文档库 最新最全的文档下载
当前位置:文档库 › 非光滑小球的完全弹性斜碰

非光滑小球的完全弹性斜碰

非光滑小球的完全弹性斜碰
非光滑小球的完全弹性斜碰

弹簧类碰撞试题含答案

弹簧系统中的动量守恒问题 1 (选修3-5选做题) 如图所示,A、B、C三物块的质量均为m,置于光滑的水平台面上。B、C间夹有原已完全压紧而不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展。物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B分离,脱离弹簧后C的速度为2v0。求:(1) A、B碰后A的速度;(2)弹簧所释放的势能△E。 解:(1)对A、B、C由动量守恒定律得mv0=3mv A、B碰后A的速度为 (2)对A、B、C由动量守恒定律得3mv=2mv1+m×2v0

质量分别为m A=m C=2m和m B=m,A、B用细绳相连,中间有一压缩的弹簧(弹簧与滑块不栓接),开始时A、B以共同速度V0向右运动,C静止,某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三者的速度恰好相同。 求:(1)B与C碰撞前B的速度 (2)弹簧释放的弹性势能多大 解:(1)设三者最后的共同速度为,滑块A与B分开后的速度为,由动量守恒得: 三者动量守恒得: 得 所以(6分) (2)弹簧释放的弹性势能 (6分) 2、某宇航员在太空站内做了如下实验:选取两个质量分别为m A=0.1kg、m B=0.2kg的小球A、B和一根轻质短弹簧, 弹簧的一端与小球A粘连,另一端与小球B接触而不粘连.现使小球A和B之间 夹着被压缩的轻质弹簧,处于锁定状态,一起以速度V0=0.1m/s做匀速直线运动, 如图所示,过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原 直线运动,从弹簧与小球B刚刚分离开始计时,经时间t=3.0s,两球之间的距离增 加了S=2.7m,求弹簧被锁定时的弹性势能E p?

完全弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m1v1= (m1+m2) v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前 的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式 解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很 容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静 止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度+; +,即可得到上面的⑥⑦式。 另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度 v1- v2等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式,再结合①式可解得⑥⑦式。

弹性碰撞和完全非弹性碰撞专题训练

弹性碰撞和完全非弹性碰撞专题训练 1.在宇宙间某一个惯性参考系中,有两个可视为质点的天体A B 、,质量分别为m 和M ,开始时两者相距为0l ,A 静止,B 具有沿AB 连线延伸方向的初速度0v ,为保持B 能继续保持匀速直线运动,对B 施加一个沿0v 方向的变力F .试求: (1)A B 、间距离最大时F 是多少应满足什么条件 (2)从开始运动至A B 、相距最远时力F 所做的功. 2.如图3-4-14所示,有n 个相同的货箱停放在倾角为θ的斜面上,每个货箱长皆为L ,质量为m 相邻两货箱间距离也为L ,最下端的货箱到斜面底端的距离也为L ,已知货箱与斜面间的滑动摩擦力与最大静摩擦力相等,现给第一个货箱一初速度0v ,使之沿斜面下滑,在每次发生碰撞的货箱都粘在一起运动,当动摩擦因数为μ时,最后第n 个货箱恰好停在斜面 底端,求整个过程中由于碰撞损失的机械能为多少 3.如图3-4-15所示,质量0.5m kg =的金属盒AB ,放在光滑的水平桌面上,它与桌面间的动摩擦因数0.125μ=,在盒内右端B 放置质量也为0.5m kg =的 长方体物块,物块与盒左侧内壁距离为0.5L m =,物块与盒之间无摩擦.若在A 端给盒以水平向右的冲量1.5N s ?,设盒在运动过程中与物块碰撞时间极短,碰撞时没有机械能损失.(210/g m s =)求: (1)盒第一次与物块碰撞后各自的速度; (2)物块与盒的左端内壁碰撞的次数; (3)盒运动的时间; 4.宇宙飞船以4010/v m s =的速度进入均匀的宇宙微粒尘区,飞船每前进310s m =,要与410n =个微粒相撞,假如每个微粒的质量为7210m kg -=?,与飞船相撞后吸附在飞船上,为使飞船的速率保持不变,飞船的输出功率应为多大 5.光滑水平面上放着质量1A m kg =的物块A 与质量2B m kg =的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A B 、间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能49p E J =,在A 、B 间系一轻 质细绳,细绳长度大于弹簧的自然长度,如图3-4-16所示。放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径0.5R m =,B 恰能到达最高点C 。取210/g m s =,求: (1)绳拉断后瞬间B 的速度B v 的大小; (2)绳拉断过程绳对B 的冲量I 的大小; (3)绳拉断过程绳对A 所做的功W ; 6.如图3-4-17所示,一倾角为0 45θ=的斜面固定于地面,斜面顶端离地面的高度01h m =,斜面底端有一 垂直于斜而的固定挡板。在斜面顶端自由释放一质量0.09m kg =的小物块(视为质点)。小物块与斜面之间的动摩擦因数0.2μ=,当小物块与挡板碰撞后,将以原速返回。重力加 速度2 10/g m s =。在小物块与挡 板的前4次碰撞过程中,挡板给予小物块的总冲量是多少 7.如图3-4-18所示中有一个竖直固定在地面的透气圆筒,筒中有一劲度为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块,圆筒内壁涂有一层新型智能材料——ER 流体,它对滑块的阻力可调.起初,滑块静止,ER 流体对其阻力为0,弹簧的长度为L ,现有一质量也为m 的物体从距地面2L 处自由落下,与滑块碰 撞后粘在一起向下运动.为保证滑块 做匀减速运动,且下移距离为2mg k 时速度减为0,ER 流体对滑块的阻力须随滑块下移而变.试求(忽略空气阻力): (1)下落物体与滑块碰撞过程中系统损失的机械能; (2)滑块向下运动过程中加速度的大小; (3)滑块下移距离d 时ER 流体对滑块阻力的大小. 8.某同学利用如图3-4-19所示的装置验证动量守恒定律。图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1:2。当两摆均处于自由静止状态时,其侧面刚好接触。向右上方拉动B 球使其摆线伸直并与竖直方向成045角,然后将其由静止释放。结果观察到两摆球粘在一起摆动,且最大摆角成030,若本实验允许的最大误差为4%±,此实验是否成功地验证了动量守恒定律 9.如图3-4-20(a )所示,在光滑绝缘水平面的AB 区域内存在水平向右的电场,电场强度E 随时间的变化如图3-4-20(b )所示.不带电的绝缘小球2P 静止在O 点.0t =时,带正电的小球1P 以速度0t 从 A 点进入A B 区域,随后与2P 发生正碰后反弹,反弹速度大小是碰前的2 3 倍,1P 的质量为1m ,带电量为q ,2P 的 质量215m m =,A 、O 间距为0L ,O 、B 间距043 L L =. 已知 2 000100 2,3qE v L T m L t ==. 图 图 3-4-16 图 3-4-18 图 3-4-17 图 3-4-15 图 3-4-14

弹簧碰撞模型

模型分析 1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。 不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。 3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。 题型1.弹簧直接连接的两物体间的作用. 【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求: (1)质量为3m 的物体最终的速度; (2)弹簧的这个过程中做的总功. 【答案】(1)032v (2) 203 2mv 【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得: ()100 323v m v m v m m ?+?=+ 所以 013 2v v = (2)由能量守恒定律得:()()202021321221321v m m v m v m E P +?-?+??= 所以弹性势能:2032mv E P =

【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状态及弹簧弹开过程的能量转化。 【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M=3kg 的小车A 静止在水平面上,小车上有一质量m=lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。求: ①从解除锁定到小物块与小车右壁发生第一次碰撞,小车移动的距离; ②小物块与小车右壁发生碰撞后,小物块和小车各自的速度大小和方向。 【答案】①0.1m ②小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 22211122P E mv Mv = + 解得s /m 3s /m 121-==v v 或s /m 3s /m 1-' 2'1==v v 碰后小车速度方向向右为1m/s ,小物块速度方向向左为3m/s 【点评】本题考查动量守恒定律、能量守恒定律的结合应用,明确研究的系统和初末状态是正确解答的关键。 4.滑块a 、b 沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:

1.弹性碰撞球

实验一 弹性碰撞 【仪器介绍】 如图1-1所示,弹性碰撞演示仪由 底座、钢球、支架、拉线、拉线调节螺 丝等组成。每个钢球的大小和质量均相 同。 【操作与现象】 若干个具有相同质量和半径的小球 悬挂在同一高度上。当静止时,调节每 个小球的悬线长度,确保所有小球在一 条直线上。 将第一个小球拉起,然后释放,让其碰撞其它静止的小球,结果原先被拉起的小球会突然静止,而原先静止的最后一个小球会接过第一个球的速度,运动到第一个小球被拉起的高度,然后落下,如此来回往复。 同理,可以拉起两个、三个…小球进行类似的实验。 注意:在实验过程中使小球的质心始终处于同一平面,否则会发生非对心碰撞从而影响到演示实验的效果;小球拉起的幅度不宜太大(建议摆角小于30°),以免发生激烈碰撞而使拉线断裂。 【原理解析】 设两个小球的质量分别为1m 和2m ,它们在碰撞前的速度为10v 和20v ,对心碰撞后的速度为1v 和2v ,根据动量守恒定律有: 2211202101v m v m v m v m +=+ (1-1) 当两球发生完全弹性碰撞,则机械能守恒定律有: 222211********* 1212121v m v m v m v m +=+ (1-2) 若其中一个球2m 静止,即020=v 时,可得碰撞后的速度为 ()21101221102112m m v m v m m v m m v +=+-= (1-3) 如果两个小球的质量相等,即21m m =,则由式(1-3)可得 图1-1 弹性碰撞演示仪 底座 钢球 支架 拉线 拉线调节螺丝

102v v = 0201==v v 由此可知,质量相等的两个小球相碰后,第一个小球静止,第二个球获得第一个球的速度之后继续去碰撞第三个小球,以此类推,实现小球间的动量和能量的传递。事实上,由于小球间的碰撞并非理想的弹性碰撞,会有一定的能量损失,所以最后小球还是会停下来。 【知识拓展】 根据动量守恒定律,当一个系统向后高速射出一个小物体时,该系统会获得与小物体相同大小、但方向相反的动量,即系统会获得向前的速度。如果系统不断向后射出小物体,则系统就会不断向前加速。火箭就是利用了动量守恒原理不断推进的。在火箭内装置了大量的燃料,燃料烧后会产生高温高压的气体,通过火箭的尾部不断向后高速喷出,从而使火箭不断向前加速。

小球碰弹簧模型

基本情景一一小球落弹簧 如图所示,地面上竖立着一轻质弹簧,小球从其正上方某一高度处自由下落到弹簧上?从小球刚接触 弹簧到弹簧被压缩至最短的过程中(在弹簧的弹性限度内),则 问题一:力与运动 A .合力(加速度)变大,速度变大 B .合力(加速度)变小,速度变大 C ?合力(加速度)先变小后变大,速度先变大后变小 D ?合力(加速度)先变大后变小,速度先变小后变大题目目的解读与小结: 问题二:超重和失重 A .小球先处于失重后处于超重 B ?小球一直处于失重状态 C .小球先处于超重后处于失重题目目的D.小球反弹与弹簧脫离瞬间处于完全失重重状态解读与小结: 冋题三:功能尖系和能量守恒 (1)从功能尖系角度解释以下问题 ①.小球的动能先增大后减少 ②.弹簧的弹性势能逐渐增大 ③.小球的重力势能逐渐减少 ⑵从能量守恒角度回答以下问题 ①.小球重力势能和弹簧弹性势能的总和如何变化 ②.小球动能和弹簧弹性势能的总和如何变化 ③.小球动能和重力势能总和如何变化 ④?小球重力势能的减少量与弹簧弹性势能的增加量谁大题目目的解读与小结: 问题四:动量定理 1 ?小球从最高点开始下落至弹簧到最低点的过程中,弹簧对小球的冲量与重力的冲量哪个大? 2.小球从接触弹簧开始至弹簧到最低点的过程中,弹簧对小球的冲量与重力的冲量哪个大?题目目的解读与小结:

等效模型练习 1 ?如图所示,一轻质弹簧左端固定在墙上, 右端系一质量为m 的木块,放在水平地面上,木块在B 点时弹 簧无形变。今将木块向右拉至A 点,由静止释放后,木块运动到 C 点速度变为零, ① 若木块与水平地面的动摩擦因数为零,分析木块从 A 运动到C 的过程中加速度、速度如何变化? ② 若木块与水平地面的动摩擦因数恒定,分析木块从 A 运动到C 的过程中加速度、速度如何变化? 2 ?蹦极”是一项非常有意义的体育运动,某人身系弹性绳自高空 P 点自由下落,a 点是弹性绳 的原长位置,c 是人所到达的最低点,b 是人静止地吊着的平衡位置,人在从 P 点落下到最低点 的过程中() A ?从P 到a 运动过程中,人处于完全失重状态 B. 从a 到b 运动过程中,人处于失重状态 C. 从b 到c 运动过程中,人处于超重状态 D. 若人在绳的弹力作用下可以向上运动,则从 3?—升降机在箱底装有若干个弹簧, 如图所示。 设在一次事故中,升降机的吊索在空中断裂,() 忽略摩擦力, 则升降机从弹簧下端触地直到最低点的过程中 A ?升降机的加速度不断增大 B ?先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正 功,弹力做的负功 总值等于重力做的正功总值 C ?先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正 功,弹力做的负功 总值大于重力做的正功总值 D ?升降机重力势能减小,弹性势能增加,重力势能和弹性势能之和保持不变 4?应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入 弼I ]如平伸手掌托 物体,由静止开始竖直向上运动,直至将物体抛出。对此现象分析正确的是 A ?手托物体向上运动的过程中,物体始终处于超重状态 B ?手托物体向上运动的过程中,物体始终处于失重状态 C ?在物体离开手的瞬间,物体的加速度大于重力加速度 D ?在物体离开手的瞬间,手的加速度大于重力加速度 5??—粒钢珠从静止状态开始自由下落 ,然后陷入泥潭中?若把在空中下落的过程称为过程I ,进入泥潭直 到 c 向b 运动过程中,人处于超重状态

弹性碰撞模型及应用(一)

弹性碰撞模型及其应用(1) 动量和能量最常出现的问题是碰撞问题。碰撞问题可分为两大类:弹性碰撞和非弹性碰撞。非弹性碰撞又分为一般非弹性碰撞和完全非弹性碰撞,我们重点讨论一下弹性碰撞。 弹性碰撞特点:(1)碰撞前后动量、动能都守恒;(2)碰撞过程中系统机械能守恒。严格的弹性碰撞在自然界中是很难找到的,原因是碰撞中总会有内能的生成,但是常见的弹性球、光滑的钢球及分子、原子等微观粒子的碰撞都可以看做是弹性碰撞。掌握这一模型,可轻松解决这一类题,切实提高学生推理能力和分析解决问题能力。 (一)弹性碰撞模型 已知A 、B 两个钢性小球质量分别是m 1、m 2,小球B 静止在光滑水平面上,A 以初速度v 0与小球B 发生弹性碰撞,求碰撞后小球A 的速度v 1, 物体B 的速度v 2大小和方向 解析:取小球A 初速度v 0的方向为正方向,因发 生的是弹性碰撞,碰撞前后动量守恒、动能不变有: m 1v 0= m 1v 1+ m 2v 2 ① 2222112012 12121v m v m v m += ② 由①②两式得:210211)(m m v m m v +-= , 2 10122m m v m v += 结论:(1)当m 1=m 2时,v 1=0,v 2=v 0,显然碰撞后A 静止,B 以A 的初速度运动,两球速度交换,并且A 的动能完全传递给B ,因此m 1=m 2也是动能传递最大的条件; (2)当m 1>m 2时,v 1>0,即A 、B 同方向运动,因2121)(m m m m +- <2 112m m m +,所以速度大小v 1<v 2,即两球不会发生第二次碰撞; 若m 1>>m 2时,v 1= v 0,v 2=2v 0 即当质量很大的物体A 碰撞质量很小的物体B 时,物体A 的速度几乎不变,物体B 以2倍于物体A 的速度向前运动。 (3)当m 1<m 2时,则v 1<0,即物体A 反向运动。 当m 1<

[完全]弹性碰撞后的速度公式资料

[完全]弹性碰撞后的 速度公式

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m 1v 1 =m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m 1v 1 = (m1+m2)v共 解出v共=m1v1/(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大 一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住, ⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相 对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤ 式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m 1v 1 +m2v2=m1v1'+m2v2'① ② 由 ①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等 效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。 因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度 +;+,即可得到上面的⑥⑦式。

完全非弹性碰撞动能损失最大的证明方法

完全非弹性碰撞动能损失最大的证明方法 方法一:用柯尼希定理很容易证明 (柯尼希定理:一个质点系的总动能,等于它的质心动能与各质点相对于质心的动能之和。E=E1+E2) 在碰撞前,系统的总动能E 等于质心动能与各质点相对于质心的动能之和。而在碰撞过程中以及碰撞以后,两物体的质点的速度是不变的,不管碰撞是弹性的还是非弹性的都是如此。因为碰撞中两物体之间的作用力,是系统内部的力,即内力,是不能改变系统总动量的,当然也不能改变系统质心的速度,所以不能改变质心的动能。所以,不管是什么类型的碰撞,都不能改变质心动能E1。 在碰撞以后,如果两物体粘在一起,动能E2为0,即完全非弹性碰撞. 所以碰撞为完全非弹性碰撞时,E=E1.系统损失机械能最多. 方法二:数学计算法 首先,两个都有速度太难算了,不如引入相对速度v(v=v1-v2).则原题简化为A 以v 的速度向静止的B 运动 根据动量守恒定律:b a v m v m v m 211+= 根据能量守恒定律,则有E mv mv mv b a ++=2222 12121 (E 为能量损失) 消去vb,化简得:02)(2)(1 22121221=+---+m Em v m m vv m v m m a a 关于a v 的二次方程有解,则0≥?即:) (2212 21m m v m m E +≤ 当取等号时,E 最大.2 11m m v m v a += 代入动量守恒式得:vb=va 所以此时为完全非弹性碰撞. 算得好辛苦啊!!! E<或=m1m2v^2/(2m1+2m2) 当取等号时,E 最大. 下面开始讲如何算出:va=m1v/(m1+m2) 把E=m1m2v^2/(2m1+2m2)代入 (m1+m2)va^2-2m1vva-(m2-m1)v^2+2Em2/m1=0 化简得:(m1+m2)va^2-2m1vva+(m1v)^2/(m1+m2)=0 这步应该不难得到,带进去时发现有两项通分后可以使方程大大简化. 接着对该方程两边同乘以(m1+m2)得: [(m1+m2)va]^2-2(m1+m2)m1vva+(m1v)^2=0 观察发现它竟然是一个完全平方式!! [(m1+m2)va-m1v]^2=0

[完全]弹性碰撞后的速度公式

[完全]弹性碰撞后的 速度公式 -CAL-FENGHAI.-(YICAI)-Company One1

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v ,由动量守恒 共 定律得: m1v1=(m1+m2)v共 =m1v1/(m1+m2)。而两球从球心相距最近到分开过程中,球m2继解出v 共 续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一 倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验 中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相 对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤ 式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可 等效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度 +;+,即可得到上面的⑥⑦式。 另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近 的相对速度v1-v2等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式,再结合①式可解得⑥⑦式。

一个完全非弹性碰撞的实用推论(参照类别)

一个完全非弹性碰撞的实用推论 一、 在动量守恒模块的学习中,高中阶段主要分为完全弹性碰撞和完全非弹性碰撞这两种基本题型,解题用到的规律是动量守恒和能量守恒,完全弹性碰撞中,对于运动物体碰静止物体的模型,我们可以把v 1=2121m m m m +-v 0 v 2=2 112m m m +v 0, 作为推论,由此避免动量守恒和能量守恒方程组的联立,从而减小了运算量,那么在完全非弹性碰撞中,我们是否也能导出一个结论性的推论从而避免联立方程组,简化计算呢? 二、结论推导 在处理可以等效成“完全非弹性碰撞”模型的问题时,我们发现:动能的损失是连接已知量和待求量的桥梁。如果通过动量守恒和能量守恒这两大基本规律推导出动能损失的一般表达式,作为处理完全非弹性碰撞模型的一个实用推论,那么此推论便可以对我们的解题有所帮助。 推导过程如下: 在光滑水平面上,滑块A 、B 发生完全非弹性碰撞,滑块A 质量为m 1,速度为v 1,滑块B质量为m 2,速度为v 2, v 1 v 2方向相同且在一条直线上,v1>v2 。 动量守恒:m 1 v 1 +m 2 v 2= (m 1+ m 2)v ① 能量守恒:21m 1 v 12 +21m 2 v 22=2 1 (m 1+ m 2)v 2+ΔE ② 将①式代入②式ΔE= 21m 1 v 12 +21m 2 v 22-)(2)(21221m m m m v ++ 上式合并同类项得(读者可自行推导) ΔE=)2()(2212221212 1v v v v m m m m -++ 动能损失ΔE=221212 1)()(2v v m m m m -+ 上式中,“v 1-v 2”表示碰前两滑块的相对速度, 212 1m m m m +是两质量的调合平均值,我们把它 叫做折合质量。 三、结论应用 从此结论中可以看出,当两物体发生完全非弹性碰撞时,动能的损失可以写成ΔE=21 212 1m m m m +u 2, 其中u 2 是两滑块相对速度绝对值的平方。这个损失的动能可以转化为焦耳热,也可以转化为弹性势能,重力势能。当题目可以等效成“完全非弹性碰撞”模型(当题目中出现“弹簧达到最大压缩量时” “求物块上升的最大高度” “物块恰好不从木板上掉下”,“两物体恰好共速”“两物块粘连在一起运动”时一般等效成完全非弹性碰撞模型)时,一般可利用此结论求解或者简化运算。 例一、结论的简单应用 物块A 以初速度v 滑到小车B 上运动,A 质量为m 1,B 质量为m 2,

小球碰弹簧模型

基本情景------小球落弹簧 如图所示,地面上竖立着一轻质弹簧,小球从其正上方某一高度处自由下落到弹簧上.从小球刚接触弹簧到弹簧被压缩至最短的过程中(在弹簧的弹性限度内),则 问题一:力与运动 A.合力(加速度)变大,速度变大 B.合力(加速度)变小,速度变大 C.合力(加速度)先变小后变大,速度先变大后变小 D.合力(加速度)先变大后变小,速度先变小后变大 题目目的解读与小结: 问题二:超重和失重 A.小球先处于失重后处于超重 B.小球一直处于失重状态 C.小球先处于超重后处于失重 D.小球反弹与弹簧脱离瞬间处于完全失重重状态 题目目的解读与小结: 问题三: 功能关系和能量守恒 (1)从功能关系角度解释以下问题 ①.小球的动能先增大后减少—— ②.弹簧的弹性势能逐渐增大—— ③.小球的重力势能逐渐减少—— (2)从能量守恒角度回答以下问题 ①.小球重力势能和弹簧弹性势能的总和如何变化 ②.小球动能和弹簧弹性势能的总和如何变化 ③.小球动能和重力势能总和如何变化 ④.小球重力势能的减少量与弹簧弹性势能的增加量谁大 题目目的解读与小结: 问题四:动量定理 1.小球从最高点开始下落至弹簧到最低点的过程中,弹簧对小球的冲量与重力的冲量哪个大 2.小球从接触弹簧开始至弹簧到最低点的过程中,弹簧对小球的冲量与重力的冲量哪个大 题目目的解读与小结:

等效模型练习 1.如图所示,一轻质弹簧左端固定在墙上,右端系一质量为m的木块,放在水平地面上,木块在B点时弹簧无形变。今将木块向右拉至A点,由静止释放后,木块运动到C点速度变为零, ①若木块与水平地面的动摩擦因数为零,分析木块从A运动到C的过程中加速度、速度如何变化 ②若木块与水平地面的动摩擦因数恒定,分析木块从A运动到C的过程中加速度、速度如何变化 C B A 2.“蹦极”是一项非常有意义的体育运动,某人身系弹性绳自高空P点自由下落,a点是弹性绳 的原长位置,c是人所到达的最低点,b是人静止地吊着的平衡位置,人在从P点落下到最低点 的过程中() A.从P到a运动过程中,人处于完全失重状态 B.从a到b运动过程中,人处于失重状态 C.从b到c运动过程中,人处于超重状态 D.若人在绳的弹力作用下可以向上运动,则从c向b运动过程中,人处于超重状态 3.一升降机在箱底装有若干个弹簧,如图所示。设在一次事故中,升降机的吊索在空中断裂,忽略摩擦力,则升降机从弹簧下端触地直到最低点的过程中() A.升降机的加速度不断增大 B.先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功, 弹力做的负功总值等于重力做的正功总值 C.先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功, 弹力做的负功总值大于重力做的正功总值 D.升降机重力势能减小,弹性势能增加,重力势能和弹性势能之和保持不变 4.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出。对此现象分析正确的是A.手托物体向上运动的过程中,物体始终处于超重状态 B.手托物体向上运动的过程中,物体始终处于失重状态 C.在物体离开手的瞬间,物体的加速度大于重力加速度 D.在物体离开手的瞬间,手的加速度大于重力加速度 5..一粒钢珠从静止状态开始自由下落,然后陷入 泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则( ) A.过程Ⅰ中钢珠动量的改变量等于重力的冲量; B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中 重力冲量的大小;

完全弹性碰撞

§3-7 完全弹性碰撞 完全非弹性碰撞 一、碰撞(Collision ) 1.基本概念: 碰撞,一般是指两个或两个以上物体在运动中相互靠近,或发生接触时,在相对较短的时间内发生强烈相互作用的过程。 碰撞会使两个物体或其中的一个物体的运动状态发生明显的变化。 碰撞过程一般都非常复杂,难于对过程进行仔细 分析。但由于我们通常只需要了解物体在碰撞前后运动状态的变化,而对发生碰撞的物体系来说,外力的作用又往往可以忽略,因而可以利用动量、角动量以及能量守恒定律对有关问题求解。 2.特点: 1)碰撞时间极短 2)碰撞力很大,外力可以忽略不计,系统动量守恒 3)速度要发生有限的改变,位移在碰撞前后可以忽略不计 3.碰撞过程的分析: 讨论两个球的碰撞过程。碰撞过程可分为两个过程。开始碰撞时,两球相互挤压,发生形变,由形变产生的弹性恢复力使两球的速度发生变化,直到两球的速度变得相等为止。这时形变得到最大。这是碰撞的第一阶段,称为压缩阶段。此后,由于形变仍然存在,弹性恢复力继续作用,使两球速度改变而有相互脱离接触的趋势,两球压缩逐渐减小,直到两球脱离接触时为止。这是碰撞的第二阶段,称为恢复阶段。整个碰撞过程到此结束。 4.分类:根据碰撞过程能量是否守恒 1)完全弹性碰撞:碰撞前后系统动能守恒(能完全恢复原状); 2)非弹性碰撞:碰撞前后系统动能不守恒(部分恢复原状); 3)完全非弹性碰撞:碰撞后系统以相同的速度运动(完全不能恢复原状)。 二、完全弹性碰撞(Perfect Elastic Collision ) 在碰撞后,两物体的动能之和(即总动能)完全没有损失,这种碰撞叫做完全弹性碰撞。 解题要点:动量、动能守恒。 问题:两球m 1,m 2对心碰撞,碰撞前 速度分别为2010,v v ,碰撞后速度变为21,v v 动量守恒 2021012211v m v m v m v m (1) 动能守恒 2 20221012222112 1212121v m v m v m v m (2) 由(1) 22021011v v m v v m (3) 由(2) 2 2 2202210211v v m v v m (4) 由(4)/(3) 202101v v v v

(完全)弹性碰撞后的速度公式

如何巧记弹性碰撞后得速度公式 一、“一动碰一静”得弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1得小球,以速度v1与原来静止得质量为m 2得小球发生对心弹性碰撞,试求碰撞后它们各自得速度? 图1 设碰撞后它们得速度分别为v1'与v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式得右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时得共同速度v共,由动量守恒定律得: m1v1= (m1+m2) v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前得弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好就是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式得分子容易写成m2-m1,则可根据质量m1得乒乓球以速度v1去碰原来静止得铅球m2,碰撞后乒乓球被反弹回,因此v1'应当就是负得(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”得实验中,要求入射球得质量m1大于被碰球得质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再就是原来得v1'了。 另外,若将上面得⑤式变形可得:,即碰撞前两球相互靠近得相对速度v1-0等于碰撞后两球相互分开得相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”得弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2得两球发生对心弹性碰撞,碰撞前速度分别为v1与v2,求两球碰撞后各自得速度? 图2 设碰撞后速度变为v1'与v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦

完全非弹性碰撞动能损失最大的证明

完全非弹性碰撞动能损失最大的证明 (利用初等函数证明) 在碰撞中,系统动量守恒。但动能损失不一样。 完全弹性碰撞,碰撞前后,系统总动能不损失。 非弹性碰撞,损失一部分动能。 两个物体碰撞后,不分开,以同一速度运动,叫做完全非弹性碰撞。此时动能损失最大。下面是证明过程。 条件:质量m 1,速度v 1,与质量m 2,速度v 2物体发生碰撞,碰后,m 1速度变为v 1/,m 2速度变为v 2/。 由动量守恒:m 1 v 1+m 2 v 2=m 1 v 1/+m 2 v 2/……(1) 损失动能:)2 121()212 1(2/222/11222211v m v m v m v m E +-+=?……(2) 令p = m 1 v 1+m 2 v 2 ,22221112121v m v m E +=,2/222/1122121v m v m E +=,p 和E 1确定,只需证明E 2最小的条件,即可得到最大的动能损失的条件。 利用(1)式可得:2/11/2 m v m p v -=……(3) 将(3)带入E 2,得:2 2 /112/1211222)(m p v pm v m m m E +-+=,可见分子部分为关于v 1/的函数。令2/112 /1211/12)()(p v pm v m m m v f +-+=,只需求出)(/1v f 的最小值即可。二次函数开口向上,顶点坐标值对应)(/1v f 最小。 即当2 1/12m m p a b v +=-=时,)(/1v f 最小,则此时E 2最小,△E 最大。 将v 1/带入(1)式得:2 1/1/2m m p v v +==。 即:碰撞后两物体不分开以相同速度运动,损失的动能最大。 如果学习了微积分,可以利用求导更容易得到证明。此处略。

完全非弹性碰撞模型及其应用

完全非弹性碰撞模型及其 应用 Prepared on 22 November 2020

作者E-mail:Tel : “完全非弹性碰撞”模型及其应用 湖北省沙市中学刘军434000 在高中物理学习中,面对浩如烟海的习题,学生只有做好题后总结,把握某一类型问题的共同特征和遵循的共同规律,才能做到事半功倍,以一挡十.在习题教学中,教师则不仅要引导学生善于从具体问题的分析中抽象出其所适用的一般模型和遵循的基本规律,而且要引导学生善于结合具体问题的特殊条件,灵活地运用模型和规律.下面以“完全非弹性碰撞模型”为例,在分析不同情景问题时,联想模型,通过类比和等效的方法,从而抓住问题的物理本质,使问题迅速得到解决. 一、“完全非弹性碰撞”模型 如图1,质量为1m 、2m 的两大小相同的球分别以速度1v 、2v 在光滑的水平面上沿一直线运动,其中12>v v ,两球碰撞后粘合在一起以速度v 一起运动. 系统碰撞前后动量守恒有: v m m v m v m )+(=+212211. 碰撞后系统动能损失:221222211)(2 1-2121v m m v m v m E k ++=?. 上面就是典型的“完全非弹性碰撞”模型,在一些力学综合问题中,有很多两物体间的相互作用过程就与上面两球的碰撞过程类似,具有以下共同特点:①相互作用后两物体具有共同速度;②作用前后系统动量守恒(或在某一方向守恒);③作用后系统有动能损失,损失的动能转化为其它形式的能. 图1 m

二、“类完全非弹性碰撞”实例分析 1.物块未滑落木板 例1 如图2所示,质量为M 的平板小车放在光滑水平面上,平板右端上放有质量为m 的木块,它们之间的动摩擦因数为μ, 现使平板小车和木块分别向右和向左运动,初速度大 小均为0v ,设平板足够长,且M >m ,求木块相对平 板右端滑行的距离。 解析:木块在小车上的运动分两阶段:首先,木块和小车都做匀减速运动,木块速度先减为零,木块速度减为零时,小车仍有向右速度;之后,木块开始向右做匀加速运动,小车继续向右做匀减速运动,木块相对小车仍在远离其右端,直至木块与小车速度相等后,二者一起向右匀速运动. 设木块与小车的最终速度为v ,以向右为正,由动量守恒定律有: v m M mv Mv )(00+=-① 设物块相对小车右端滑行距离为△S ,因木块相对小车无往复运动,则由功能关系有: 22020)(2 12121v m M Mv mv s mg +-+=?μ② 联立①、②解得:20)(2v g M m M s +=?μ. 简评:此题中两物体间通过摩檫力发生相互作用,最终两物体具有共同速度,系统损失的动能转化为系统内能. 2.子弹未打穿木块 例2 质量为M 的木块被固定在光滑水平面上,一颗质量为m 的子弹以初速0v 水平飞来穿透木块后的速度变为2 0v ,现使木块不固定,可以在光滑水平面图2

相关文档
相关文档 最新文档