文档库 最新最全的文档下载
当前位置:文档库 › 三相异步电动机的起动和制动方法

三相异步电动机的起动和制动方法

三相异步电动机的起动和制动方法
三相异步电动机的起动和制动方法

三相异步电动机的起动和制动方法

【摘要】电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。对异步电动机起动性能的要求,主要有以下两点:起动电流要小,以减小对电网的冲击;起动转矩要大,以加速起动过程,缩短起动时间。其起动方法有直接起动、降压起动。异步电动机制动的目的是使电力拖动系统快速停车或者使拖动系统尽快减速,对于位能性负载,制动运行可获得稳定的下降速度。其制动方法有能耗制动、反接制动和回馈制动。

【关键词】直接起动;降压起动;能耗制动;反接制动;回馈制动

引言

电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。三相异步电动机除了运行于电动状态外,还时常运行于制动状态。

运行于电动状态时,Tem与n方向相同,Tem是驱动转矩,电动机从电网吸收电能并转换成机械能从轴上输出,其机械特性位于第一或第三象限。运行于制动状态时,Tem与n方向相反,Tem是制动转矩,电动机从轴上吸收机械能并转换成电能,该电能或消耗在电机内部,或反馈回电网,其机械特性位于第二或第四象限。

本篇将分别介绍笼型异步电动机和绕线转子异步电动机的起动方法,异步电动机的能耗制动、反接制动和回馈制动方法。

1.三相笼型异步电动机的起动

笼型异步电动机的起动方法有两种:直接起动和降压起动。下面分别进行介绍。

1.1 直接起动

直接起动也称全压起动。起动时,电动机定子绕组直接接入额定电压的电网上。这是一种最简单的起动方法,不需要复杂的起动设备,但是,它的起动性能恰好与所要求的相反。即:

1.1.1 起动电流Ist大

对于普通笼型异步电动机,起动电流倍数kI=Ist/IN=4~7。起动电流大的原因是:起动时,n=0,s=1,转子电动势很大,所以转子电流很大,根据磁动势平衡关系,定子电流也必然很大。

1.1.2 起动转矩Tst不大

变频器制动控制目的

电动机知识 变频器制动控制目的 对于位能型负载来说,由于重物具有重力的缘由,如没有特地的制动安装,重物在空中是停不住的。为此,电动机轴上必需加装机械制动器,常用的有电磁铁制动器和液压电磁制动器等。多数制动器都采用常闭式的,即:线圈断电时制动器依托弹簧的力气将轴抱住;线圈通电时松开。在重物开端升降或停住时,请求制动器和电动机的动作之间,必需严密配合。由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需求时间(约0.6s,因电动机的容量大小而异),而电动机转矩的产生或消逝,是在通电或断电霎时就立即反映的。因而,两者在动作的配合上极易呈现问题。如电动机曾经通电,而制动器尚未松开,将招致电动机的严重过载;反之,如电动机曾经断电,而制动器尚未抱紧,则重物必将下滑,呈现溜钩现象。 匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,

它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器

#交流异步电动机制动的几种方式附原理案例

交流异步电动机制动的几种方式附原理案列 工业变频2009-06-16 16:00:42 阅读4628 评论1 字号:大中小订阅 一、再生回馈制动 再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。 二、反接制动 反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。 三、能耗制动 电机在正常运行中,为了迅速停车,在电机定子线圈中接入直流电源,在定子线圈中通入直流电流,形成磁场,转子由于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。 1.能耗制动的原理 如果三相异步电动机定子绕组断开三相电源后,则电机内无磁通势。从而电磁转矩=0, 电动机在负载转矩作用下,自然停车,这是自然制动过程。 能耗制动的电路原理图如图5.22所示,三相异步电动机定子绕组切断三相交流电源后(1K 断开),同时,在定子绕组任意两相上接入直流电流( 也称直流励磁电流),即接通开 关2K,从而在电机内形成一个不旋转的空间位置固定的磁通势,最大幅值为。在三相交流电源切断后的瞬间,电动机转子由于机械惯性其转速不能突变,而继续维持原 逆时针方向旋转。此时,直流电流产生的空间固定不转的磁通势相对于旋转的转子是一个旋转磁通势;旋转方向为顺时针,转速大小为。这种相对运动导致了转子绕组有 感应电动势,并产生电流和电磁转矩,根据左手定则可知,的方向与磁通势 相对于转子的旋转方向是一样的,但与转速的方向相反,电动机处于制动运行状态, 电机转速迅速下降,直到转速时,磁通势与转子相对静止,=0, =0, , 减速过程结束,电动机将停转,实现了快速制动停车。如果负载是反抗性负载,则 电机转速将停车。如果负载是位能性负载,则电机转速时必须立即用机械抱

变频器复习题及答案

1、输出电磁滤波器安装在变频器和 电动机 之间,抑制变频器输出侧的 浪涌 电压。 变频器具有多种不同的类型:按变换环节可分为交—交型和___交-直-交________型;按改变变频器输出电压的方法可分为脉冲幅度调制(PAM )型和_脉冲宽度调制(PWM )___型;按用途可分为专用型变频器和___通用型__型变频器。 1.变频器种类很多,其中按滤波方式可分为电压型和 电流 型;按用途可分为通用型和 专用 型。 2.变频器的组成可分为主电路和 控制 电路。 4.变频器安装要求其正上方和正下方要避免可能阻挡进风、出风的大部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应小于120mm 。 变频器按控制方式分类 :压频比控制变频器 ( V/f )、转差频率控制变频器 (SF )、矢量控制 (VC )、直接转矩控制。 变频器产生谐波时,由于功率较大,因此可视为一个强大的干扰源,其干扰途径与一般电磁干扰途径相似,分别为传导、辐射和二次辐射、电磁耦合、边传导边辐射等。 13.输入电源必须接到变频器输入端子R 、S 、T 上,电动机必须接到变频器输出端子U 、V 、W 上。 交-交变频根据其输出电压的波形,可以分为矩形波及正弦波型两种。 高(中)压变频调速系统的基本型式有直接高-高型、高-中型和高-低-高型等三种。 8.(:对)电压型变频器多用于不要求正反转或快速加减速的通用变频器中。 5.(错)交-交变频器的最大输出频率和市网电压频率一样,为50Hz 。 16.变频器的问世,使电气传动领域发生了一场技术革命,即 交流调速 取代直流调速。 19.SCR 是指(可控硅)。 20.GTO 是指(门极关断晶闸管)。 21.IGBT 是指(绝缘栅双极型晶体管 )。 22.IPM 是指(智能功率模块)。 53.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为( )。 A .2.342U B .2U C .2.341U D .1U 107.下述选项中,( )不是高中压变频器调速系统的基本形式。 A .直接高-高型 B .高-中型 C .高-低-高型 D .交-交变频器 116.( )变频器矢量控制模式下,一只变频器只能带一台电动机。对

6、三相异步电机空载和堵转实验(精)

华北电力大学 电机学实验报告 实验名称 系别班级姓名学号同组人姓名实验台号日期教师成绩 一、实验目的 1、掌握三相异步电动机的空载、堵转的方法。 2、测定三相鼠笼式异步电动机的参数。 二、预习要点 1、异步电动机的等效电路有哪些参数?它们的物理意义是什么? 2、参数的测定方法。 三、实验项目 1、空载实验。 2、堵转实验。 四、实验方法 1、实验设备 屏上挂件排列顺序 D33、D32、D34-3、D31、D42、D51、D55-3 三相鼠笼式异步电机的组件编号为DJ16。 2、电桥法测定绕组直流电阻 用单臂电桥测量电阻时,应先将刻度盘旋到电桥大致平衡的位置。然后按下电池按钮,接通电源,等电桥中的电源达到稳定后,方可按下检流计按钮接入检流计。测量完毕,应先断开检流计,再断开电源,以免检流计受到冲击。数据记

录于表4-3中。 电桥法测定绕组直流电阻准确度及灵敏度高,并有直接读数的优点。表4-3 3、空载实验 1) 按图4-3接线。电机绕组为Δ接法(UN=220V),直接与测速发电机同轴联接,负载电机DJ23不接。 2) 把交流调压器调至电压最小位置,接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。并使电机旋转方向符合要求( 如转向不符合要求需调整相序时,必须切断电源)。 3) 保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。 图4-3 三相鼠笼式异步电动机试验接线图 4) 调节电压由1.2倍额定电压开始逐渐降低电压,直至电流或功率显著增大为止。在这范围内读取空载电压、空载电流、空载功率。 5) 在测取空载实验数据时,在额定电压附近多测几点,共取数据7~9 组记录于表4-4中。 表4-4

变频器控制电动机停车制动方式

电动机知识 变频器控制电动机停车制动方式 电动机停车方式由P0700和P0701~P0708设置。制动时有如下几种方式: (1)由外接数字端子控制。将P0700设为2,P0701设为1,即可由外接数字端子5 (,低电平)控制电动机制动,制动时间可由P1121设置斜坡下降时间。 (2)由的键控制。将P0700设为1,P0701设为3,为2方式,即按惯性自由停车。用上的(停车)键控制时,按下键(持续2s)或按两次(停车)键即可。 (3)用3命令使电动机快速地减速停车。将P0701设为4,在设置了3的情况下, 为了起动电动机,二进制输入端必须闭合(高电平)。如果3为高电平,电动机才能起动并用1或2方式停车。如果3为低电平,电动机不能起动。3可以同时具有直流制动、复合制动的功能。 (4)直流注入制动。变频调速系统在降速过程中,电动机因为处于再生制动状态而迅速降速。但随着转速的下降,拖动系统的动能减小,电动机的再生能力和制动转矩也随之减小。所以,在惯性较大的拖动系统中,会出现低速时停不住的“爬行”现象。为了克服“爬行”现象,当拖动系统的转速下降到一定程度时,向电动机绕组中通入直流电流,以加大制动转矩,使拖动系统迅速停住。 在预置直流制动功能时,主要设定以下项目: 1)直流制动电压。即需要向电动机绕组施加的直流电压。拖动系统的惯性越大,直流制动电压的设定值也越大。 2)直流制动时间。即向电动机绕组施加直流电压的时间,

可设定得比估计时间略长一些。 3)直流制动的起始频率。即变频调速系统由再生制动状态转为直流制动状态的起始频率。拖动系统的惯性越大,直流制动的起始频率的设定值也越大。 直流注入制动可以与和3命令同时使用。向电动机注入直流电流时,电动机将快速停止,并在制动作用结束之前一直保持电动机轴静止不动。 “使能”直流注入制动可由参数P0701~P0708设置为25。直流制动的持续时间可由参数 P1233设置。直流制动电流可由参数P1232设置。直流制动的起始频率可由参数P1234设置。如果没有数字输入端设定为直流注入制动,而且P1233≠O,那么直流制动将在每个命令之后起作用,制动作用的持续时间由P1233设定。 (5)复合制动。复合制动可以与1和3命令同时使用。为了进行复合制动,应在交流电流中加入直流分量。制动电流可由参数P1236设定。 (6)用外接制动电阻进行动力制动。用外接制动电阻(外形尺寸为A~F的440变频器采用内置的斩波器)进行制动时,按线性方式平滑、可控地降低电动机的速度,如图3 -14所示。 图3 - 14 外接制动电阻进行动力制动 ·变频器维修怎样处理过电压保护 ·电工比武实践试题 ·利用管理变频器处理机械故障 ·正确使用变频器 ·变频器的转差频率控制方式 ·变频器选择时的注意事项 ·变频器应用中存在的问题及对策

三相异步电动机常见的制动方法

三相异步电动机常见的制动方法 作者:骑着乌龟追蚂蚁,2007-5-31 10:47:00 发表于:《变频器与调速论坛》共有11人回复,1096次点击加为好友查看播客发送留言 最近公司在安装大型的行车,原理图上有电动机的几种制动方式,我在网上查了一下,与大家分享一下. 三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。 1.机械制动 采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。 (1)电磁抱闸断电制动控制电路 电磁抱闸断电制动控制电路如图1所示.合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。倒顺开关接线示意图如图2所示。这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。 (2)电磁抱闸通电制动控制电路 电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。 机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。 2.电力制动 电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动迅速停止的方法。最常用的方法有:反接制动和能耗制动。 (1)反接制动。在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。实际控制中采用速度继电器来自动切除制动电源。

实验一 三相异步电动机启停控制实验

实验一三相异步电动机启停控制实验 一、实验目的: 1.进一步学习和掌握接触器以及其它控制元器件的结构、工作原理和使用方法; 2.通过三相异步电动机的启、停控制电路的实验,进一步学习和掌握接触器控制电路的结构、工作原理。 二、实验内容及步骤: 图1-1为三相异步电动机的基本启停电路。电路的基本工作原理是:首先合上电源开关QF5 ,再按下“启动”按钮,KM5得电并自锁,主触头闭合,电动机得电运行。按下“停止”按钮,KM5失电,主触头断开,电动机失电停止。 实验步骤: 1.按图1-1完成控制电路的接线; 2.经老师检查认可后才可进行下面操作! 3.合上断路器QF5,观察电动机和接触器的工作状态; 4.按下操作控制面板上“启动”按钮,观察接触器和电动机的工作状态; 5.按下操作控制面板上“停止”按钮,观察接触器和电动机的工作状态。 6.当未合上断路器QF5时,进行4和5步操作,观察结果。 图 1-1 三相异步电动机基本启停控制 三.实验说明及注意事项 1.本实验中,主电路电压为380VAC,请注意安全。 四.实验用仪器工具 三相异步电动机 1台 断路器(QF5) 1个 接触器(KM5) 1个 按钮 2个 实验导线若干 五.实验前的准备 预习实验报告,复习教材的相关章节。 六.实验报告要求 1.记录实验中所用异步电动机的名牌数据; 2.弄清QF5型号和功能; 3.比较实验结果和电路工作原理的一致性;

4.说明6步的实验结果并分析原因。 七.思考题 1.控制回路的控制电压是多少? 2.接触器是交流接触器,还是直流接触器?接触器的工作电压是多少 3.如果将A点的连线改接在B点,电路是否能正常工作?为什么? 4.控制电路是怎样实现短路保护和过载保护的? 5.电动机为什么采用直接启动方法? 实验二三相异步电动机正反转控制实验 一、实验目的: 1.学习和掌握PLC的实际操作和使用方法; 2.学习和掌握利用PLC控制三相异步电动机正反转的方法。 二、实验内容及步骤: 本实验采用PLC对三相异步电动机进行正反转控制,其主电路和控制电路接线图分别为图2-1和图2-2 。图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC 的输入口X2,KM5为正向接触器,KM6反向接触器。继电器KA5、KA6分别接于PLC的输出口Y33、Y34。 其基本工作原理为:合上QF1、QF5, PLC运行。当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。 实验步骤: 1.在断电的情况下,学生按图2-1和图2-2接线(为安全起见,控制电路 的PLC外围继电器KA5、KA6以及接触器KM5、KM6输出线路已接好); 2.在老师检查合格后,接通断路器QF1、QF5 ; 3.运行PC机上的工具软件FX-WIN,输入PLC梯形图; 4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC; 5.运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控 制。在PC机上对运行状况进行监控,同时观察继电器KA5、KA6和接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确; 6.记录运行结果。

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作范围,而炸裂了。 此次修复后,给用户说明情况,增上了制动单元和制动电阻器后,变频器投入运行,几年来再未发生模块炸裂故障。 此种制动方式,加快机械惯性能量的消耗,利于缩短停车进程,将电机的再生发电能

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

三相异步电动机启动图(精)

1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a所示。点动正转控制线路是由转换开关QS 、熔断器FU 、启动按钮SB 、接触器KM 及电动机M 组成。其中以转换开关QS 作电源隔离开关,熔断器FU 作短路保护,按钮SB 控制接触器KM 的线圈得电、失电,接触器KM 的主触头控制电动机M 的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS ,此时电动机M 尚未接通电源。按下启动按钮SB ,接触器KM 的线圈得电,带动接触器KM 的三对主触头闭合,电动机M 便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB ,使接触器KM 的线圈失电,带动接触器KM 的三对主触头恢复断

开,电动机M 失电停转。在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB 换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2. 三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM 的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB (起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

三相异步电动机实验

三相异步电动机实验操作书 一、实验目的 1.熟悉变频器的基本操作方法。 2.掌握三相异步电动机的变频调速方法。 二、实验内容 1.变频器使用说明 (1)变频器引出端子 主电路 R S T 电源输入三相~220V或单相~220V U V W 输出变频三相~220V PE 接地线 控制电路 5V 直流电源;FIN 频率设定 11-正转/停止指令;12-反转/停止指令 13-两种速度设定;14-四种速度设定 G 控制端地 外控使用 01-输出信号;COM-输出端地 (2)操作盘 A:显示器四位LED 显示内容:输出频率、设定频率、参数号、参数值、异常原因B:键盘 选择显示内容:监视、参数号、参数值 参数号状态下,3S (3)参数设定

按 按 闪亮 参数值或参数号 附四速表 实验中使用参数号 00:0速频率;01:1速频率 02:2速频率;03:3速频率 86:恢复出厂设定 2.实验步骤

电电 图3-2 (1 )按图3-2接线,三掷开关1S 、2S 先均放到中间位置。 (2)接通电源,开关1 S 放到最左边启动电机,顺时针旋转频率设定电位器 (变频器面板上黑色旋钮),观察现象。 (3)调整电位器使频率为30Hz 左右(变频器出厂设定电位器频率为0速频率)。 (4)开关1S 分别放到左、中、右,观察现象。 (5)1S 放到中间使电机停转,将1号参数修改为40,2号参数修改为20。 (6)1S 放到左边或右边启动电机,2S 分别放到左、中、右,观察现象。 (7)86参数使用:86参数,,,切断电源,等显示完全消失后,显示消失后,接通电源,恢复。 三、注意事项 1.变频器为日本松下变频器,单相或三相电源输入均为~220V ,故接线时先将一根接到三相电源的零线N 上,另一根接到三相电源的任意一根火线L 上,千万不可大意接到两根火线上,否则会损坏变频器!

变频器的电气制动

变频器的电气制动 电气制动概况 众所周知变频器的电气制动方法有三种:能耗制动,直流制动,回馈(再生)制动,其性能及特点如下所列: 制动方式制动力矩能量去路效果经济性适用功率适用场合及特点 能耗制动≤80%加强式达130-350% 消耗电阻上发热浪费差 50KW 一般要求的制动设备上制动力矩不平衡有冲击,有低速爬行可能 直流制动 80-100% 动能变电能产生制动力矩浪费差 50-100KW 要求平稳无冲击,停车精确,例针织、缝纫、起重、提升机、启动前先停车,例大型风机 回馈(再生)制动 80-150% 动能变电能回馈电网回收好 >100KW 适用离心机、清洗机等尤其高低速交叉,正反转交替高速与低速差值很大,并可四象限运转 I、能耗制动 1、制动概况 从高速到低速(零速)----这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势E>U(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来,但由于通常变频器是交—直---交主电力,AC/DC

整流电路是不可逆的,因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压700V时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗,电压随之下降,待到设定下限值(680V)时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的. 2、技术性能 制动方式自动电压跟踪方式 反映时间 1ms以下有多种噪声 电网电压 300-460V,45-66Hz 动作电压 700V直流,误差2V 滞环电压 20V 制动力巨通常130% ,最大150% 保护过热,过电流,短路 滤波器有噪声滤波器 防护等级 IPOO 3、制动电阻计算方法: 制动力矩制动电阻 92% R=780/电动机KW 100% R=700/电动机KW 110% R=650/电动机KW 120% R=600/电动机KW 注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不

变频器如何制动

变频器如何制动 1. 引言 在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。 在通用变频器中,对再生能量最常用的处理方式有两种: (1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态; (2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。 在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。 2. 能耗制动 利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。 图1 能耗制动原理图 其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。 一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。 3. 回馈制动 实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。 图2 回馈电网制动原理图 回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于 10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。 4. 新型制动方式(电容反馈制动) 4.1主回路原理

变频器的起动制动方式

变频器的起动制动方式 变频器的起动制动方式是指变频器从停机状态到运行状态的起动方式、从运行状态到停机状态的制动方式以及从某一运行频率到另一运行频率的加速或减速方式。 变频器的起动制动包含较多的内容,这里将逐一阐述。 1起动运行方式 变频器从停机状态开始启动运行时通常有以下几种方式: (1)从起动频率起动。变频器接到运行指令后,按照预先设定的起动频率和起动频率保持时间起动。该方式适用于一般的负载。 起动频率是指变频器起动时的初始频率,如图1所示的fs,它不受变频器下限频率的限制;起动频率保持时间是指变频器在起动过程中,在起动频率下保持运行的时间,如图1中的t1。 图1起动频率与起动时间示意 电动机开始起动时,并不从0hz开始加速,而是直接从某一频率下开始加速。在开始加速瞬间变频器的输出频率便是上述所说的起动频率。设置起动频率是部分生产设备的实际需要,比如:有些负载在静止状态下的静摩擦力较大,难以从0hz开始起动,设置了起动频率后,可以在起动瞬间有一点冲力,使拖动系统较易起动起来;在若干台水泵同时供水的系统里,由于管道里已经存在一定的水压,后起动的水泵在频率很低的情况下将难以旋转起来,故也需要电动机在一定频率下直接起动;锥形电动机如果从0h z开始逐渐升速,将导致定子和转子之间的摩擦,所以起动频率,可以在起动时很快建立起足够的磁通,使转子和定子间保持一定的气隙,等等。 起动频率保持时间的设置对于下面几种情况比较适合: 对于惯性较大的负载,起动后先在较低频率下持续一个短时间t1,然后再加速运行到稳定频 齿轮箱的齿轮之间总是有间隙的,起动时容易在齿轮间发生撞击,如在较低频率下

三相异步电机起动方式(精)

三相异步电机起动方式 1)直接起动,电机直接接额定电压起动。(55KW以下) 2)降压起动:(55KW以上)降压起动的主要目的是为了限制起动电流,但同时也限制了起动转矩,因此,这种方法只适用于轻载或空载情况下起动。常用的降压起动方法有下列几种: (1)定子串电抗降压起动;这种起动方法是在电动机定子绕组的电路中串入一个三相电抗器,电抗器说简单点就是线圈,能够产生感应电动势来降低直接输入的工频电压。 (2)星形-三角形启动器起动;这种方法只适用于正常运转时定子绕组作三角形连接的电动机。起动时,先将定子绕组改接成星形,使加在每相绕组上的电压降低到额定电压的1/根号3,从而降低了起动电。因为如果380V三相供电,三角形电机的相电压为380V,则在单相上的线电压也为380V,但是如果改为星型启动的话,相电压380V,线电压只有220V,定子电压降低了;待电动机转速升高后,再将绕组接成三角形,使其在额定电压下运行。

可以证明,星形起动时的起动电流(线电流)仅为三角形直接起动时电流(线电流)的1/3,即IYst=(1/3)I△st;其起动转矩也为后者的1/3 (3)软起动器起动; (4)用自耦变压器起动。对容量较大或正常运行时作星形连接的电动机,可应用 自耦变压器降压起动。 自耦变压器降压起动的优点是不受电动机绕组接线方法的限制,可按照允许的起动电流和所需的起动转矩选择不同的抽头,常用于起动容量较大的电动机。其缺点是设备费用高,不宜频繁起动。

单相异步电机起动方式 1)电阻分相起动; 2)电容分相起动; 3)继电器起动等。 一、直流电机的旋转原理 直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动.直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来. 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。单相电不能产生旋转磁场.要使单 相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动。

变频器几个重要参数的设定

变频器几个重要参数的设定: 1 V/f类型的选择 V/f类型的选择包括最高频率、基本频率和转矩类型等。最高频率是变频器-电动机系统可以运行的最高频率。由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电定电压设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的V/f类型图和负载的特点,选择其中的一种类型。我们根据电机的实际情况和实际要求,最高频率设定为,基本频率设定为工频50Hz。负载类型:50Hz以下为恒转矩负载,50~为恒功率负载。 2 如何调整启动转矩调整启动转矩是为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产启动的要求。在异步电机变频调速系统中,转矩的控制较复杂.在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持V/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。可是,漏阻抗的影响不仅与频率有关,还和电机电流的大小有关,准确补偿是很困难的。近年来国外开发了一些能自行补偿的变频器,但所需计算量大,硬件、软件都较复杂,因此一般变频器均由用户进行人工设定补偿。针对我们所使用的变频器,转矩提升量设定为1 %~5%之间比较合适。 3 如何设定加、减速时间电机的运行方程式:式中:Tt为电磁转矩;T1为负载转矩电机加速度dw/dt取决于加速转矩(Tt,T1),而变频器在启、制动过程中的频率变化率则由用户设定。若电机转动惯量J、电机负载变化按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是按经验选定加、减速时间设定。若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间;另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。我们将加速时间设定为15s,减速时间设定为5s。 4 频率跨跳 V/f控制的变频器驱动异步电机时,在某些频率段。电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动量较小时更为严重。因此变通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在V/f曲线上设置跨跳点及跨跳点宽度。当电机加速时可以自动跳过这些频率段,保证系统正常运行。 5 过负载率设置该设置用于变频器和电动机过负载保护。当变频器的输出电流大于过负载率设置值和电动机额定电流确定的OL设定值时,变频器则以反时限特性进行过负载保护(OL),过负载保护动作时变频器停止输出。 6 电机参数的输入变频器的参数输入项目中有一些是电机基本参数的输入,如电机的功率、额定电压、额定电流、额定转速、极数等。这些参数的输入非常重要,将直接影响变频器中一些保护功能的正常发挥,一定要根据电机的实际参数正确输入,以确保变频器的正常使用 变频器的参数设定在调试过程中是十分重要的。由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。变频器的品种不同,参数量亦不同。一般单一功能控制的变频器约50-60个参数值,多功能控制的变频器

三相异步电动机的起动和制动方法

三相异步电动机的起动和制动方法 【摘要】电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。对异步电动机起动性能的要求,主要有以下两点:起动电流要小,以减小对电网的冲击;起动转矩要大,以加速起动过程,缩短起动时间。其起动方法有直接起动、降压起动。异步电动机制动的目的是使电力拖动系统快速停车或者使拖动系统尽快减速,对于位能性负载,制动运行可获得稳定的下降速度。其制动方法有能耗制动、反接制动和回馈制动。 【关键词】直接起动;降压起动;能耗制动;反接制动;回馈制动 引言 电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。三相异步电动机除了运行于电动状态外,还时常运行于制动状态。 运行于电动状态时,Tem与n方向相同,Tem是驱动转矩,电动机从电网吸收电能并转换成机械能从轴上输出,其机械特性位于第一或第三象限。运行于制动状态时,Tem与n方向相反,Tem是制动转矩,电动机从轴上吸收机械能并转换成电能,该电能或消耗在电机内部,或反馈回电网,其机械特性位于第二或第四象限。 本篇将分别介绍笼型异步电动机和绕线转子异步电动机的起动方法,异步电动机的能耗制动、反接制动和回馈制动方法。 1.三相笼型异步电动机的起动 笼型异步电动机的起动方法有两种:直接起动和降压起动。下面分别进行介绍。 1.1 直接起动 直接起动也称全压起动。起动时,电动机定子绕组直接接入额定电压的电网上。这是一种最简单的起动方法,不需要复杂的起动设备,但是,它的起动性能恰好与所要求的相反。即: 1.1.1 起动电流Ist大 对于普通笼型异步电动机,起动电流倍数kI=Ist/IN=4~7。起动电流大的原因是:起动时,n=0,s=1,转子电动势很大,所以转子电流很大,根据磁动势平衡关系,定子电流也必然很大。 1.1.2 起动转矩Tst不大

相关文档
相关文档 最新文档