文档库 最新最全的文档下载
当前位置:文档库 › 第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验Stata实现
第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验的Stata实现本章用到的Stata命令有

例5-1 随机抽取某地25名正常成年男子,测得其血红蛋白含量如下:

146 7 125 142 7 128 140

1 7 144 151 117 118

该样本的均数为137.32g/L,标准差为10.63g/L,求该地正常成年男子血红蛋白含量总体均数的95%可信区间。

数据格式为

计算95%可信区间的Stata命令为:

结果为

该地正常成年男子血红蛋白含量总体均数的95%可信区间为(132.93~141.71)

例5-2 某市2005年120名7岁男童的身高X=123.62(cm),标准差s=4.75(cm),计算该市7岁男童总体均数90%的可信区间。

在Stata中有即时命令可以直接计算仅给出均数和标准差时的可信区间。

结果为:

该市7岁男童总体均数90%的可信区间(122.90~124.34)。

例5-3 为研究铅暴露对儿童智商(IQ)的影响,某研究调查了78名铅暴露(其血铅水平≥40 g/100ml)的6岁儿童,测得其平均IQ为88.02,标准差为12.21;同时选择了78名铅非暴露的6岁儿童作为对照,测得其平均IQ为92.89,标准

差为13.34。试估计铅暴露的儿童智商IQ的平均水平与铅非暴露儿童相差多少,并估计两个人群IQ的总体均数之差的95%可信区间。

本题也可以应用Stata的即时命令:

结果:

差值为4.86,差值的可信区间为0.81~8.90。

例5-4 为研究肿瘤标志物癌胚抗原(CEA)对肺癌的灵敏度,随机抽取140例确诊为肺癌患者,用CEA进行检测,结果呈阳性反应者共62人,试估计肺癌人群中CEA的阳性率。

Stata即时命令为

结果为

肺癌人群中CEA的阳性率为44.28%,可信区间为35.90%~52.82%。

例5-5 某医生用A药物治疗幽门螺旋杆菌感染者10人,其中9人转阴,试估计该药物治疗幽门螺旋杆菌感染者人群的转阴率。

Stata即时命令为

结果为

例5-6 某市区某年12个月发生恶性交通事故的次数分别为:

5, 4, 6, 12, 7, 8, 10, 7, 6, 11, 3, 5

假设每个月恶性交通事故的次数服从Poisson分布,试估计该市平均每个月恶性交通事故的次数的95%可信区间。

将1个月视为一个单位时间,因Poisson分布具有可加性,我们先计算12个单位时间内平均脉冲数估计值及其95%可信区间。

X=5+4+6+12+7+8+10+7+6+11+3+5=84

由于在12个单位时间内总的发生次数为84,所以可以用

得到结果:

例5-7 续例3-4。从某纯净水生产厂家生产的矿泉水中随机取1升水样,检出3个大肠菌群。试估计该家生产的矿泉水中每升水中大肠杆菌数的95%可信区间。

Stata的命令为:

结果为:

例5-8 大规模调查表明正常成年女子的双耳在4kHz频率时的纯音气传导

听阈值平均为15dB。为研究纺机噪声对纺织女工的听力是否有影响,随机调查了20名工龄在2年以上的纺织女工,测得其听阈值(dB)如下:

10 11 12 13 14 14 16 17 18 18

18 18 19 20 20 23 22 23 24 26

研究者的问题是:纺织女工的听阈值是否与正常成年女子不同?

Stata数据格式为:

H0:μ=μ0, H1:μ≠μ0。

即H0:μ=15(dB),H1:μ≠15(dB)。

Stata命令为:

结果为:

统计量t=2.7810,Pr(|T| > |t|) = 0.0119,所以可以拒绝H0,可以认为纺织女工与正常成年女子的平均听阈值的差异有统计学意义。

第二讲 非参数统计检验

第二讲 非参数检验 1. 实验目的 1.了解非参数假设检验基本思想; 2.会用SAS 软件中的proc npar1way 过程进行非参数假设检验和proc freq 过程进行列联表的独立性检验。 2. 实验要求 1.会用SAS 软件建立数据集,并进行统计分析; 2.掌握proc npar1way 过程进行非参数假设检验的基本步骤; 3.掌握proc freq 过程进行列联表的独立性检验的基本步骤。 3. 实验基本原理 3.1 符号检验 0:H 两种方法的处理效果无显著性差异 令10 i i I i ?=? ?第个个体中新方法优于对照方法第个个体中新方法劣于对照方法 1,2,,i N = 统计量1 N N i i S I ==∑ N S 表示新方法的处理效果优于对照方法的配对组总数。若新方法的处理效果显著的优于对 照方法,则N S 的值应明显偏大。因此,若对给定的置信水平α,有 {}N P S c α≥<, 则拒绝0H 。 0H 为真时,(1)N S 服从二项分布1(,)2 b N (),()24 N N N N E S Var S = =。拒绝域为: {}N N S S c > (2) 由中心极限定理可知,当 2 , N N S N - →∞的零分布趋于标准正态分布。

拒绝域为 :N S u α?? ????>???????? 3.2 Wilcoxon 秩和检验 (1)单边假设检验 0:H 两种方法的处理效果无显著性差异 as 1:H :新方法优于对照方法。 用于检验0H 的统计量为:1n s i i W I ==∑ 若对给定的置信水平α,有 {}s P W c α≥<,则拒绝0H 。且s W 的分布列为: 0#{;,}{}H s w n m P W w N n == ?? ??? 根据观测结果计算s W 的观测值0s W ,计算检验的p 值: 00 {}{} s H s s H s k w p P W w P W k ≥=≥= =∑ 然后将p 值与显著水平α作比较,若p α<,则拒绝0H ,否则接受0H 。 (2)双边假设检验 给定的显著水平21,c c 和α应该满足: ε=≥+≤}{}{2100c W P c W P A H A H 仅由上式还不能唯一确定21c c 和,当我们对两种方法谁优谁劣不得而知时,通常取 2 }{}{2100α = ≥=≤c W P c W P A H A H 若利用p 值进行检验,设A A W ω的观测值为 ,计算概率值 }{}{00A A H A A H W P W P ωω≤≥或 由对称性可知,检验的p 值为上述两概率中小于1/2的那一个的2倍。例如

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系 统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 1.参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。 点估计是用估计量的某个取值直接作为总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。 区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。统计学家在某种程度上确信这个区间会包含真正的总体参数。 在区间统计中置信度越高,置信区间越大。置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05,0.1 置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。 一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等 (1)来自正态分布的样本均值,不论抽取的是大样本还是小样本,均服从正态分布 (2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布 (3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理 (4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近 (5)样本均数服从的正态分布为N(u a^2/n)远远小于原变量离散程度N (u a^2) 2. 假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。 假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。最重要的是看能否通过得到的概率去推翻原定的假设,而不是去证实它<2>统计学中假设检验的基本步骤:(1)建立假设,确定检验水准α--假设有零假设(H0)和备择假设(H1)两个,零假设又叫作无效假设或检验假设。H0和H1的关系是互相对立的,如果拒绝H0,就要接受H1,根据备择假设不同,假设检验有单、双侧检验两种。检验水准用α表示,通常取0.05或0.10,检验水准说明了该检验犯第一类错误的概率。(2)根据研究目的和设计类型选择适合的检验方法 这里的检验方法,是指参数检验方法,有u检验、t检验和方差分析三种,对应于不同的检验公式。 (3)确定P值并作出统计结论 u检验得到的是u统计量或称u值,t检验得到的是t统计量或称t值。方差分析得到的是F统计量或称F值。将求得的统计量绝对值与界值相比,可以确定P值。当α=0.05时,u值要和u界值1.96相比较,确定P值。如果u<1.96,则P>0.05.反之,如u>1.96,则P<0.05.t值要和某自由度的t界值相比较,确定P值。如果t值<t界值,故P>0.05.反之,如t>t 界值,则P<0.05。相同自由度的情况下,单侧检验的t界值要小于双侧检验的t界值,因此有可能出现算得的t值大于单侧t界值,而小于双侧t界值的情况,即单侧检验显著,双侧检验未必就显著,反之,双侧检验显著,单侧检验必然会显著。即单侧检验更容易出现阳性结论。当P>0.05时,接受零假设,认为差异无统计学意义,或者说二者不存在质的区别。当P<0.05时,拒绝零假设,接受备择假设,认为差异有统计学意义,也可以理解为二者存在质的区别。但即使检验结果是P<0.01甚至P<0.001,都不说明差异相差很大,只表示更有把握认为二者存在差异。 3.参数估计与假设检验之间的联系与区别: (1)主要联系:a.都是根据样本信息推断总体参数;b.都以抽样分布为理论依据,建立在概率论基础之上的推断;c.二者可相互转换,形成对偶性。 (2)主要区别:a.参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;b.区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;c.区间估计立足于大概率,假设检验立足于小概率。

假设检验——非参数检验

假设检验(二)——非参数检验 假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。上一节我们所介绍的Z 检验、t 检验,都是参数检验。它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。参数检验就是要通过样本统计量去推断或估计总体参数。然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。非参数检验是通过检验总体分布情况来实现对总体参数的推断。 非参数检验法与参数检验法相比,特点可以归纳如下: (1)非参数检验一般不需要严格的前提假设; (2)非参数检验特别适用于顺序资料; (3)非参数检验很适用于小样本,并且计算简单; (4)非参数检验法最大的不足是没能充分利用数据资料的全部信息; (5)非参数检验法目前还不能用于处理因素间的交互作用。 非参数检验的方法很多,分别适用于各种特点的资料。本节将介绍几种常用的非参数检验方法。 一.2 χ检验 2χ检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何 假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。 2χ检验的方法主要包括适合性检验和独立性检验。 (一)2 χ检验概述 2χ是实得数据与理论数据偏离程度的指标。其基本公式为: ∑-=e e f f f 2 02 )(χ (公式11—9) 式中,0f 为实际观察次数,e f 为理论次数。 分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2 χ。观察公式可发现,如果实际观察

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 0.05,α=26,n = 0:1600H μ=, 即,以95%的把握认为这批产品的指标 的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数 的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。问,新工艺上浆率能否推广(α=0.05)? 解: 012112:, :,H H μμμμ≥< 3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)? 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n =由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)? 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n =由检验统计量0.9733 Z = ==<1.65,接受H 0:p ≤0.05. 即, 以95%的把握认为p ≤0.05是成立的.

第5章参数估计与假设检验练习题(精)

第5章 参数估计与假设检验练习题 1、设随机变量 X 的数学期望为 μ ,方差为 σ2 ,(X 1 ,X 2 ,···,X n )为X 的一个样本, 试比较 ))(1(1 2 ∑=-n i i X n E μ 与 ))(1(12∑=-n i i X X n E 的大小。 ( 前者大于后者 ) 2、设随机变量 X 与Y 相互独立,已知 EX = 3,EY = 4,DX = DY = σ2 ,试问:k 取何值时,Z = k ( X 2 - Y 2 ) + Y 2 是 σ2 的无偏估计 。 ( 16 / 7 ) 3、设正态总体 X ~ N ( μ , σ2 ) ,参数 μ ,σ2 均未知,( X 1 ,X 2 ,… ,X n )( n ≥ 2 ) 为简单随机样本,试确定 C ,使得 ∑-=+-=1 1212 )(?n i i i X X C σ 为 σ2 的无偏估计。 ( ) 1(21 -n ) 4、假设总体 X 的数学期望为 μ ,方差为 σ 2 ,),...,,(21n X X X 为来自总体 X 的一个样本, X 、S 2 分别为样本均值和样本方差,试确定常数 c ,使得 22cS X - 为 μ 2 的无偏估计量. ( 1 / n ) 5、设 X 1 ,X 2 是取自总体 N ( μ , σ2 ) ( μ 未知)的一个样本,试说明下列三个统计量 2114341?X X +=μ ,2122121?X X +=μ ,2132 1 31?X X +=μ 中哪个最有效。 ( 2?μ )

6、设某总体 X 的密度函数为:??? ??><=其它 03),(3 2θθθx x x f ,( X 1 ,X 2 ,… ,X n )为该 总体的样本, Y n = max ( X 1 , X 2 , … , X n ) ,试比较未知参数 θ 的估计量 X 3 4 与 n Y n n 31 3+ 哪个更有效? ( n > 1 时,n Y n n 31 3+ 更有效 ) 7、从某正态总体取出容量为10的样本,计算出 15010 1 =∑=i i x ,272010 1 2=∑=i i x 。求总体期望与 方差的矩估计 μ ? 和 2?σ 。 ( 15 ;47 ) 8、设总体 X 具有密度 ?? ? ??≤>=+-C x C x x C x f 01);()1 1(1???? ,其中参数 0 < ? < 1,C 为已知常数,且C > 0,从中抽得一样本 X 1 ,X 2 ,… ,X n ,求参数 ? 的矩估计量。 ( 1 - C /?X ,其中 ∑==n i i X n X 1 1 ) 9、设总体 X 服从( 0,? )上的均匀分布,其中 ? > 0 是未知参数,( X 1 ,X 2 ,… , X n )为简单随机样本,求出 ? 的矩估计量 ? ? ,并判断 ?? 是否为 ? 的无偏估计量。 ( 2?X ,其中 ∑==n i i X n X 1 1 ;是 ) 10、设( X 1 ,X 2 ,… ,X n )为总体 X 的一组样本,总体 X 密度函数为:

非参数假设检验法及其运用

非参数假设检验法及其运用 摘要:在国际金融危机下,以中国股市数据为依据,运用S-plus 统计分析软件和Excel ,对中国股市正态分布假设进行了Kolmogorv拟合优度检验,运用方差平方秩检验方法,比较分析了上证指数和深证综指的波动性。 关键字:股市;Kolmogorov拟合优度检验;秩检验。 引言:对中国股市分布的研究,国内各学者对中国股市进行了非参数检验。王金玉、李霞、潘德惠(2005)通过引入一种新的估计方法“非参数假设检验方法”,以达到对证券投资咨询机构,对证券市场大盘走势预测准确度的估计。周明磊(2004)运用非参数非线性协整检验,对上证指数与深成指间协整关系进行了研究,结论是:上证指数与深圳成指之间确实存在非线性的协整关系。方国斌(2007)从分析中国股市收益率序列的特征入手,寻找描述中国股市波动性特征的合适的统计模型。 在研究相关文献的基础上,将非参检验应用于中国股市统计特征的研究。运用Kolmogorov拟合优度检验,对中国股市进行了正态分布假设检验;运用方差平方秩检验方法,比较分析了上海指数和深圳综指的波动性。 正文: 一、Kolmogorov拟合优度检验以及方差的平方秩检验方法。 (一)Kolmogorov拟合优度检验 1. 原假设和备择假设 原假设H :样本来自于正态分布总体。 备择假设H 1 :样本不是来自于正态分布总体。 2. 检验统计量 令S (x) 是样本X 1、X 2 、…X n 、的经验分布函数,F*(x)是完全已知的假设分布函数, 则检验统计量T为S (x) 与F*(x)的最大垂直距离,即:T = sup| F*(x)- S (x)|。 3. P值计算 近似P值可以通过在表A13中插值得到,或者利用2倍的单边检验的P值。 单边P值= 1 )] 1( [ 1 1 - - - = ? ? ? ? ? + ? ? ? ? ? - - ?? ? ? ? ? ∑j j n t n j n j t n j t j n 这里t的是检验统计量的观测值,[n(1-t)] 且是小于等于n(1-t)的最大整数。当给定的显著性水平α大于或等于P值时,拒绝原假设。 在本文中,该检验是运用S-plus 统计分析软件实现的。 (二) 方差的平方秩检验 1. 原假设和备择假设 ( 1 ) 双边检验 1 原假设H :除了它们的均值可能不同外,X和Y同分布。

参数估计和假设检验案例(精)

参数估计和假设检验案例 案例一:工艺流程的检测 某公司是一家为客户提供抽样和统计程序方面建议的咨询公司,这些建议可以用来监控客户的制造工艺流程。在一个应用项目中,一名客户向该公司提供了一个样本,该样本由工艺流程正常运行时的 800个观测值组成。这些数据的样本标准差为 0.21;因为有如此多的样本数据,因此,总体标准差被假设为 0.21。然后,该公司建议:持续不断地定期抽取容量为 30的随机样本以对工艺流程进行检测。 通过对这些新样本的分析,客户可以迅速知道,工艺流程的运行状况是否令人满意。当工艺流程的运行状况不能令人满意时,可以采取纠正措施来解决这个问题。设计规格要求工艺流程的均值为 12,该公司建议采用如下形式的假设检验。 H 0 :12 H 1 :12 只要 H 0被拒绝,就应采取纠正措施。 下表为第一天运行新的工艺流程的统计控制程序时,每隔一小时收集的样本数据。

μ=μ≠ 问题: 1、对每个样本在 0.01的显著性水平下进行假设检验,并且确定,如果需要

Z0.005=2.58 2、 4、讨论将显著性水平改变为一个更大的值时的影响?如果增加显著性水平, 哪种错误或误差将增加? 显著性水平增加,置信区间减小,误差减小。 案例二:计算机辅助教学会使完成课程的时间差异缩小吗? 某课程引导性教程采用一种个性化教学系统, 每位学生观看教学录像, 然后给以程式化的教材。每位学生独立学习直至完成训练并通过考试。人们关心的问题是学生完成训练计划的进度不同。有些学生能够相当快地完成程式化教材, 而另一些学生在教材上需要花费较长的时间,甚至需要加班加点才能完成课程。学的较快的学生必须等待学得较慢的学生完成引导性课程才能一起进行其他方面的训练。 建议的替代系统是使用计算机辅助教学。在这种方法中, 所有的学生观看同样的讲座录像,然后每位学生被指派到一个计算机终端来接受进一步的训练。μ= 在整个教程的自我训练过程中,由计算机指导学生独立操作。 为了比较建议的和当前的教学方法, 刚入学的 122名学生被随机地安排到这两种教学系统中。 61名学生使用当前程式化教材, 而另外 61名学生使用建议的计算机辅助方法。记录每位学生的学习时间(小时 ,如表所示。

第五章参数估计和假设检验Stata实现

第五章参数估计和假设检验的Stata实现本章用到的Stata命令有 例5-1 随机抽取某地25名正常成年男子,测得其血红蛋白含量如下: 146 7 125 142 7 128 140 1 7 144 151 117 118 该样本的均数为137.32g/L,标准差为10.63g/L,求该地正常成年男子血红蛋白含量总体均数的95%可信区间。 数据格式为

计算95%可信区间的Stata命令为: 结果为 该地正常成年男子血红蛋白含量总体均数的95%可信区间为(132.93~141.71) 例5-2 某市2005年120名7岁男童的身高X=123.62(cm),标准差s=4.75(cm),计算该市7岁男童总体均数90%的可信区间。 在Stata中有即时命令可以直接计算仅给出均数和标准差时的可信区间。 结果为: 该市7岁男童总体均数90%的可信区间(122.90~124.34)。 例5-3 为研究铅暴露对儿童智商(IQ)的影响,某研究调查了78名铅暴露(其血铅水平≥40 g/100ml)的6岁儿童,测得其平均IQ为88.02,标准差为12.21;同时选择了78名铅非暴露的6岁儿童作为对照,测得其平均IQ为92.89,标准

差为13.34。试估计铅暴露的儿童智商IQ的平均水平与铅非暴露儿童相差多少,并估计两个人群IQ的总体均数之差的95%可信区间。 本题也可以应用Stata的即时命令: 结果: 差值为4.86,差值的可信区间为0.81~8.90。 例5-4 为研究肿瘤标志物癌胚抗原(CEA)对肺癌的灵敏度,随机抽取140例确诊为肺癌患者,用CEA进行检测,结果呈阳性反应者共62人,试估计肺癌人群中CEA的阳性率。 Stata即时命令为 结果为 肺癌人群中CEA的阳性率为44.28%,可信区间为35.90%~52.82%。 例5-5 某医生用A药物治疗幽门螺旋杆菌感染者10人,其中9人转阴,试估计该药物治疗幽门螺旋杆菌感染者人群的转阴率。 Stata即时命令为

参数估计和假设检验案例

参数估计和假设检验案例 案例一:工艺流程的检测 某公司是一家为客户提供抽样和统计程序方面建议的咨询公司,这些建议可以用来监控客户的制造工艺流程。在一个应用项目中,一名客户向该公司提供了一个样本,该样本由工艺流程正常运行时的800个观测值组成。这些数据的样本标准差为0.21;因为有如此多的样本数据,因此,总体标准差被假设为0.21。然后,该公司建议:持续不断地定期抽取容量为30的随机样本以对工艺流程进行检测。 通过对这些新样本的分析,客户可以迅速知道,工艺流程的运行状况是否令人满意。当工艺流程的运行状况不能令人满意时,可以采取纠正措施来解决这个问题。设计规格要求工艺流程的均值为12,该公司建议采用如下形式的假设检验。 μ=μ≠ H0 :12 H1 :12 只要H0被拒绝,就应采取纠正措施。 下表为第一天运行新的工艺流程的统计控制程序时,每隔一小时收集的样本数据。

问题: 1、对每个样本在0.01的显著性水平下进行假设检验,并且确定,如果需要 Z0.005=2.58 2、 μ= 4、讨论将显著性水平改变为一个更大的值时的影响?如果增加显著性水平, 哪种错误或误差将增加? 显著性水平增加,置信区间减小,误差减小。 案例二:计算机辅助教学会使完成课程的时间差异缩小吗? 某课程引导性教程采用一种个性化教学系统,每位学生观看教学录像,然后给以程式化的教材。每位学生独立学习直至完成训练并通过考试。人们关心的问题是学生完成训练计划的进度不同。有些学生能够相当快地完成程式化教材,而另一些学生在教材上需要花费较长的时间,甚至需要加班加点才能完成课程。学的较快的学生必须等待学得较慢的学生完成引导性课程才能一起进行其他方面的训练。 建议的替代系统是使用计算机辅助教学。在这种方法中,所有的学生观看同样的讲座录像,然后每位学生被指派到一个计算机终端来接受进一步的训练。

参数估计和假设检验

攀 枝 花 学 院 实 验 报 告 实验课程:数学实验及模型 实验项目:参数估计和假设检验 实验日期:2010.12.30 系:计算机 班级: 姓名: 学号: 同组人: 指导教师: 成绩: 【实验目的】: 1 理解参数估计的基本概念、原理和方法; 2 理解正态总体的均值、方差的区间估计的方法; 3 了解假设检验的基本概念、原理和方法; 4 掌握用Matlab 进行参数估计; 5 掌握用Matlab 进行假设检验. 【实验内容:】 1 参数估计的基本概念、原理和方法; 2 假设检验的基本概念、原理和方法; 3 利用Matlab 进行参数估计和假设检验. 【实验原理:】 1 参数估计:参数估计包括点估计和区间估计 (1)点估计:点估计法主要包括矩估计和最大似然估计. 点估计的常用公式如下: ?x μ =,22?s σ= (2)区间估计:区间估计就是根据样本来估计其分布函数中未知参数的范围区间,并使区 间包含未知参数的概率≥1a -,1a -称为置信水平,估计区间称为置信区间. 总体均值μ、标准差σ的区间估计(置信水平1α-)的常用公式如下: ① σ已知时,μ 的置信区间为:2 x z α ± σ未知时,μ 的置信区间为:()2 1x n α± - ② 2σ的置信区间为: ()()()()2 222 12211,11n S n S n n ααχχ- ??-- ? ?-- ??? 其中,2 z α、()2 1t n α-、()2 2 1n αχ-分别为()0,1N 、()1t n -、()21n χ-分布的上 2 α分位点. (3)Matlab ,常见分布函数中参数估计的点估计和区间估计函数见表3-4.

第六章参数估计和假设检验(精)

第六章参数估计和假设检验 教学目的及要求:了解参数的点估计、区间估计的含义,掌握区间估计的几个概念,包括置信水平、置信区间、小概率事件,熟练掌握参数区间估计的计算方法,了解不同抽样组织形式下的参数估计,掌握参数估计中样本量的确定。了解假设检验的原假设和备择假设的含义,假设检验的两类错误,掌握总体均值的检验方法。 本章重点与难点:区间估计的计算与总体均值的假设检验方法。 计划课时:授课6课时;技能训练2课时。 授课特点:案例教学 第一节点估计和区间估计 一、总体参数估计概述 ?1、总体参数估计定义 ?就是以样本统计量来估计总体参数,总体参数是常数,而统计量是随机变量。 ?2、参数估计应满足的两个条件 二、参数的点估计 ?用样本的估计量直接作为总体参数的估计值 例如:用样本均值直接作为总体均值的估计 例如:根据一个抽出的随机样本计算的平均分数为80分,我们就用80分作为全班考试成绩的平均分数的一个估计值,这就是点估计。 再例如,要估计一批产品的合格率,根据抽样结果合格率为96%,将96%直接作为这批产品合格率的估计值,这也是点估计 三、参数的区间估计 (一)参数的区间估计的含义 ?区间估计:计算抽样平均误差,指出估计的可信程度,进而在点估计的基础上,确定总体参数的所在范围或区间。

(二)有关区间估计的几个概念 置信水平 1. 将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平 2. 表示为 (1 - α% ) α 为是总体参数未在区间内的比例 3. 常用的置信水平值有 99%, 95%, 90% 相应的显著性水平α 为0.01,0.05,0.10 置信区间 1. 由样本统计量所构造的总体参数的估计区间称为置信区间 2. 统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间 3. 用一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值 我们只能是希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个 4. 由样本均值的抽样分布可知,在重复抽样或无限总体抽样的情况下,样本均值的数学期望等于总体均值, 5. 样本均值的标准差为 由此可知样本均值落在总体均值μ的两侧各为一个抽样标准差范围内的概率为0。6873 落在总体均值两个抽样标准差范围内的概率为0。9545 落在总体均值三个抽样标准差范围内的概率为0。9973 影响区间宽度的因素 1.总体数据的离散程度,用 σ 来测度 2.样本均值标准差 3.置信水平 (1 - α),影响 z 的大小 评价估计量的标准 x n x σ σ=

参数估计和假设检验

第五章参数估计和假设检验 本章重点 1、抽样误差的概率表述; 2、区间估计的基本原理; 3、小样本下的总体参数估计方法; 4、样本容量的确定方法; 本章难点 1、一般正态分布 标准正态分布; 2、t分布; 3、区间估计的原理; 4、分层抽样、整群抽样中总方差的分解。 统计推断:利用样本统计量对总体某些性质或数量特征进行推断。 两类问题:参数估计和假设检验 基本特点:(1)以随机样本为基础; (2)以分布理论为依据; (3)推断的只是一种可能的结果; (4)是归纳推理和演绎推理的结合。本章主要内容:阐述常用的几种参数估计方法。 第一节参数估计 一、参数估计的基本原理 两种估计方法

点估计 区间估计 1.点估计:以样本指标直接估计总体参数。 点估计优良性评价准则 (1)无偏性。估计量 的数学期望等于总体参数,即 , 该估计量称为无偏估计。 (2)有效性。当 为 的无偏估计时, 方差 越小, 无偏估计越有效。 (3)一致性。对于无限总体,如果对任意 ,有 ,则称 是 的一致估计。 (4)充分性。一个估计量如能完全地包含未知参数信息,即为 充分估计量。 2.点估计的缺点:不能反映估计的误差和精确程度 区间估计:利用样本统计量和抽样分布估计总体参数的可能区间 【例1】CJW 公司是一家专营体育设备和附件的公司,为了监控公司的服务质量, CJW 公司每月都要随即的抽取一个顾客样本进行调查以了解顾客的满意分数。根据以往的调查,满意分数的标准差稳定在20分左右。最近一次对100名顾客的抽样显示,满意分数的样本均值为82分,试建立总体满意分数的区间。 抽样误差 抽样误差:一个无偏估计与其对应的总体参数之差的绝对值。 抽样误差 = (实际未知) 要进行区间估计,关键是将抽样误差E 求解。若 E 已知,则区间可表示为: 区间估计:估计未知参数所在的可能的区间。 区间估计优良性评价要求 θ θ??θ?θθ=?E θ?0> εθ?2)?(θθ-E 0)|?(|=≥-∞ →εθθn n P Lim n θ?θθαθθθ-=1)??(U L P <<[]E x x +-,E

参数估计与假设检验的辨析

参数估计与假设检验的辨析 1、参数估计 参数估计是在抽样及抽样分布的基础上,根据样本统计量来推断所关心的总体参数。参数估计的方法有点估计和区间估计两种。 1. 点估计 点估计就是用样本统计量的某个取值直接作为总体参数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估 计总体矩,如用样本均值估计总体均值。②最大似然估计 法。于1912年由英国统计学家R.A.费希尔提出,利用样本分 布密度构造似然函数来求出参数的最大似然估计。③最小二 乘法。主要用于线性统计模型中的参数估计问题。 虽然在重复抽样条件下,点估计的均值可望等于总体真值,但由于样本是随机的,抽出一个具体的样本得到的估计 值很可能不等于总体真值,所以必须给出点估计值的可靠 性,点估计值的可靠性由抽样标准误差来衡量。 2. 区间估计 区间估计是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。在进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。一般的,如果将构造置信区间的步骤重复多 次,置信区间中包含总体参数真值的次数所占的比例称为置信水平,也称置信度或置信系数。 求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。 3. 评价估计量的标准 1) 无偏性。指估计量抽样分布的数学期望等于被估计的总体 参数。 2) 有效性。指对同一总体参数的两个无偏估计量,有更小标 准差的估计量更有效。 3) 一致性。指随着样本量的增大,点估计量的值越来越接近 被估总体的参数。 2、假设检验 假设检验是用来判断样本与总体的差异是由抽样误差引起还是

统计学第六章 参数估计和假设检验习题

第六章参数估计和假设检验 一、填空题 1、总体参数估计是指 2、 称为置信水平,表示为 3、落在总体均值两个抽样标准差范围内的概率为 4、影响样本的单位数目的因素有 5、是研究者想收集证据予以反对的假设。 答案:1、就是以样本统计量来估计总体参数,总体参数是常数,而统计量是随机变量。 2、将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例,(1 - 3、0.9545 4、总体变量的变异程度σ、允许的误差范围△、抽样的可靠程度1-α 5、纯随机抽样、等距抽样(机械抽样)、类型抽样(分层抽样)和整群抽样 二、单项选择题 1、估计量的含义是指(A) A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体数值 2、一个95%的置信区间是指( C ) A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数

3、抽取一个容量为100的随机样本,其均值为x =81,标准着s=12。总体均值μ的99%的置信区间为( C ) 81±1.97 81±2.35 81±3.10 81±3.52 4.成数与成数方差的关系是(C ) A.成数的数值越接近0,成数的方差越大 B.成数的数值越接近0.3,成数的方差越大 C.成数的数值越接近0.5,成数的方差越大 D.成数的数值越接近l ,成数的方差越大 5.纯随机重复抽样的条件下,若其他条件不变,要使抽样平均误差缩小为原来的1/3,则样本单位数必须( B ) A.增大到原来的3倍 B.增大到原来的9倍 C.增大到原来的6倍 D.也是原来的1/3 6、对于非正态总体,使用统计量 x z =估计总体均值的条件是(D ) A .小样本 B .总体方差已知 C .总体方差未知 D .大样本 7、在假设检验中,原假设和备选假设( C ) A. 都有可能成立 B. 都有可能不成立 C. 只有一个成立而且必有一个成立 D. 原假设一定成立,备选假设不一定成立 8.一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( A ) A .0:5H μ=,1:5H μ≠

假设检验——非参数检验

假设检验(二)——非参数检验 假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。上一节我们所介绍的Z 检验、t 检验,都是参数检验。它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。参数检验就是要通过样本统计量去推断或估计总体参数。然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检 验。这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。非参数检验是通过检验总体分布情况来实现对总体参数的推断。 非参数检验法与参数检验法相比,特点可以归纳如下: (1)非参数检验一般不需要严格的前提假设; (2)非参数检验特别适用于顺序资料; (3)非参数检验很适用于小样本,并且计算简单; (4)非参数检验法最大的不足是没能充分利用数据资料的全部信息; (5 )非参数检验法目前还不能用于处理因素间的交互作用。 非参数检验的方法很多,分别适用于各种特点的资料。本节将介绍几种常用的非参数检验方法。 一.2检验 2 检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。 2 2 检验的方法主要包括适合性检验和独立性检验。 (一)2检验概述 2 是实得数据与理论数据偏离程度的指标。其基本公式为: 2 ( f0 f e)(公式11—9) f e 式中,f0 为实际观察次数,f e 为理论次数。 分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。观察公式可发现,如果实际观察

参数估计和假设检验习题解答

参数估计和假设检验习题 1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600 解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2 Z z α>,取0.05,α=26,n = 0.0250.9752 1.96z z z α===, 由检验统计量 1.25 1.96Z = ==<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为根,各台布机断头数的标准差为根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为根,标准差为根。问,新工艺上浆率能否推广(α= 解: 012112:, :,H H μμμμ≥< ( 3.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显著影响(α= 解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=,拒绝域为2 Z z α>,取0.0252 0.05, 1.96z z αα===, 100,n = 由检验统计量 3.33 1.96Z = ==>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响. 4.有一批产品,取50个样品,其中含有4个次品。在这样情况下,判断假设H 0:p ≤是否成立(α= 解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==, 50,n = 由检验统计量0.9733Z = ==<,接受H 0:p ≤. 即, 以95%的把握认为p ≤是成立的. 5.某产品的次品率为,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α= 解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n = ^ 0.950.05, 1.65z α=-=-,由检验统计量 400 1.5973i x np Z -= = =-∑>, 接受0:0.17H p ≥, 即, 以95%的把握认为此项新工艺没有显著地提高产品的质量. 6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)

参数估计和 假设检验区别联系

参数估计、假设检验及它们之间的关系(相同点、联系与区别) 统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 1.参数估计就是用样本统计量去估计总体的参数的真值,它的方法有点估计和区间估计两种。 点估计就是直接以样本统计量直接作为相应总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。 区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间是由样本统计量加减允许误差(极限误差)得到的。在区间估计中,由样本统计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。在其它条件相同的条件下,区间估计中置信度越高,置信区间越大。置信水平为1-a, a(显著性水平)为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05,0.1。置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。 一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。 (1)来自正态分布的样本均值,总体方差已知,不论抽取的是大样本还是小样本,均服从正态分布。 (2)总体不是正态分布,总体方差已知或未知,大样本的样本均值服从正态分布,小样本的不能进行参数估计。 (3)来自正态分布的样本均值,如果总体方差未知,原则上都按t 分布来处理(但在大样本的情况下,可近似按正态分布处理)。 2.假设检验假是根据样本统计量来检验对总体参数的先验假设是否成立,是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。

实验三-用EXCEL进行参数估计和假设检验

实验三-用EXCEL进行参数估计和假设检验

实验三用EXCEL进行参数估计和假设检验 一、用EXCEL进行区间估计 数据:某百货公司6月份各天的销售额数据如下:(单位:万元) 求在概率90%的保证下,顾客平均消费额的估计区间。 参数估计数据及结果: 从上面的结果我们可以知道,该月平均销售额的置信下限为270.23,置信上限为277.97。 二、用EXCEL进行假设检验

例题1:假设有A、B两个品牌的电池,现分别从这两个品牌电池中随机抽取10只进行检测,获得下表数据。它们的使用寿命方差相等为30,试问在0.1的显著性水平下,可否认为两个品牌的平均使用寿命存在显著差异? 据上,提出原假设:A、B两个品牌的电池使用寿命不存在显著差异, 备择假设:A、B两个品牌的电池使用寿命存在显著差异。 进行Z检验-双样本平均差检验: 得如下所示结果:

此次检验属于双尾检验,P=01101282872 > 显著性水平0.1,所以在0.1的显著性水平下不能拒绝原假设,即可以认为两个品牌的平均使用寿命不存在显著性差异。 例题2:用某种药物治疗9例再生障碍性贫血患者,治疗前后患者血红蛋白变化的数据如下表所示。问在0.05的显著性水平下,能否认为这种药物至少可以使血红蛋白数量增加15个单位? 提出原假设:这种药物不能使患者血红蛋白至少增加15个单位;备择假设:这种药物可以使患者的血红蛋白至少增加15个单位。由于总体平均差已知,选用t-检验:平均值的成对二样本分析:

得结果如下: 由于显著性水平为0.05大于P值0.00037558,因此要拒绝原假设,即可以认为这种药物至少能使血红蛋白数量增加15个单位。 例题3:某研究所试验出一批新品种,想知道新品种产量是否比老品种产量有显著提高,随机抽取新老品种产量各9个,数据如下(单位:千克)。试问,在0.05的显著性水平下,可否认为新品种比老品种的产量有显著提高?

参数估计和假设检验.doc

参数估计和假设检验 一. 参数估计 估计的原理: 在前面我们已经得到样本统计量的如下分布: (1)X :2 (,)n σμ (2) 2 2(1)2 n n s χσ-?: (3)μp (, )pq p n : (4)2 2 12 12121 2 ()(, )X X n n σσμμ--+ : (5)μ ?1122 121212 ()(,)p q p q p p p p n n --+: (6) 2 12 12 12222 (1,1)s F n n s σσ--: (7)当总体的方差2σ (1)n x t -: 对于事先确定的置信概率,我们可以构造一个不等式区间,利用这一不等式区间来进行估计,例如已知样本容量和样本均值以及总体的方差,要求以95%的置信概率来估计总体的均值,利用统计量 X :2 (, )n σμ,则我们知道X 落入μ± 这一区间的概率是95%, 也就是X μμ-≤≤+这一不等式成立的概率是95%,由 于在这一不等式中σ、X 、n 为以知,故可得出:

X X μ-≤≤+ 则估计完毕。 同样在知道样本容量及样本方差的情况下可以利用2 2(1) 2 n n s χσ-?:来对总体的方差进行估计 在知道样本容量和样本比例的情况下利用μp (,)pq p n :来对总体比例进行估计 利用2 212 12121 2 ()(, )X X n n σσμμ--+ :来估计12μμ- 利用μ ?1122 121212 ()(,)p q p q p p p p n n --+:来估计12p p - 利用 2 12 12 12222 (1,1)s F n n s σσ--:来估计2 122 σσ 在总体的方差2σ (1)n x t -:来估计μ 利用匹配样本来估计两个总体均值的差:见书P194页 样本容量的确定: 在估计总体的均值、比例和两个总体的均值之差和比例之差时,估计的误差E ,主要由置信概率所决定的区间长度确定的,例如在利用样本均值来估计总体均值时,假设置信概率为95%,则 利用这一等式,显然在E 、σ确定时,也就可以计算出n 。

相关文档
相关文档 最新文档