文档库 最新最全的文档下载
当前位置:文档库 › 复变函数习题解答(第3章)

复变函数习题解答(第3章)

复变函数习题解答(第3章)
复变函数习题解答(第3章)

p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ]

5. 由积分?C1/(z + 2) dz之值证明?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1.

【解】因为1/(z + 2)在圆| z | < 3/2内解析,故?C1/(z + 2) dz = 0.

设C : z(θ)= e iθ,θ∈[0, 2π].

则?C1/(z + 2) dz = ?C1/(z + 2) dz = ?[0, 2π] i e iθ/(e iθ + 2) dθ

= ?[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ

= ?[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ

= ?[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ.

所以?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.

因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故

?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0.

7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证

?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz.

【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关.

?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ?[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz

= ?[α, β] ( f(z)g(z))’dz.

而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以

?[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β].

因此有?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α, β],

即?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz.

13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线.

【解】分两种情况讨论.

(1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0.

因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β).

?t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析,

因此f(z(t))在t处可导,且导数为f’(z(t))z’(t).

显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β].

因为f(z)于区域D内是单叶的,即f(z)是区域D到 的单射,而z(t)是[α, β]到D 内的单射,故f(z(t))是[α, β]到 内的单射.

因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0.

所以,Γ是光滑曲线.

(2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).

与(1)完全相同的做法,可以证明f(z(t))∈C1[α, β],且| f’(z(t))z’(t) |≠ 0.

由z(α) = z(β)和z’(α) = z’(β),可知f’(z(α))z’(α) = f’(z(β))z’(β).

因为?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2),

由f(z)于区域D内单叶,因此我们有f(z(t1)) ≠f(z(t2)).

所以Γ是光滑的闭曲线.

14. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,证明积分换元公式

?ΓΦ(w) dw = ?CΦ( f(z)) f’(z) dz.

其中Φ(w)沿曲线Γ连续.

【解】由13题知曲线Γ也是光滑曲线,其方程为w(t) = f(z(t)) (α≤t≤β).

故?ΓΦ(w) dw = ?[α, β] Φ(w(t)) ·w’(t) dt = ?[α, β] Φ( f(z(t))) · ( f’(z(t)) z’(t)) dt.

而?CΦ( f(z)) f’(z) dz = ?[α, β] ( Φ( f(z(t))) f’(z(t))) ·z’(t) dt.

所以?ΓΦ(w) dw = ?CΦ( f(z)) f’(z) dz.

15. 设函数f(z)在z平面上解析,且| f(z) |恒大于一个正的常数,试证f(z)必为常数.【解】因| f(z) |恒大于一个正的常数,设此常数为M.

则?z∈ ,| f(z) | ≥M,因此| f(z) | ≠ 0,即f(z) ≠ 0.

所以函数1/f(z)在 上解析,且| 1/f(z) | ≤ 1/M.

由Liuville定理,1/f(z)为常数,因此f(z)也为常数.

17. 设函数f(z)在区域D内解析,试证(?2/?x2 + ?2/?y2) | f(z) |2 = 4 | f’(z) |2.

【解】设f(z) = u + i v,w = | f(z) |2,则w = ln ( u 2 + v 2 ).

w x = 2(u x u+ v x v),w y = 2(u y u+ v y v);

w xx = 2(u xx u+ u x2 + v xx v+ v x2 ),w yy = 2(u yy u+ u y2 + v yy v+ v y2 );

因为u, v都是调和函数,所以

u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;

由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,

故w xx + w yy = 2 (u x2 + v x2 + u y2 + v y2) = 4 (u x2 + v x2) = 4 | f(z) |2;

即(?2/?x2 + ?2/?y2) | f(z) |2 = 4 | f’(z) |2.

18. 设函数f(z)在区域D内解析,且f’(z) ≠ 0.试证ln | f’(z) |为区域D内的调和函数.

【解】?a∈D,因区域D是开集,故存在r1 > 0,使得

K(a, r1) = { z∈ | | z -a | < r1 } ?D.

因f’(a) ≠ 0,而解析函数f’(z)是连续的,故存在r2 > 0,使得

K(a, r2) ?K(a, r1),且| f’(z) -f’(a)| < | f’(a) |.

用三角不等式,此时有| f’(z)| > | f’(a) | - | f’(z) -f’(a)| > 0.

记U = { z∈ | | z -f’(a)| < | f’(a) |},则U是一个不包含原点的单连通区域.

在沿射线L = {z∈ | z = - f’(a) t,t≥ 0 }割开的复平面上,多值函数g(z) = ln z

可分出多个连续单值分支,每个单值连续分支g(z)k在 \L上都是解析的.

?t≥ 0,| - f’(a) t -f’(a) | = (t + 1) | f’(a) | ≥ | f’(a) |,故- f’(a) t ?U.

所以U ? \L,即每个单值连续分支g(z)k在U上都是解析的.

因为当z∈K(a, r2)时,f’(z)∈U,故复合函数g( f’(z))k在上解析.

而Re(g( f’(z))k) = ln | f’(z) |,所以ln | f’(z) |在K(a, r2)上是调和的.

由a∈D的任意性,知ln | f’(z) |在D上是调和的.

【解2】用Caucht-Riemann方程直接验证.因为f’(z)也在区域D内解析,

设f’(z) = u + i v,则u, v也满足Cauchy-Riemann方程.记w = ln | f’(z) |,

则w = (1/2) ln ( u 2 + v 2 ),

w x = (u x u+ v x v) /( u 2 + v 2 ),w y = (u y u+ v y v) /( u 2 + v 2 );

w xx = ((u xx u+ u x2 + v xx v+ v x2 )( u 2 + v 2 ) - 2(u x u+ v x v)2)/( u 2 + v 2 )2;

w yy = ((u yy u+ u y2 + v yy v+ v y2 )( u 2 + v 2 ) - 2(u y u+ v y v)2)/( u 2 + v 2 )2;

因为u, v都是调和函数,所以

u xx u+ u yy u= (u xx + u yy) u= 0,v xx v+ v yy v= (v xx + v yy) v= 0;

由于u, v满足Cauchy-Riemann方程,故u x2 = v y 2,v x 2 = u y2,u x v x + u y v y = 0,

因此(u x u+ v x v)2 + (u y u+ v y v)2

= u x2u 2+ v x 2v 2 + 2 u x u v x v+ u y2u 2+ v y 2v 2 + 2 u y u v y v= (u x2 + v x2 )( u 2 + v 2 );

故w xx + w yy = (2(u x2 + v x2 )( u 2 + v 2 ) - 2(u x2 + v x2 )( u 2 + v 2 ))/( u 2 + v 2 )2 = 0.

所以w为区域D内的调和函数.

[初看此题,就是要验证这个函数满足Laplace方程.因为解析函数的导数还是解析的,所以问题相当于证明ln | f(z) |是调和的,正如【解2】所做.于是开始打字,打了两行之后,注意到ln | f’(z) |是Ln f’(z)的实部.但Ln z不是单值函数,

它也没有在整个 上的单值连续分支,【解1】前面的处理就是要解决这个问题.] p141第三章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]

1. 设函数f(z)在0 < | z | < 1内解析,且沿任何圆周C : | z | = r, 0 < r < 1的积分值为零.问f(z)是否必须在z = 0处解析?试举例说明之.

【解】不必.例如f(z) = 1/z2就满足题目条件,但在z = 0处未定义.

[事实上可以任意选择一个在| z | < 1内解析的函数g(z),然后修改它在原点处的函数值得到新的函数f(z),那么新的函数f(z)在原点不连续,因此肯定是解析.但在0 < | z | < 1内f(z) = g(z),而g(z)作为在| z | < 1内解析的函数,必然沿任何圆周C : | z | = r的积分值都是零.因此f(z)沿任何圆周C : | z | = r的积分值也都是零.若进一步加强题目条件,我们可以考虑,在极限lim z→0 f(z)存在的条件下,补充定义f(0) = lim z→0 f(z),是否f(z)就一定在z = 0处解析?

假若加强条件后的结论是成立,我们还可以考虑,是否存在满足题目条件的函数,使得极限lim z→0 f(z)不存在,也不是∞?]

2. 沿从1到-1的如下路径求?C1/√z dz.

(1) 上半单位圆周;(2) 下半单位圆周,其中√z取主值支.

【解】(1) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[0, π].

?C1/√z dz = ?[0, π] i e iθ/e iθ/2dθ = ?[0, π] i e iθ/2dθ = 2e iθ/2|[0, π] = 2(- 1 + i).

(2) √z = e i arg z /2,设C : z(θ)= e iθ,θ∈[-π, 0].

?C1/√z dz = -?[-π, 0] i e iθ/e iθ/2dθ = -?[-π, 0] i e iθ/2dθ = - 2e iθ/2|[-π, 0] = 2(- 1 -i).

[这个题目中看起来有些问题:我们取主值支,通常在是考虑割去原点及负实轴的z平面上定义的单值连续分支.因此,无论(1)还是(2),曲线C上的点-1总不在区域中(在区域的边界点上).因此曲线C也不在区域中.

所以,题目应该按下面的方式来理解:考虑单位圆周上的点ζ,以及沿C从1到ζ的积分的极限,当ζ分别在区域y > 0和区域y < 0中趋向于-1时,分别对应(1)和(2)的情形,简单说就是上岸和下岸的极限情形.

那么按照上述方式理解时,仍然可以象我们所做的那样,用把积分曲线参数化的办法来计算,这是由积分对积分区域的连续性,即绝对连续性来保证的.

以后我们遇到类似的情形,都以这种方式来理解.]

3. 试证| ?C(z + 1)/(z - 1) dz | ≤ 8π,其中C为圆周| z - 1 | = 2.

【解】若z∈C,| z + 1 | ≤ | z - 1 | + 2 = 4,故| (z + 1)/(z - 1) | ≤ 2.

因此| ?C(z + 1)/(z - 1) dz | ≤?C| (z + 1)/(z - 1) | ds≤ 2 · Length(C) = 8π.

4. 设a, b为实数,s = σ+ i t (σ > 0)时,试证:

| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.

【解】因为f(z) = e sz在 上解析,故f(z)的积分与路径无关.

设C是从a到b的直线段,因为e sz/s是f(z)的一个原函数,所以

| ?C e sz dz | = | e sz/s |[a, b] | = | e bs–e as|/| s |.

而| ?C e sz dz | ≤?C | e sz|ds = ?C | e(σ+ i t)z|ds = ?C | eσ z+ i tz|ds

= ?C | eσ z|ds ≤?C e max{a, b} ·σ ds = | b–a | e max{a, b} ·σ.

所以| e bs–e as| ≤ | s | · | b–a | e max{a, b} ·σ.

5. 设在区域D = { z∈ : | arg z | < π/2 }内的单位圆周上任取一点z,用D内曲线C连接0与z,试证:Re(?C1/(1 + z2) dz ) = π/4.

【解】1/(1 + z2)在单连通区域D内解析,故积分与路径无关.设z = x + i y,

?z∈D,i z∈{ z∈ : 0 < arg z < π } = { z∈ : Im z > 0 },

-i z∈{ z∈ : -π < arg z < 0 } = { z∈ : Im z < 0 },

故1 + i z∈{ z∈ : Im z > 0 }, 1 -i z∈{ z∈ : Im z < 0 }.

设ln(z)是Ln(z)的主值分支,则在区域D内( ln(1 + i z) - ln(1 -i z) )/(2i)是解析的,且(( ln(1 + i z) - ln(1 -i z) )/(2i))’ = (i/(1 + i z) + i/(1 -i z))(2i) = 1/(1 + z2);

即( ln(1 + i z) - ln(1 -i z) )/(2i)是1/(1 + z2)的一个原函数.

?C1/(1 + z2) dz = ( ln(1 + i z) - ln(1 -i z) )/2 |[0, z]

= (ln(1 + i z) - ln(1 -i z))/(2i) = ln((1 + i z)/(1 -i z))/(2i)

= (ln |(1 + i z)/(1 -i z)| + i arg ((1 + i z)/(1 -i z)))/(2i)

= -i (1/2) ln |(1 + i z)/(1 -i z)| + arg ((1 + i z)/(1 -i z))/2,

故Re(?C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2.

设z = cosθ + i sinθ,则cosθ> 0,故

(1 + i z)/(1 -i z) = (1 + i (cosθ + i sinθ))/(1 -i (cosθ + i sinθ)) = i cosθ/(1 + sinθ),

因此Re(?C1/(1 + z2) dz ) = arg ((1 + i z)/(1 -i z))/2

= arg (i cosθ/(1 + sinθ))/2 = (π/2)/2 = π/4.

[求1/(1 + z2) = 1/(1 + i z) + 1/(1 -i z) )/2的在区域D上的原函数,容易得到函数( ln(1 + i z) - ln(1 -i z) )/(2i),实际它上就是arctan z.但目前我们对arctan z的性质尚未学到,所以才采用这种间接的做法.另外,注意到点z在单位圆周上,从几何意义上更容易直接地看出等式arg ((1 + i z)/(1 -i z))/2 = π/4成立.最后,还要指出,因曲线C的端点0不在区域D中,因此C不是区域D中的曲线.参考我们在第2题后面的注释.]

6. 试计算积分?C( | z | - e z sin z ) dz之值,其中C为圆周| z | = a > 0.

【解】在C上,函数| z | - e z sin z与函数a- e z sin z的相同,故其积分值相同,即?C( | z | - e z sin z ) dz = ?C( a- e z sin z ) dz.

而函数a- e z sin z在 上解析,由Cauchy-Goursat定理,?C( a- e z sin z ) dz = 0.因此?C( | z | - e z sin z ) dz = 0.

7. 设(1) f(z)在| z | ≤ 1上连续;(2) 对任意的r (0 < r < 1),?| z | = r f(z) dz = 0.试证?| z

f(z) dz = 0.

| = 1

【解】设D(r) = { z∈ | | z | ≤r },K(r) = { z∈ | | z | = r },0 < r≤ 1.

因f在D(1)上连续,故在D(1)上是一致连续的.再设M = max z∈D(1) { | f(z) | }.?ε > 0,?δ1> 0,使得?z, w∈D(1), 当| z-w | < δ1时,| f(z) -f(w)| < ε/(12π).

设正整数n≥ 3,z k= e 2kπi/n ( k = 0, 1, ..., n- 1)是所有的n次单位根.

这些点z0, z1, ..., z n– 1将K(1)分成n个弧段σ(1), σ(2), ..., σ(n).

其中σ(k) (k = 1, ..., n- 1)是点z k– 1到z k的弧段,σ(n)是z n– 1到z0的弧段.

记p(k) (k = 1, ..., n- 1)是点z k– 1到z k的直线段,p(n)是z n– 1到z0的直线段.

当n充分大时,max j {Length(σ( j))} = 2π/n < δ1.

设P是顺次连接z0, z1, ..., z n– 1所得到的简单闭折线.记ρ = ρ(P, 0).

注意到常数f(z j)的积分与路径无关,?σ( j)f(z j) dz =?p( j)f(z j) dz;

那么,| ?K(1)f(z) dz -?P f(z) dz |= | ∑j?σ( j)f(z) dz -∑j?p( j)f(z) dz |

= | ∑j (?σ( j)f(z) dz -?p( j)f(z) dz ) |

≤∑j | ?σ( j)f(z) dz -?p( j)f(z) dz |

≤∑j ( | ?σ( j)f(z) dz -?σ( j)f(z j) dz | + | ?p( j)f(z j) dz -?p( j)f(z) dz | )

= ∑j ( | ?σ( j) ( f(z)-f(z j)) dz | + | ?p( j) ( f(z)-f(z j)) dz | )

= ∑j ( ?σ( j)ε/(12π) ds + ?p( j)ε/(12π) ds )

= (ε/(12π))·∑j ( Length(σ( j)) + Length(p( j)) )

≤ (ε/(12π))·∑j ( Length(σ( j)) + Length(σ( j)) )

= (ε/(12π))· (2 Length(K(1)))

= (ε/(12π))· 4π = ε/3.

当ρ< r < 1时,P中每条线段p(k)都与K(r)交于两点,设交点顺次为w k, 1, w k, 2.设Q是顺次连接w1, 1, w1, 2, w2, 1, w2, 2, ..., w n, 1, w n, 2所得到的简单闭折线.

与前面同样的论证,可知| ?K(r)f(z) dz -?Q f(z) dz |≤ε/3.

因此,| ?K(1)f(z) dz | = | ?K(1)f(z) dz -?K(r)f(z) dz |

≤ | ?K(1)f(z) dz -?P f(z) dz | + | ?K(r)f(z) dz -?Q f(z) dz | + | ?P f(z) dz-?Q f(z) dz |

≤ε/3 + ε/3 + | ?P f(z) dz-?Q f(z) dz |.

记连接w k, 2到w k +1, 1的直线段为l(k),连接w k, 2到z k +1的直线段为r(k),连接z k +1到w k +1, 1的直线段为s(k),则

| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz |

≤M ( Length(l(k)) + Length(r(k)) + Length(s(k)) ) ≤ 3 M · Length(l(k)).

因为当r → 1-时,有Length(l(k)) → 0,

故存在r∈(ρ, 1)使得| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz | < ε/(3n).

对这个r,我们有

| ?P f(z) dz-?Q f(z) dz | = | ∑k (?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz ) |

≤∑k (| ?r(k)f(z) dz + ?s(k)f(z) dz-?l(k)f(z) dz |) ≤∑k ε/(3n) = ε/3.

故| ?K(1)f(z) dz | ≤ε.因此?K(1)f(z) dz = 0.

8. 设(1) f(z)当| z–z0 | > r0 > 0时是连续的;(2) M(r)表| f(z) |在K r : | z–z0 | = r > r0上的最大值;(3) lim r → +∞r M(r) = 0.试证:lim r → +∞?K(r) f(z) dz = 0.

【解】当r > r0时,我们有

| ?K(r) f(z) dz | ≤?K(r) | f(z) | ds≤?K(r) M(r) ds = 2πr M(r) → 0 (当r → +∞时),

所以lim r → +∞?K(r) f(z) dz = 0.

9. (1) 若函数f(z)在点z = a的邻域内连续,则

lim r → 0 ?| z–a | = r f(z)/(z–a) dz = 2πi f(a).

(2) 若函数f(z)在原点z = 0的邻域内连续,则

lim r → 0 ?[0, 2π] f(r e iθ ) dθ = 2π f(0).

【解】(1) 当r充分小时,用M(r)表| f(z) |在K r : | z–a | = r上的最大值;

| ?| z–a | = r f(z)/(z–a) dz– 2πi f(a) |

= | ?| z–a | = r f(z)/(z–a) dz–f(a)?| z–a | = r1/(z–a) dz |

= | ?| z–a | = r( f(z) –f(a))/(z–a) dz | ≤?| z–a | = r| f(z) –f(a) |/| z–a| ds

≤M(r) ?| z–a | = r1/| z–a| ds = 2πr M(r).

当r → 0时,由f(z)的连续性,知M(r) → | f(a) |.

故| ?| z–a | = r f(z)/(z–a) dz– 2πi f(a) | → 0.

因此,lim r → 0 ?| z–a | = r f(z)/(z–a) dz = 2πi f(a).

(2) 根据(1),lim r → 0 ?| z | = r f(z)/z dz = 2πi f(0).

而当r充分小时,我们有

?| z | = r f(z)/z dz = ?[0, 2π] f(r e iθ )/(r e iθ )· (r e iθi ) dθ = i ?[0, 2π] f(r e iθ ) dθ.

所以,lim r → 0 (i ?[0, 2π] f(r e iθ ) dθ)= 2πi f(0).

故lim r → 0 ?[0, 2π] f(r e iθ ) dθ = 2π f(0).

10. 设函数f(z)在| z | < 1内解析,在闭圆| z | ≤ 1上连续,且f(0) = 1.求积分(1/(2πi))?| z | = 1 (2 ± (z + 1/z)) f(z)/z dz之值.

【解】(1/(2πi))?| z | = 1 (2 ± (z + 1/z)) f(z)/z dz

= ?| z | = 1 (2f(z)/z± (zf(z)/z + (1/z)f(z)/z) dz

= (1/(2πi)) ·( ?| z | = 1 2f(z)/z dz ± (?| z | = 1 f(z) dz +?| z | = 1 f(z)/z 2dz) )

= (1/(2πi)) ·( 2(2πi) f(0)± (0+ (2πi/1!)f’(0)) )

= 2 f(0)±f’(0) = 2 ±f’(0).

11. 若函数f(z)在区域D内解析,C为D内以a, b为端点的直线段,试证:存在数λ,| λ| ≤ 1,与ξ∈C,使得f(b) -f(a) = λ(b -a) f’(ξ).

【解】设C的参数方程为z(t) = (1 –t ) a + t b,其中t∈[0, 1].

在区域D内,因f(z)是f’(z)的原函数,故

f(b) -f(a) = ?C f’(z) dz = ?[0, 1] f’((1 –t ) a + t b) (b -a) dt =

= (b -a) ?[0, 1] f’((1 –t ) a + t b) dt.

(1) 若?[0, 1]| f’((1 –t ) a + t b) | dt = 0,因| f’((1 –t ) a + t b) |是[0, 1]上的连续函数,故| f’((1 –t ) a + t b) |在[0, 1]上恒为零.即f’(x)在C上恒为零.

此时取λ= 0,任意取ξ∈C,则有

f(b) -f(a) = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt = 0 = λ(b -a) f’(ξ).

(2) 若?[0, 1]| f’((1 –t ) a + t b) | dt > 0,

因| f’((1 –t ) a + t b) |是[0, 1]上的实变量连续函数,由积分中值定理,

存在t0∈[0, 1],使得?[0, 1]| f’((1 –t ) a + t b) | dt = | f’((1 –t0) a + t0b) |.

取ξ = (1 –t0) a + t0b,则f’(ξ) = f’((1 –t0) a + t0b) ≠ 0,

令λ= (?[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ).

因为| ?[0, 1] f’((1 –t ) a + t b) dt | ≤?[0, 1]| f’((1 –t ) a + t b) | dt = | f’(ξ) |.

所以| λ| = | (?[0, 1] f’((1 –t ) a + t b) dt)/ f’(ξ) |

= | ?[0, 1] f’((1 –t ) a + t b) dt |/| f’(ξ) | ≤ 1.

且f(b) -f(a) = (b -a) ?[0, 1] f’((1 –t ) a + t b) dt = λ(b -a) f’(ξ).

12. 如果在| z | < 1内函数f(z)解析,且| f(z) | ≤ 1/(1 - | z |).试证:

| f(n)(0) | ≤ (n + 1)!(1 + 1/n)n < e (n + 1)!,n =1, 2, ....

【解】设K(r) = { z∈ | | z | = r },0 < r≤ 1.

由Cauchy积分公式和高阶导数公式,有

| f(n)(0) | = (n!/(2π)) | ?K(r) f(z)/z n + 1dz | ≤ (n!/(2π)) ?K(r) | f(z) |/| z |n + 1ds

≤ (n!/(2π)) ?K(r) 1/((1 - | z |)| z |n + 1) ds = (n!/(2π))/((1 -r ) r n + 1) 2πr

= n!/((1 -r ) r n).

为得到| f(n)(0) |的最好估计,我们希望选取适当的r∈(0, 1),使得n!/((1 -r ) r n)最小,即要使(1 -r ) r n最大.

当n≥ 1时,根据均值不等式,(1 -r ) r n = (1 -r ) (r/n)n ·n n

≤ (((1 -r ) + (r/n) + ... + (r/n))/(n + 1))n + 1 ·n n = n n/(n + 1)n + 1.

当1 -r = r/n,即r = n/(n + 1)时,(1 -r ) r n达到最大值n n/(n + 1)n + 1.

因此,我们取r = n/(n + 1),此时有

| f(n)(0) | ≤n!/((1 -r ) r n) = n!/(n n/(n + 1)n + 1) = (n + 1)!(1 + 1/n)n < e (n + 1)!.

[也可以用数学分析中的办法研究函数g(r) = (1 -r ) r n在(0, 1)内的上确界,也会得到同样的结果.]

13. 设在| z | ≤ 1上函数f(z)解析,且| f(z) | ≤ 1.试证:| f’(0) | ≤ 1.

【解】设D = { z∈ | | z | ≤ 1 }.由高阶导数公式,

| f’(0) | = (1/(2π)) | ??D f(z)/z 2dz | ≤ (1/(2π)) ??D1/| z |2 ds = 1.

14. 设f(z)为非常数的整函数,又设R, M为任意正数,试证:满足| z | > R且

| f(z) | > M的z必存在.

【解】若不然,当| z | > R时,| f(z) | ≤M.

而f(z)为整函数,故必连续,因此f(z)在| z | ≤R上有界.

所以f(z)在 上有界.

由Liouville定理,f(z)必为常数,这与题目条件相矛盾.

15. 已知u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),试确定解析函数f(z) = u + i v.【解】由于u x + v x = 3(x2 + 2xy–y2) – 2,u y + v y = 3(x2– 2xy–y2) – 2,

两式相加,再利用Cauchy-Riemann方程,有u x = 3(x2–y2) – 2.

两式相减,再利用Cauchy-Riemann方程,有v x = 6xy.

所以f’(z) = u x + i v x = 3(x2–y2) – 2 + 6xy i = 3(x + y i)2– 1 = 3 z2– 2.

因此,f(z) = z3– 2z + α,其中α为常数.

将z = 0代入,f(z) = z3– 2z + α,得α = f(0).

把(x, y) = (0, 0)带入u + v = (x–y)(x2 + 4xy + y2) – 2(x + y),得u(0, 0) + v(0, 0) = 0.设u(0, 0) = c∈ ,则v(0, 0) = -c.因此α = f(0) = u(0, 0) + v(0, 0) i = (1 -i )c.

所以,f(z) = z3– 2z + (1 -i )c,其中c为任意实数.

[书上答案有误.设f(z) = z3– 2z + (a + b i),则

f(z) = (x + y i)3– 2(x + y i) + (a + b i) = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)i.

因此,u + v = (x3 - 3xy2 – 2x + a) + (3x2y-y3– 2y + b)

= (x–y)(x2 + 4xy + y2) – 2(x + y) + (a + b),

所以,当a + b≠ 0时,不满足题目所给条件.]

16. 设(1) 区域D是有界区域,其边界是周线或复周线C;(2) 函数f1(z)及f2(z)在D内解析,在闭域cl(D) = D + C上连续;(3) 沿C,f1(z) = f2(z).试证:在整个闭域cl(D),有f1(z) = f2(z).

【解】设f(z) = f1(z) -f2(z).用Cauchy积分公式,?z∈D有

f(z) = (1/(2πi))?C f(ζ)/(ζ–z) dζ = 0.

所以?z∈cl(D)有f(z) = 0,即f1(z) = f2(z).

???-?±≠≥·?≤≡⊕??αβχδεφγηι?κλμνοπθρστυ?ωξψζ∞??????∏∑? ⊥∠ √§ψ∈???

????∠?????§ #?→←↑↓?∨∧??????∑ΓΦΛΩ?

?m∈ +,?m∈ +,★?α1, α2, ..., αn?lim n→∞,+n→∞?ε > 0,∑u n,∑n≥ 1u n,m∈ ,?ε > 0,?δ> 0,【解】?[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]

第三章 复变函数得积分(答案)

复变函数练习题第三章复变函数得积分 系专业班姓名学号 §1 复变函数积分得概念§4原函数与不定积分 一.选择题 1.设为从原点沿至得弧段,则[ ] (A) (B) (C) (D) 2、设就是,从1到2得线段,则[ ] (A) (B) (C) (D) 3.设就是从到得直线段,则[ ] (A) (B)(C)(D) 4.设在复平面处处解析且,则积分[ ] (A) (B) (C) (D)不能确定 二.填空题 1.设为沿原点到点得直线段,则 2 。 2.设为正向圆周,则 三.解答题 1.计算下列积分。 (1) (2) (3) (4) 2.计算积分得值,其中为正向圆周: (1) (2) 3.分别沿与算出积分得值。 解:(1)沿y=x得积分曲线方程为 则原积分 (2)沿得积分曲线方程为 则原积分

1 20 1 1 3224300 [()](12)3112 [32(1)][()]2.2233I i t it it dt t t i t dt t t i t t i =--+=--+-=--+-=-+?? 4.计算下列积分 (1) ,C:从到得直线段; C 得方程: 则原积分 (2) ,C:上沿正向从1到。 C 得方程: 则原积分 复变函数练习题 第三章 复变函数得积分 系 专业 班 姓名 学号 §2 柯西-古萨基本定理 §3 基本定理得推广-复合闭路定理 一、选择题 1. 设在单连通区域内解析,为内任一闭路,则必有 [ ] (A) (B) (C) (D ) 2.设为正向圆周,则 [ ] (A) (B ) (C) (D) 3.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分 [ ] (A) (B) (C ) (D)不能确定 二、填空题 1.设为正向圆周,则 2.闭曲线取正方向,则积分 0 。 三、解答题 利用柯西积分公式求复积分 (1)判断被积函数具有几个奇点; (2)找出奇点中含在积分曲线内部得, 若全都在积分曲线外部,则由柯西积分定理可得积分等零; 若只有一个含在积分曲线内部,则直接利用柯西积分公式; 若有多个含在积分曲线内部,则先利用复合闭路定理,再利用柯西积分公式、 1.计算下列积分 (1) 、

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答 3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系? 【答案 单连通 无关,复连通 有关】 3.2 计算积分 ||z ? 【答案 0】 3.3 计算积分 22d L z z a -? :其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+= 【答案 (1)0;(2)πi a ; (3)πi a -】 3.4 计算积分 Im d C z z ?,其中积分曲线C 为 (1)从原点到2i +的直线段; (2)上半圆周 ||1z =,起点为1,终点为1-; (3)圆周|| (0)z a R R -=>的正方向(逆时针方向) 【答案 2(1)1i /2;(2)π/2;(3)πR +--】 3.5 计算积分 d ||C z z z ? 的值, (1)||2; (2)||4;z z == 【答案(1)4πi;(2)8πi 】 3.6 计算积分的值 π2i 0 cos d 2z z +? 【答案 1/e e +】 3.7计算下列积分的值 (1) ||1d cos z z z =? ;(2)2||2d z ze z =? 21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++?? 【答案(1)0;(2) 0;(3) 0;(4) 4πi 4i +】 3.8 计算 2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z z z z z z e z z z z z z z e z z z z z e z z z z z ==-===-=--+--+?????? 【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】 3.9 计算积分 (1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --??? 【答案 13(1)s i n 1c o s 1; (2)i ; (3)1c o s 1i [s i n (1)1]- -+-】

大学复变函数期末考试试卷及答案(理工科所有专业)

dz C 2

2.设2 2-+= ni ni n α),3,2,1(ΛΛ=n ,则=∞→n n αlim ( ) A. 0; B. 1; C. -1+i ; D. 1+i 。 3.满足不等式3211≤-+≤i z 的所有点z 构成的集合是( )。 A .有界单连通区域; B. 无界单连通区域; C .有界复连通闭域; D.无界复连通闭域。 4.下列函数中,不在复平面内解析的函数是( ) A.1 )(+=z e z f ; B .- =z z f )( ; C .n z z f =)( ; D .)sin (cos )(y i y e z f x +=。 5 A. ∑∞ =+08)56(n n n i ; C. ∑∞ =02n n i ;三.计算题(每小题71.设z 1+=

2.判定函数)2()()(222y xy i x y x z f -+--=在何处可导,在何处解析。 3.计算积分? - C dz z z 4 )2 (sin π 4.计算积分 4=。

5.设,)1(2y x u -=试求解析函数iv u z f +=)(,使得i f -=)2(。 6.将函数) 2)(1(1 )(--=z z z f ,在圆环域21<

7.利用留数计算积分?C 四.证明函数yi x z f 2)(+=在复平面内不可导。(7分)

参考答案 一、填空题(本大题共8小题,每小题3 1.109 , 2. 4 ,3. 0 ,4. 1,5. -3或 二、单项选择题(本大题共7小题,每小题31. B ,2. B ,3.C,4. B,5. B . 三、计算题(本大题共7小题,15-19 1.解:由i z 31+=得:) sin (cos 2π π i z +=, (1分) 6 24 (cos 23166ππ k i z k +=+=所以)18sin 18(cos 260ππi z +=,)1813sin 1813(cos 262ππi z += , )25sin 1825(cos 264ππi z +=,5z 7分) 2. 解 ) 2()2y xy i x -+,则 (),(22y x y x u -= y u x x u ,12=??-=?? 只在2 1 = y ,x v ??-(6分) 故只在2 1 =y 处可导,处处不解析。(7分) 3z 在2=z 内解析,(2分)

第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则22 32 (4) C z z dz z -+=-? 10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02i z i i z i i i e dz e e e ππππππ---= =-=?

(2) 2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππ ππππ------?? ==- ????? --=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分 ||C z dz z ?的值,其中C 为正向圆周: (1)

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ( ()()()3 3331 02 3 02 302 33 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??? ???==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 02 10 2 / 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332 3 30 2 33 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 0330 2 3 2 33 131=??? ???==?? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 0233 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 202 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02 32 3113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 2 30 2 13 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数习题解答(第3章)

p141第三章习题 (一)[ 5, 7, 13, 14, 15, 17, 18 ] 5.由积分 C1/(z+ 2)dz之值证明 [0,](1 + 2 cos)/(5 + 4cos)d= 0,其中C取单位圆周|z| = 1. 【解】因为1/(z+ 2)在圆|z内解析,故 C1/(z+ 2)dz= 0. 设C: z()= ei ,[0, 2]. 则 C1/(z+ 2)dz= C1/(z+ 2)dz= [0, 2]iei /(ei + 2)d = [0, 2]i(cos+isin)/(cos+isin+ 2)d =

[0, 2]( 2 sin+i(1 + 2cos))/(5 + 4cos)d = [0, 2]( 2 sin)/(5 + 4cos)d+i [0, 2](1 + 2cos)/(5 + 4cos)d. 所以 [0, 2](1 + 2cos)/(5 + 4cos)d= 0. 因(1 + 2cos))/(5 + 4cos)以2为周期,故 [,](1 + 2cos)/(5 + 4cos)d= 0;因(1 + 2cos))/(5 + 4cos)为偶函数,故[0,](1 + 2 cos)/(5 + 4cos)d [,](1 + 2cos)/(5 + 4cos)d= 0. 7. (分部积分法)设函数f(z),g(z)在单连通区域D内解析,,是D内两点,试证 [,]f(z)g’(z)dz= (f(z)g(z))| [,] [,]g(z)f’(z)dz. 【解】因f(z),g(z)区域D内解析,故f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’的积分都与路径无关.[,]f(z)g’(z)dz+ [,]g(z)f’(z)dz= [,](f(z)g’(z)dz+g(z)f’(z))dz

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

有答案复变函数与积分变换期末考试试卷

华南农业大学期末考试试卷(A 卷) 2007-08 学年第1学期 考试科目: 复变函数与积分变换 考试类型:(闭卷) 考试时间: 120 分钟 学号 姓名 年级专业 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 4.34a rc ta n 3 A i π-+-的主辐角为 .a rg (3)a rg () B i i -=- 2 .rg (34)2a rg (34)C a i i -+=-+ 2 .||D z z z ?= 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. R e ()0z >表示上半平面 C. 0a rg 4 z π << 表示角形区域 D. Im ()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) .z A z e + 2 s in . 1 z B z + .ta n z C z e + .s i n z D z e + 6.在复平面上,下列命题中,正确.. 的是( ) A. c o s z 是有界函数 B. 2 2L n z L n z = .c o s s in iz C e z i z =+ .||D z = 7.在下列复数中,使得z e i =成立的是( )

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=--(3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=--

2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+ (3)(sin cos )r i θθ+ (4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--

复变函数习题答案第3章习题详解.docx

第三章习题详解 1?沿下列路线计算积分J;' z2dz o 1)自原点至3 + i的直线段; 解:连接自原点至34-1的直线段的参数方程为:z =(3+》0

复变函数习题解答(第3章)

p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ] 5. 由积分?C1/(z + 2) dz之值证明?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1. 【解】因为1/(z + 2)在圆| z | < 3/2内解析,故?C1/(z + 2) dz = 0. 设C : z(θ)= e iθ,θ∈[0, 2π]. 则?C1/(z + 2) dz = ?C1/(z + 2) dz = ?[0, 2π] i e iθ/(e iθ + 2) dθ = ?[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ = ?[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ = ?[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ. 所以?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0. 因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故 ?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0. 7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证 ?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz. 【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关. ?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ?[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz = ?[α, β] ( f(z)g(z))’dz. 而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以 ?[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β]. 因此有?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α, β], 即?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz. 13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线. 【解】分两种情况讨论. (1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0. 因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β). ?t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析, 因此f(z(t))在t处可导,且导数为f’(z(t))z’(t). 显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β]. 因为f(z)于区域D内是单叶的,即f(z)是区域D到 的单射,而z(t)是[α, β]到D 内的单射,故f(z(t))是[α, β]到 内的单射. 因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0. 所以,Γ是光滑曲线. (2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).

复变函数试题及答案

一、填空题(每小题2分) 1、复数i 212-- 的指数形式是 2、函数w =z 1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 2222= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续

B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 232 1- B 2 23i - C 223i +- D i 2 3 21+ - 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1 cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =- 1 2 3 z z dz B ?=- 1 2 1 z z dz C ?=++12 42z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-0 2121n n n n z (z <1) B () ∑∞ =+-0 1 221n n n n z (z <1) C ()∑∞ =++-0 1 2121n n n n z (z <1) D () ∑∞ =-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1

相关文档