (3)①语言文字立法是语言规划的一种体现。《中华人民共和国国家通用语言文字法》是语言政策的法律体现,对于加强语言文字工作有重要意义。②政府对语言的管理和影响表现在官方语言的选择上,外语教育也有语言选择问题,除了语言选择以外还有标准化问题,包括科技术语的标准化和语言规范化。 (4)语言规划的原则:语言规划必须尊重并且符合语言发展的客观规律,符合社会发展的需要,符合广大人民群众的意愿。避免两种倾向:一种是人在语言文字面前无能为力,无所作为;一种是过于夸大人的作用。

西安科技大学2020学年第学期期末中考试模拟题卷

第 1 页 共 3 页 西 安 科 技 大 学20 —20 学 年 第 学 期 期 末(中)考 试 模 拟 题(卷) 院系: 班级: 姓名: 学号: 装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线 一、单项选择题(每题1分,共10分) 1. 0.6875D 的二进制为 ( ) A. 0.0111B B. 0.1101B C. 0.1011B D. 0.1111B 2. 一条指令执行完后,CS =1000H ,IP=1052H ,则下一条指令的地址为 ( ) A. 2025H B. 11052H C. 01052H D. 10520H 3.下列指令中哪条是正确的 ( ) A. MOV DS, 0200H B. MOV AX, [SI][DI] C. MOV BP , AX D. MOV BYTE PTR [BX], 1000 4. 在 AR DB 10 DUP (5,2 DUP (6))中,含数据字0506H 的个数是 ( ) A. 10 B. 20 C. 0 D. 9 5. AL 高4位请0,应执行的指令是 ( ) A. AND AL ,0F0H B. AND AL ,0FH C. OR AL ,0FH D. TEST AL ,0FH 6. 将变量的偏移地址及段地址存入数据区宜用伪操作助记忆符是 ( ) A. DW B. DB C. DD D. DQ 7. 条件转移指令的转移范围是 ( ) A. -128~127 B. 0~255 C. -32768~32767 D. 0~65535 8.若AX =65ACH ,BX =0B79EH ,则 ( ) A. 执行ADD AX,BX 指令后,CF=1,OF=1 B. 执行SUB AX,BX 指令后,SF=1,OF=0 C. 执行TEST BX,AX 指令后,CF=0,OF=0 C. 执行XOR AX,BX 指令后,PF=1,IF=0 9. DOS 功能调用的功能号是 ( ) A. 21H B. 20H C. 22H D. 10H 10. 不能实现将AX 清零和CF 清零的指令是 ( ) A. SUB AX ,AX B. MOV AX ,0 C. XOR AX ,AX D. AND AX ,0

2013年数字媒体艺术辅修专业招生简章-中国传媒大学教务处

中国传媒大学 数字媒体艺术辅修专业 2013年秋季招生简章 一、培养目标: 本专业培养具备人文、艺术素质、较强创意能力,基本掌握数字媒体艺术基础理论和数字媒体应用技术,能在数字媒体领域中,将数字内容创意与数字化技术结合起来并进行初步的数字影视、网络媒体、游戏、动画等艺术创作的复合型人才。 二、招生对象及条件: 1、招生对象: 本校2012级及以上年级在校本科生。 2、招生条件: 德智体全面发展,能完成主修专业学习任务,原则上要求全部必修课程及格(重修重考及格课程视为及格),学有余力。如成绩达到要求者仍超过招生人数,将根据具体情况另设条件筛选。 三、免修公共选修课 本校学生所学辅修学分可计入公共选修课学分。 四、修业年限:一年 五、授予证书:中国传媒大学辅修专业证书。 六、授课时间:2013年9月至2014年6月,每周六、日授课(详见课表)。 七、辅修学费: 参照我校本科专业收费标准,按学分收取费用。课程每学分310元,毕业论文每学分280元。总计8000元,第一学期3720元。(具体将根据课程安排进行调整) 八、招生人数:50人(视报名情况而定,如少于50人则不开班) 九、招生时间安排:(见附件9) 十、开设课程及简介:(见附表1、2) 中国传媒大学教务处 2013年6月

数字媒体艺术辅修专业课程进程表

数字媒体艺术辅修专业课程简介 数字媒体艺术概论 本课程简要梳理数字媒体艺术发生发展的过程,讲解其基本概念和范畴;在艺术学平台上解析数字媒体艺术的本体构成、价值、内核;较为深入地解读数字媒体艺术的本质特点、语言及思维特点、类型特点,并逐步理清数字媒体艺术创作规律;与实践相结合,在弄懂数字媒体艺术创作基本手段的基础上,理论性地掌握数字媒体艺术诸多创作类型及其审美特点和审美方式。 设计思维创新与实践 近年来,美国斯坦福大学、德国波茨坦大学等为代表的世界一流高校,开始积极探索基于文化创意时代的复合型创新人才培养方式,并逐步落实到一种新的教学模式—设计思维上。设计思维是一种整合人文、商业和技术等要素来解决问题的创新方法,追求以人为中心,将不同专业背景的师生整合到一起,以4-6人的小组进行工作,通过整合团队成员的不同观点、创建特殊的交互环境,进行反复而快速的原型设计。 本课程以项目式教学模式,每个设计挑战都是致力于解决业界存在的实际问题,为企业探索创意性的解决方案并设计产品原型,使学生在专业知识和创新能力方面都能得到最大成长。 故事写作 本课程是有关影视剧本写作技巧和创作实践训练的课程。以大量影视剧作案例和创作实践,向学生传授影视剧本写作原理,教会学生如会运用形象、动作、语言编制故事,并如何在有技巧的组织结构和情节设置中塑造人物和传达思想感情。 数字摄影与摄像 本课程讲授摄影与摄像的基本原理,摄影与摄像创作规律及二者的联系与区别,使学生掌握摄影与摄像的基本技术技巧,以便更好地应用于实践创作。

浙江大学选课宝典2011

大类必修课: 思政类: 1、中国近现代史纲要许建平、连连、郭汾阳(口碑相当好)、林素兰。 2、马原夏婉婉(强烈推荐,人品超好,知性、气质、亲切) 3、军理老师好像都差不多,据说褚良才不错。别选陈昆福和沈莉萍,据说是绩点杀手 数学类: 1、线性代数汪国军、汤树元。童雯雯以前有开过一个重修班,也不错的说。千万别选温道伟,号称四大名捕之一,虽然给分还算厚道,但是教的实在不行。 2、微二、微三景荣荣、童雯雯、苏德矿、邵剑(很有趣的一个老爷爷,给分也不错的)千万别选张泽银的课,要不你怎么死都不知道 3、概率论黄炜其实概率论老师都差不多,课也比较简单。 计算机类: Java 方宁(虽然有点二,给分还不错)、李峰好像也可以,其他老师就不清楚了 C程白洪欢陈建海。两个老师都很好,无论是教学质量、人格魅力、给分情况都很赞。白洪欢有个个人的主页:10.10.98.98/bhh 放了很多C程的学习资料。陈建海会根据大家在cc98的答疑版的发帖情况在期末总成绩中酌量加分。 外语类: 大英三、大英四傅莹不错,上课比较有意思。符亦文,田敏捷,这两个姐姐真的都很好。 化学类: 1、大化(O)吴师不错,就是比较严格,选他的课成绩不一定很好,平时也会比较辛苦,但是真的能够学到很多东西。 2、有机化学陈万芝还可以,马成也不错。 3、无机化学现在写好像都晚了,选徐光明的同学们,自求多福吧。 C类课程: 1、工程图学(2.5分)金逸锋施岳定。两个老师在教学质量和人格魅力上不相上下,但是施岳定给分略高。 2、工程训练(1.5分) 通识课: 绿色生产与生态安全陈绍瑗、刘银泉 只要写2篇论文即可,一篇即使是抄的也没有关系,因为那老师只要求你是手写的,并写上从哪抄来的就行。不过,有一点平时很大一部分是看你到课率的,因为每个老师的4次课中都各有2次点名,每次点名好像有5分,最后得分认真去上课的话基本上90没问题,而且那课也比较有意思

中国传媒06语言学及应用语言学

中国传媒大学2006年应用语言学考研试题 语言学理论 解释下列概念 互补分布 2、语义特征 3、屈折语 4、自源文字 5、隐喻 二、单项选择题 1、历史比较语言学出现在--------- A、19世纪中叶 B、20世纪初 C、19世纪初 D、20世纪中叶 3、从音质角度划分出来的最小语音单位是----------- A、音渡 B、音素 C、音位 D、音节 4、[p、t’、ts、k]这一组音的共同的区别特征是----------- A、不送气 B、清音 C、塞音 D、擦音 5、下列词语中的“子”是实语素的是---------- A、鸽子 B、傻子 C、莲子 D、日子 6、下列说法中正确的是 A、“老”可以同“新、旧、少、嫩”等构成反义词 B、“大”和“小”是绝对对立的反义词 C、“红”与“黑”这对反义词具有非此即彼的关系 D、“冷”和“热”是相对反义词 7、英语代词“我”,作主语时写作I,作宾语时写作me。这种变化时语法范畴中---------的表现。 A、性 B、树 C、格 D、人称 8、关于社会方言的形成,下列说法不正确的一项是--------- A、社会方言大多是在语言的相互接触中形成的 B、社会方言是随着社会的社群分化而产生的 C、一种语言的内部有可能形成社会方言 D、一种方言的内部有可能形成社会方言 9、克里奥尔语是指----------- A、用于特殊交际场合的皮钦语 B、功能单一,只能用于口头交际的一种混合语 C、结构简单,不可能得到充分发展的一种混合语 D、母语分化的皮钦语 10、下列各组内三个合成词构词类型不一致的是----------- A、天地宇宙阴阳 B、鱼子花儿锄头 C、改善揭露纠正 D、爸爸哥哥姐姐 三、分析题 1、请证明下列各组音素在汉语普通话中属于不同音位,还是同一音位的不同变体。[ t ]—[ t’ ] [ b ]—[ p ] [ i ]—[ u ] [ a ]—[ α ] 2用层次分析法分析下列词组(要求分析到词) 词汇是语言中反映社会发展变化最敏感的要素。 像流水一般晶莹剔透的月光。 3指出下列句子中划线词语的语义指向 小王把酒喝光了。 新买的球鞋也踢坏了。 4设置不同的语境,使“我等你半天了”这个语句形式表达不同的意思,呈现不同的交际效果(至少三个)。 5判断正误并说明理由。 语言是语言,言语是言语,二者完全不同,没有任何关系。 任何一种符号,都是由形式和内容两方面组成的。

中国传媒大学

中国传媒大学 数字媒体艺术专业辅修/双学位专业 2015年秋季招生简章 一、培养目标: 本专业旨在帮助学生适应互联网时代的社会发展潮流,深入理解传统媒体与互联网交叉融合的媒介特征、传播方式与产业规律,全面掌握与新媒体相关的创意策划、数字影视创作、内容产品设计与开发等工作所需用到的专业技能,能够满足电视台、新媒体、新闻出版、广告咨询等相关行业对于所亟需的新媒体高端人才需求,帮助学生能够成长为具有国际化视野,具备较高的新媒体艺术素养与扎实专业技能的新媒体行业领军人才。 二、招生对象及条件: 1.招生对象: 本校2014级及以上年级在校本科生。(2012级学生仅允许修读一年辅修)2.招生条件: 德智体全面发展,能完成主修专业学习任务,全部必修课程及格(重修重 考及格课程视为及格),学有余力。如成绩达到要求者仍超过招生人数, 将根据具体学习成绩设条件筛选。 三、修业年限:两年 四、免修公共选修课 本校学生所学辅修/双学位学分可计入公共选修课学分。 五、授予证书: 两年学习完毕,成绩合格,在主修专业获得学士学位时,授予中国传媒大学辅修/双学位学位证书。 六、招生时间安排及咨询电话:(见附件8) 七、授课时间:2015年9月至2017年6月,每周六、日上课(寒、暑假除外) 八、辅修学费: 参照本科专业收费标准,按学分收取费用。 课程每学分350元,论文每学分340元,共计12870元。第一学期3500元。(具体将根据课程安排进行调整) 九、课程安排及课程简介:(见附表1) 中国传媒大学教务处 2015年7月

附表1:数字媒体艺术专业辅修/双学位专业课程安排 序号课程名称授课教师职称 学 分 学 时 第 一 学 期 第 二 学 期 第 三 学 期 第 四 学 期 考试 /考查 1 数字媒体艺术发展纲要贾秀清、王珏教授、 讲师 1 16 √考试 2 设计思维创新与实践姜浩、税琳琳教授、 副教授 2 32 √考查 3 网络节目策划与叙事赵冰、武瑶讲师 2 32 √考查 4 数字影视制作技术张歌东、周一楠教授、 讲师 3 48 √考试 5 数字声音创作付龙副教授 2 32 √考试 6 三维图形设计与制作高薇华教授 3 48 √考查 7 数字影视剪辑李停战、周一楠教授、 讲师 2 32 √考试 8 数字合成技术崔蕴鹏、宋雷雨讲师 3 48 √考查 9 新媒体与广告设计路盛章教授 1 16 √考试 10 新媒体与当代艺术表现王利敏副教授 2 32 √考试 11 影视与动画技术前沿张歌东、崔蕴鹏教授、 讲师 1 16 √考查 12 用户体验与界面设计张启熙高级设 计师 2 32 √考查 13 互联网产品设计吕欣副教授 2 32 √考查 14 网络节目创作实践张歌东、周一 楠、黄裕成 教授、 讲师 3 48 √考试 15 毕业设计以上所有老师8 √毕业必须环节

通风安全学期末考试题及参考答案

第 1 页 共 1 页 西 安 科 技 大 学2009—2010学 年 第一学 期 期末 考 试 试 题(卷) 院系: 班级: 姓名: 学号: 装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线 科 目 矿井通风与安全 考试性质 考试 命题 审批 3000 n=630 n=560 2000 1000 40 Q 60 Q/m .s R R' M M 3 -11H /P a 01 =51.5 题3 题4 4 如图所示的并联风网,已知各分支风阻:R 1=1.18,R 2=0.58 N ·s 2/m 8,总风量Q =48 m 3/s ,巷道断面的面积均为 5 m 2,求:(10分) (1)分支1和2中的自然分配风量Q 1和Q 2; (2)若分支1需风量为15 m 3/s ,分支2需风量为33 m 3/s ,若采用风窗调节,试确定风窗的位置和开口面积。 5 某矿通风系统如图所示,各进风井口标高相同,每条井巷的风阻分别为,R 1=0.33,R 2=0.2 ,R 3=0.1,R 4=0.12,R 5=0.1,单位为N 2S/m 8。矿井进风量为100 m 3/s :(15分) (1)画出矿井的网络图; (2)计算每条风路的自然分配风量; (3)计算矿井的总风阻。 试卷类型 A 考试地点 雁塔校区 学生班级 采矿06级 成绩 1.命题时尽量采用计算机激光打印,手写必须字迹工整、清晰。审批由教研室主任负责; 2.(考试)科目应与教学计划保持一致,不能用简写或别称,考试性质为"考试"或"考查"; 3.试卷类型注明A 、B 、C 、D 等字样,考试地点注明雁塔(校区)或临潼(校区); 4.试题(卷)内容不要超出线格范围,以免影响试题印制和考生阅题。 一、名词解释(20分;每个2分) 1专用回风巷;2 瓦斯积聚;3 被保护层;4煤的自然发火期;5 外因火灾 6瓦斯涌出不均衡系数;7相对瓦斯涌出量;8瓦斯爆炸感应期;9等积孔;10自然风压 二、简答题(35分;每个7分,任选5题) 1降低通风阻力的措施有哪些? 2简述中央式通风系统及其适用性. 3防止煤炭自燃的开采技术措施有哪些? 4影响瓦斯涌出量的因素有哪些? 5影响煤尘爆炸的因素? 6地面防水措施主要有哪些? 三、计算题(35分) 1某矿瓦斯风化带深170m ,采深240m 时相对瓦斯涌出量为7.2m 3/t ,300m 时为11.6 m 3/t ,预测360m 时的相对瓦斯涌出量为多少。(5分) 2已知一进风斜井口1处的大气压P 01=101342Pa ,1-2段的空气平均密度为ρ=1.25kg/m 3 ,Z 1-2=400m,测得h R1-2=45Pa,h v1=h v2=5Pa,求2点的绝对静压P 2。(5分) 3某矿使用的离心式通风机的特性曲线如图所示,转速为n 1=630r/min ,风机工作风阻R=0.53657N ·s 2 /m 8 ,工况点为M 0(Q=58m 3 /s ,H t =1805Pa ),后来,风阻变为R ’=0.7932N ·s 2 /m 8,导致进风量(Q 1)减小不能满足生产需要,拟采用调整转速方法保持风量不变,求转速调至多少?在图中绘出新转速下的风量风压性能曲线,求工况点的风压将是多少?(10分)

中国传媒大学2018年《数据结构与计算机网络》考试大纲

中国传媒大学2018年《数据结构与计算机网络》考试大纲 一、考试的总体要求 《数据结构与计算机网络》是计算机科学与技术及相关学科的重要基础,本科目要求考生在数据结构方面:掌握数据结构的基本概念、基本原理和基本方法;掌握数据的逻辑结构、存储结构及基本操作的实现,能够对算法进行基本的时间复杂度与空间复杂度的分析;能够运用数据结构基本原理和方法进行问题的分析与求解,具备采用C或C++或JAVA语言设计与实现算法的能力。在计算机网络方面:掌握计算机网络的基本概念、基本原理和基本方法;掌握计算机网络的体系结构和典型网络协议,了解典型网络的组成和特点,理解典型网络设备的工作原理;能够运用计算机网络的基本概念、基本原理和基本方法进行网络系统的分析、设计和应用。 二、考试的内容 (一)线性表 1.线性表的定义和基本操作 2.线性表的实现:顺序存储,链式存储,线性表的应用 (二)栈、队列和数组 1.栈和队列的基本概念 2.栈和队列的顺序存储结构 3.栈和队列的链式存储结构 4.栈和队列的应用 5.特殊矩阵的压缩存储 (三)树与二叉树 1.树的概念 2.二叉树:二叉树的定义及其主要特征,二叉树的顺序存储结构和链式存储结构,二叉树的遍历,线索二叉树的基本概念和构造 3.树、森林:树的存储结构,森林与二叉树的转换,树和森林的遍历 4.树与二叉树的应用:二叉排序树,平衡二叉树,哈夫曼(Huffman)树和哈夫曼编码 (四)图 1.图的基本概念 2.图的存储及基本操作:邻接矩阵法,邻接表法 3.图的遍历:深度优先搜索,广度优先搜索 4.图的基本应用:最小(代价)生成树,最短路径,拓扑排序,关键路径 (五)查找 1.查找的基本概念 2.顺序查找法 3.折半查找法 4.散列(Hash)表 5.查找算法的分析及应用 (六)排序 1.排序的基本概念 2.插入排序 3.起泡排序(Bubble Sort) 4.简单选择排序 5.希尔排序(Shell Sort)

中传语言学及应用语言学考试大纲

中国传媒大学硕士研究生入学考试 “语言学理论”考试大纲 一、考试的总体要求 本考试大纲适用于报考中国传媒大学语言学与应用语言学专业硕士研究生的入学考试。语言学理论的主要内容包括:语言和语言学、语言的本质、语言的功能、语言结构、语言的运用、语言的历史、应用语言学、文字以及语言研究简史,等等。要求考生熟练掌握语言学理论的基本概念、基本原理,并具备综合运用所学知识以分析具体语言现象、解决实际问题的能力。 二、考试的内容 (一)语言和语言学 1.语言学的研究对象 (1)语言研究对象的演变及语言的概念(2)言语活动、语言、言语 2.语言学的学科体系 (1)规定语言学、描写语言学、解释语言学(2)历史语言学、历史比较语言学,历时语言学与共时语言学(3)理论语言学、应用语言学(4)普通语言学、语种语言学 (5)语言学的内部分支:语音学与音系学,词汇学与语义学,语法学;语用学、语篇分析(5)语言学的交叉学科和边缘学科 3.语言研究简史现代汉语》(修订本),胡裕树,上海教育出版社 ②《现代汉语》(增订三版),黄伯荣、廖序东,高教出版社 ③《古代汉语》王力,中华书局 ④《语音学教程》林焘、王理嘉,北大出版社 (1)传统语言学(语文学)(2)历史比较语言学(3)现代语言学:四大流派 (4)当代语言学:形式主义、功能主义、语序类型学、认知语言学 (二)语言的本质 1.语言作为符号系统 (1)符号与语言符号的概念(2)语言符号的特点(3)语言作为一个层级体系 (4)语言符号的组合关系和聚合关系 2.语言作为人类特有的现象 (1)语言能力(2)动物的语言和人类的语言的区别 (三)语言的功能 1.语言作为交际工具 (1)语言是人类社会的交际工具(2)语言是人类最重要的交际工具 2.语言作为思维工具 (1)语言与思维的关系(2)思维离不开语言的实验根据

西安科技大学网络检索期末测试

【2011-2012学年第2学期网络信息检索课程期末考试题(试卷1)】 测试总分:50.0 1. 单选题:(1.0分) Internet引进了超文本的概念,超文本指的是(D)。 A. 包含多种文本的文本 B. 包括图像的文本 C. 包含多种颜色的文本 D. 包含链接的文本 2. 单选题:(1.0分) 使用关键词语言进行检索时,找全该关键词的同义词可以提高信息检索的(B )。 A. 查全率 B. 查准率 C. 覆盖率 D. 新颖率 3. 单选题:(1.0分) WWW服务以(A)语言为基础,为用户提供界面一致的信息浏览系统。 A. HTML B. XHTML C. XSL D. XML 4. 单选题:(1.0分) 下列信息不会出现在电子图书的书目记录中的是:(D )。 A. ISBN号 B. 出版社 C. ISSN号 D. 图书的尺寸 5. 单选题:(1.0分) 利用Google查找"知识管理"的定义,需要用到的语法结构是:(A)。 A. filetype: 知识管理 B. find: 知识管理 C. define: 知识管理 D. delete: 知识管理 6. 单选题:(1.0分)

我国标准的编号系统由国家标准代号、当年标准发布的顺序号、标准发布的年号这三项组成。标准GB7989-99是哪一年的标准(A )。 A. 1999 B. 1989 C. 1998 D. 1979 7. 单选题:(1.0分) CALIS是经国务院批准的我国高等教育"211工程""九五""十五"总体规划中三个公共服务体系之一,被称为中国的OCLC,请问它的全称是(A )。 A. 中国高等教育文献保障系统 B. 中英文图书数字化国际合作计划 C. 中国高等教育数字化图书馆 D. 国家星火计划 8. 单选题:(1.0分) 下列四个选项中,有一个与另外三个不同的是(D)。 A. FlashGet B. NetAnts C. Thunder D. PPLive 9. 单选题:(1.0分) 下列搜索引擎中不是元搜索引擎的是(D )。 A. Dogpile B. Google C. Mamma D. Hotbot 10. 单选题:(1.0分) 有"自由的百科全书"之称的"维基百科"采用的技术是(A)。 A. Wiki B. RSS C. BLOG D. SNS

中传考研复试班-中国传媒大学外国语言学及应用语言学考研复试经验分享

中传考研复试班-中国传媒大学外国语言学及应用语言学考研复试经验分 享 中国传媒大学是教育部直属的“一流学科建设高校”,“211工程”重点建设大学,“985优势学科创新平台”重点建设高校,前身是创建于1954年的中央广播事业局技术人员训练班。1959年4月,经国务院批准,学校升格为北京广播学院。2004年8月,北京广播学院更名为中国传媒大学。学校位于中国北京城东古运河畔,校园占地面积46.37万平方米,总建筑面积63.88万平方米。 中国传媒大学的校训是:立德、敬业、博学、竞先。 中国传媒大学坚持“结构合理、层次分明,重点突出、特色鲜明,优势互补、相互支撑”的学科建设思路,充分发挥传媒领域学科特色和综合优势,形成了以新闻传播学、戏剧与影视学、信息与通信工程为龙头,文学、工学、艺术学、管理学、经济学、法学、理学等多学科协调发展,相互交叉渗透的学科体系。 目前,学校设有6个学部、1个协同创新中心,5个直属学院。新闻传播学、戏剧与影视学两个学科入选国家“双一流”建设学科名单;拥有新闻学、广播电视艺术学2个国家重点学科,传播学1个国家重点培育学科,新闻传播学、艺术学理论、戏剧与影视学3个一级学科北京市重点学科,语言学及应用语言学、通信与信息系统、电磁场与微波技术、动画学4个二级学科北京市重点学科,7个博士后科研流动站,8个博士学位授权一级学科点,41个博士学位授权二级学科点,19个硕士学位授权一级学科点,105个硕士学位授权二级学科点,10个专业硕士类别,87个本科专业。 专业介绍 外国语言学及应用语言学(专业代码:050211)是外国语言文学一级学科下设的一个二级学科。本学科以形式语言学和功能语言学的基本假设为理论指导,以音系学、句法学、形式语义学和语言习得为主要教学和研究内容,同时从事应用语言学具体领域的教学与研究。 本专业是国内唯一能够覆盖形式语言学四大基础理论领域(音系学、句法学、形式语义学和语言习得)及功能语言学研究领域(语用学,语篇分析,认知语言学等)的外国语言学及应用语言学专业。 研究方向 01跨文化交际与语言传播 02话语语言学

西安科技大学期末通风试题

1.矿井通风阻力影响因素:摩擦阻力系数α;井巷断面;井巷周长;巷道长度;巷道内风 量是否过于集中、避免巷道突然扩大或缩小、直角拐弯等因素 2.自然风压:闭合回路中,由于温度不同,导致密度不同,引起水平面俩空气柱重力不等 重力之差形成自然风压。影响因素:1空气柱温差2空气成分湿度3井深4主要通风机也对自然风压有一定影响。对矿井通风影响:矿井通风动力,也可能是事故肇因 3.轴流式通风机:结构紧凑,体积小,重量轻,传动简单,维修困难,风压低,流量大, 反方方法多,不容易过载,联机运行工作差,可直接高转速电动机拖动;适用于阻力变化大风量变化不大的矿井,大中型矿井使用 离心式通风机:结构简单,体积大,维修简单,安装占地大,转速低,传动方式复杂,风压高,流量小,反风方法少,容易过载;适用于流量小风压高转速低情况,小型矿井4通风机联合工作:管网阻力大到一台通风机不能保证按需供风时,利用俩个或俩个以上风机联合工作,以达到增加风量目的;风机串联适用于风阻大风量不足官网;风机并联适用官网于风阻小,但因风机能力小导致风量不足 5串联风路和并联风网比较:矿井进回风巷都为串联风路;工作面与工作面之间多为并联风网;并联风网工作地点安全,提高空气质量;同样分支风阻和总风量下,并联总阻力小于串联总阻力,有条件时尽量使用并联风网 6比较掘进工作面压入式和抽出式通风方式的优、缺点? 答:1) 压入式通风,污风不通过局部通风机,安全性好;而抽出式通风时,含瓦斯的污风通过局部通风机,若局部通风机不具备防爆性能,则非常危险; 2) 压入式通风,风速和有效射程均大,防止瓦斯层状积聚,散热效果好;抽出式通风有效吸程小,难以保证风筒吸入口到工作面的距离在有效吸程之内。风量小,排污风所需时间长、速度慢; 3) 压入式通风瓦斯向远离工作面方向;抽出式通风瓦斯随风流向工作面,安全性较差; 4) 抽出式通风新鲜风流流向工作面,整个井巷空气清新,劳动环境好;压入式通风污风沿巷道缓慢排出,排污速度慢 5) 压入式通风可用柔性风筒成本低、重量轻,便于运输,抽出式通风使用刚性或带刚性骨架的可伸缩风筒,成本高,重量大,运输不便。 当以排除瓦斯为主的煤巷、半煤岩巷掘进时应采用压入式通风,而当以排除粉尘为主的井巷掘进时,宜采用抽出式通风 7.矿井风量调节:局部风量调节方法:(1) 增阻调节法(2) 减阻调节法(3) 增能调节法 总风量调节方法:改变主通风机工作特性;改变矿井总风阻 3矿井通风系统的类型及其适用条件:通风系统可以分为中央式、对角式、区域式及混合式。中央式分为中央并列式和中央边界式。 中央并列式适用条件:适用于煤层倾角大,埋藏深,井田走向长度小于4KM,瓦斯与自然发火都不严重的矿井。 中央边界式适用条件:适用于煤层倾角较小,埋藏较浅,井田走向长度不大,瓦斯与自然发火比较严重的矿井。 对角式分为两翼对角式和分区对角式。 两翼对角式适用条件:煤层走向大于4KM,井型较大,瓦斯与自然发火严重的矿井;或低瓦斯矿井,煤层走向较长,产量较大的矿井。 分区对角式适用条件:煤层埋藏浅,或因地表高低起伏较大,无法开掘总回风巷。 区域式适用条件:井田面积大、储量丰富或瓦斯含量大的大型矿井。 混合式适用条件:井田范围大,地质和地面地形复杂;或产量大,瓦斯涌出量大的矿井。影响矿井瓦斯涌出的因素:(1) 自然因素:①煤层和围岩的瓦斯含量;②地面大气压变化

相关文档
相关文档 最新文档