文档库 最新最全的文档下载
当前位置:文档库 › 数据结构实验一 实验报告

数据结构实验一 实验报告

数据结构实验一 实验报告
数据结构实验一 实验报告

班级:姓名:学号:

实验一线性表的基本操作

一、实验目的

1、掌握线性表的定义;

2、掌握线性表的基本操作,如建立、查找、插入和删除等。

二、实验内容

定义一个包含学生信息(学号,姓名,成绩)的顺序表和链表(二选一),使其具有如下功能:

(1) 根据指定学生个数,逐个输入学生信息;

(2) 逐个显示学生表中所有学生的相关信息;

(3) 根据姓名进行查找,返回此学生的学号和成绩;

(4) 根据指定的位置可返回相应的学生信息(学号,姓名,成绩);

(5) 给定一个学生信息,插入到表中指定的位置;

(6) 删除指定位置的学生记录;

(7) 统计表中学生个数。

三、实验环境

Visual C++

四、程序分析与实验结果

#include

#include

#include

#include

#define OK 1

#define ERROR 0

#define OVERFLOW -2

typedef int Status; // 定义函数返回值类型

typedef struct

{

char num[10]; // 学号

char name[20]; // 姓名

double grade; // 成绩

}student;

typedef student ElemType;

typedef struct LNode

{

ElemType data; // 数据域

struct LNode *next; //指针域

}LNode,*LinkList;

Status InitList(LinkList &L) // 构造空链表L {

L=(struct LNode*)malloc(sizeof(struct LNode)); L->next=NULL;

return OK;

}

Status GetElem(LinkList L,int i,ElemType &e) // 访问链表,找到i位置的数据域,返回给 e

{

LinkList p;

p=L->next;

int j=1;

while(p&&j

{

p=p->next;

++j;

}

if(!p||j>i) return ERROR;

e=p->data;

return OK;

}

Status Search(LNode L,char str[],LinkList &p) // 根据名字查找

{

p=L.next;

while(p)

{

if(strcmp(p->https://www.wendangku.net/doc/5d5481213.html,,str)==0)

return OK;

p=p->next;

}

return ERROR;

}

Status ListInsert(LinkList L,int i,ElemType e) // 在i个位置插入某个学生的信息{

LinkList p,s;

p=L;

int j=0;

while(p&&j

{

p=p->next;

++j;

}

if(!p||j>i-1) return ERROR;

s=(struct LNode*)malloc(sizeof(LNode));

s->data=e;

s->next=p->next;

p->next=s;

return OK;

}

Status ListDelete(LinkList p,int i) // 删除i位置的学生信息{

int j=0;

while((p->next)&&(j

{

p=p->next;

++j;

}

if(!(p->next)||(j>i-1)) return ERROR;

LinkList q;

q=p->next;

p->next=q->next;

delete q;

return OK;

}

void Input(ElemType *e)

{

printf("姓名:"); scanf("%s",e->name);

printf("学号:"); scanf("%s",e->num);

printf("成绩:"); scanf("%lf",&e->grade);

printf("输入完成\n\n");

}

void Output(ElemType *e)

{

printf("姓名:%-20s\n学号:%-10s\n成绩:%-10.2lf\n\n",e->name,e->num,e->grade);

}

int main()

{

LNode L;

LinkList p;

ElemType a,b,c,d;

printf("\n********************************\n\n");

puts("1. 构造链表");

puts("2. 录入学生信息");

puts("3. 显示学生信息");

puts("4. 输入姓名,查找该学生");

puts("5. 显示某位置该学生信息");

puts("6. 在指定位置插入学生信息");

puts("7. 在指定位置删除学生信息");

puts("8. 统计学生个数");

puts("0. 退出");

printf("\n********************************\n\n"); int x,choose=-1;

while(choose!=0)

{

puts("请选择:");

scanf("%d",&choose);

switch(choose)

{

case 1:

if(InitList(p))

printf("成功建立链表\n\n");

else

printf("链表建立失败\n\n");

break;

case 2:

printf("请输入要录入学生信息的人数:");

scanf("%d",&x);

for(int i=1;i<=x;i++)

{

printf("第%d个学生:\n",i);

Input(&a);

ListInsert(&L,i,a);

}

break;

case 3:

for(int i=1;i<=x;i++)

{

GetElem(&L,i,b);

Output(&b);

}

break;

case 4:

char s[20];

printf("请输入要查找的学生姓名:");

scanf("%s",s);

if(Search(L,s,p))

Output(&(p->data));

else

puts("对不起,查无此人");

puts("");

break;

case 5:

printf("请输入要查询的位置:");

int id1;

scanf("%d",&id1);

GetElem(&L,id1,c);

Output(&c);

break;

case 6:

printf ("请输入要插入的位置:");

int id2;

scanf("%d",&id2);

printf("请输入学生信息:\n");

Input(&d);

if(ListInsert(&L,id2,d))

{

x++;

puts("插入成功");

puts("");

}

else

{

puts("插入失败");

puts("");

}

break;

case 7:

printf("请输入要删除的位置:");

int id3;

scanf("%d",&id3);

if(ListDelete(&L,id3))

{

x--;

puts("删除成功");

puts("");

}

else

{

puts("删除失败");

puts("");

}

break;

case 8:

printf("已录入的学生个数为:%d\n\n",x);

break;

}

}

printf("\n\n谢谢您的使用,请按任意键退出\n\n\n"); system("pause");

return 0;

}

用户界面:

(1)根据指定学生个数,逐个输入学生信息:

(2)逐个显示学生表中所有学生的相关信息:

(3)根据姓名进行查找,返回此学生的学号和成绩:

(4)根据指定的位置可返回相应的学生信息(学号,姓名,成绩):

(5)给定一个学生信息,插入到表中指定的位置:

(6)删除指定位置的学生记录:

(7)统计表中学生个数:

五、实验总结

数据结构是一门专业技术基础课。它要求学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据选择适当的逻辑结构,存储结构及相应的算法,并初步掌握算法的时间分析和空间分析技术。不仅要考虑具体实现哪些功能,同时还要考虑如何布局,这次的实验题目是根据我们的课本学习进程出的,说实话,我并没有真正的读懂书本的知识,所以刚开始的时候,感到很棘手,于是又重新细读课本,这一方面又加强了对书本的理解,在这上面花费了一些心血,觉得它并不简单,是需要花大量时间来编写的。。在本次实验中,在程序构思及设计方面有了较大的锻炼,能力得到了一定的提高。

数据结构实验

实验2 查找算法的实现和应用?实验目的 1. 熟练掌握静态查找表的查找方法; 2. 熟练掌握动态查找表的查找方法; 3. 掌握hash表的技术. ?实验内容 1.用二分查找法对查找表进行查找; 2.建立二叉排序树并对该树进行查找; 3.确定hash函数及冲突处理方法,建立一个hash表并实现查找。 程序代码 #include using namespace std; int main() { int arraay[10]={1,2,3,4,5,6,7,8,9,10}; int binary_search(int a[10],int t); cout<<"Enter the target:"; int target; cin>>target; binary_search(arraay,target); return 0; } int binary_search(int a[10],int t) { int bottom=0,top=9; while(bottom

cout<<"Not present!"; } return 0; } 结果 二叉排序树 #include #include #include using namespace std; typedef int keyType; typedef struct Node { keyType key; struct Node* left; struct Node* right; struct Node* parent; }Node,*PNode; void inseart(PNode* root, keyType key) { PNode p = (PNode)malloc(sizeof(Node)); p -> key = key;

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构实验总结报告

数据结构实验总结报告 一、调试过程中遇到哪些问题? (1)在二叉树的调试中,从广义表生成二叉树的模块花了较多时间调试。 由于一开始设计的广义表的字符串表示没有思考清晰,处理只有一个孩子的节点时发生了混乱。调试之初不以为是设计的问题,从而在代码上花了不少时间调试。 目前的设计是: Tree = Identifier(Node,Node) Node = Identifier | () | Tree Identifier = ASCII Character 例子:a(b((),f),c(d,e)) 这样便消除了歧义,保证只有一个孩子的节点和叶节点的处理中不存在问题。 (2)Huffman树的调试花了较长时间。Huffman编码本身并不难处理,麻烦的是输入输出。①Huffman编码后的文件是按位存储的,因此需要位运算。 ②文件结尾要刷新缓冲区,这里容易引发边界错误。 在实际编程时,首先编写了屏幕输入输出(用0、1表示二进制位)的版本,然后再加入二进制文件的读写模块。主要调试时间在后者。 二、要让演示版压缩程序具有实用性,哪些地方有待改进? (1)压缩文件的最后一字节问题。 压缩文件的最后一字节不一定对齐到字节边界,因此可能有几个多余的0,而这些多余的0可能恰好构成一个Huffman编码。解码程序无法获知这个编码是否属于源文件的一部分。因此有的文件解压后末尾可能出现一个多余的字节。 解决方案: ①在压缩文件头部写入源文件的总长度(字节数)。需要四个字节来存储这个信息(假定文件长度不超过4GB)。 ②增加第257个字符(在一个字节的0~255之外)用于EOF。对于较长的文件,

会造成较大的损耗。 ③在压缩文件头写入源文件的总长度%256的值,需要一个字节。由于最后一个字节存在或不存在会影响文件总长%256的值,因此可以根据这个值判断整个压缩文件的最后一字节末尾的0是否在源文件中存在。 (2)压缩程序的效率问题。 在编写压缩解压程序时 ①编写了屏幕输入输出的版本 ②将输入输出语句用位运算封装成一次一个字节的文件输入输出版本 ③为提高输入输出效率,减少系统调用次数,增加了8KB的输入输出缓存窗口 这样一来,每写一位二进制位,就要在内部进行两次函数调用。如果将这些代码合并起来,再针对位运算进行一些优化,显然不利于代码的可读性,但对程序的执行速度将有一定提高。 (3)程序界面更加人性化。 Huffman Tree Demo (C) 2011-12-16 boj Usage: huffman [-c file] [-u file] output_file -c Compress file. e.g. huffman -c test.txt test.huff -u Uncompress file. e.g. huffman -u test.huff test.txt 目前的程序提示如上所示。如果要求实用性,可以考虑加入其他人性化的功能。 三、调研常用的压缩算法,对这些算法进行比较分析 (一)无损压缩算法 ①RLE RLE又叫Run Length Encoding,是一个针对无损压缩的非常简单的算法。它用重复字节和重复的次数来简单描述来代替重复的字节。尽管简单并且对于通常的压缩非常低效,但它有的时候却非常有用(例如,JPEG就使用它)。 变体1:重复次数+字符 文本字符串:A A A B B B C C C C D D D D,编码后得到:3 A 3 B 4 C 4 D。

数据结构实验一 实验报告

班级::学号: 实验一线性表的基本操作 一、实验目的 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入和删除等。 二、实验容 定义一个包含学生信息(学号,,成绩)的顺序表和链表(二选一),使其具有如下功能: (1) 根据指定学生个数,逐个输入学生信息; (2) 逐个显示学生表中所有学生的相关信息; (3) 根据进行查找,返回此学生的学号和成绩; (4) 根据指定的位置可返回相应的学生信息(学号,,成绩); (5) 给定一个学生信息,插入到表中指定的位置; (6) 删除指定位置的学生记录; (7) 统计表中学生个数。 三、实验环境 Visual C++ 四、程序分析与实验结果 #include #include #include #include #define OK 1 #define ERROR 0 #define OVERFLOW -2

typedef int Status; // 定义函数返回值类型 typedef struct { char num[10]; // 学号 char name[20]; // double grade; // 成绩 }student; typedef student ElemType; typedef struct LNode { ElemType data; // 数据域 struct LNode *next; //指针域 }LNode,*LinkList; Status InitList(LinkList &L) // 构造空链表L { L=(struct LNode*)malloc(sizeof(struct LNode)); L->next=NULL; return OK;

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

数据结构实验总结报告

数据结构实验总结报告 李博杰PB10000603 一、调试过程中遇到哪些问题? (1)在二叉树的调试中,从广义表生成二叉树的模块花了较多时间调试。 由于一开始设计的广义表的字符串表示没有思考清晰,处理只有一个孩子的节点时发生了混乱。调试之初不以为是设计的问题,从而在代码上花了不少时间调试。 目前的设计是: Tree = Identifier(Node,Node) Node = Identifier | () | Tree Identifier = ASCII Character 例子:a(b((),f),c(d,e)) 这样便消除了歧义,保证只有一个孩子的节点和叶节点的处理中不存在问题。 (2)Huffman树的调试花了较长时间。Huffman编码本身并不难处理,麻烦的是输入输出。 ①Huffman编码后的文件是按位存储的,因此需要位运算。 ②文件结尾要刷新缓冲区,这里容易引发边界错误。 在实际编程时,首先编写了屏幕输入输出(用0、1表示二进制位)的版本,然后再加入二进制文件的读写模块。主要调试时间在后者。 二、要让演示版压缩程序具有实用性,哪些地方有待改进? (1)压缩文件的最后一字节问题。 压缩文件的最后一字节不一定对齐到字节边界,因此可能有几个多余的0,而这些多余的0可能恰好构成一个Huffman编码。解码程序无法获知这个编码是否属于源文件的一部分。因此有的文件解压后末尾可能出现一个多余的字节。 解决方案: ①在压缩文件头部写入源文件的总长度(字节数)。需要四个字节来存储这个信息(假定文件长度不超过4GB)。 ②增加第257个字符(在一个字节的0~255之外)用于EOF。对于较长的文件,会造成较大的损耗。 ③在压缩文件头写入源文件的总长度%256的值,需要一个字节。由于最后一个字节存在或不存在会影响文件总长%256的值,因此可以根据这个值判断整个压缩文件的最后一字节末尾的0是否在源文件中存在。 (2)压缩程序的效率问题。 在编写压缩解压程序时 ①编写了屏幕输入输出的版本 ②将输入输出语句用位运算封装成一次一个字节的文件输入输出版本 ③为提高输入输出效率,减少系统调用次数,增加了8KB的输入输出缓存窗口 这样一来,每写一位二进制位,就要在内部进行两次函数调用。如果将这些代码合并起来,再针对位运算进行一些优化,显然不利于代码的可读性,但对程序的执行速度将有一定提高。

数据结构实验报告

姓名: 学号: 班级: 2010年12月15日

实验一线性表的应用 【实验目的】 1、熟练掌握线性表的基本操作在顺序存储和链式存储上的实现。、; 2、以线性表的各种操作(建立、插入、删除、遍历等)的实现为重点; 3、掌握线性表的动态分配顺序存储结构的定义和基本操作的实现; 4、通过本章实验帮助学生加深对C语言的使用(特别是函数的参数调用、指针类型的 应用和链表的建立等各种基本操作)。 【实验内容】 约瑟夫问题的实现:n只猴子要选猴王,所有的猴子按1,2,…,n编号围坐一圈,从第一号开始按1,2…,m报数,凡报到m号的猴子退出圈外,如此次循环报数,知道圈内剩下一只猴子时,这个猴子就是猴王。编写一个程序实现上述过程,n和m由键盘输入。【实验要求】 1、要求用顺序表和链表分别实现约瑟夫问题。 2、独立完成,严禁抄袭。 3、上的实验报告有如下部分组成: ①实验名称 ②实验目的 ③实验内容:问题描述:数据描述:算法描述:程序清单:测试数据 算法: #include #include typedef struct LPeople { int num; struct LPeople *next; }peo; void Joseph(int n,int m) //用循环链表实现 { int i,j; peo *p,*q,*head; head=p=q=(peo *)malloc(sizeof(peo)); p->num=0;p->next=head; for(i=1;inum=i;q->next=p;p->next=head; } q=p;p=p->next; i=0;j=1; while(i

数据结构实验

长春大学计算机学院网络工程专业 数据结构实验报告 实验名称:实验二栈和队列的操作与应用 班级:网络14406 姓名:李奎学号:041440624 实验地点:日期: 一、实验目的: 1.熟练掌握栈和队列的特点。 2.掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用。 3.掌握链队的入队和出队等基本操作。 4.加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力。 二、实验内容、要求和环境: 注:将完成的实验报告重命名为:班级+学号+姓名+(实验二),(如:041340538张三(实验二)),发邮件到:ccujsjzl@https://www.wendangku.net/doc/5d5481213.html,。提交时限:本次实验后24小时之内。 阅读程序,完成填空,并上机运行调试。 1、顺序栈,对于输入的任意一个非负十进制整数,打印输出与其等值的八进制数 (1)文件SqStackDef. h 中实现了栈的顺序存储表示 #define STACK_INIT_SIZE 10 /* 存储空间初始分配量*/ #define STACKINCREMENT 2 /* 存储空间分配增量*/ typedef struct SqStack { SElemType *base; /* 在栈构造之前和销毁之后,base 的值为NULL */ SElemType *top; /* 栈顶指针*/ int stacksize; /* 当前已分配的存储空间,以元素为单位*/ }SqStack; /* 顺序栈*/ (2)文件SqStackAlgo.h 中实现顺序栈的基本操作(存储结构由SqStackDef.h 定义) Status InitStack(SqStack &S) { /* 构造一个空栈S */ S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!S.base) exit(OVERFLOW); /* 存储分配失败*/ S.top=S.base; S.stacksize=STACK_INIT_SIZE; return OK; } int StackLength(SqStack S) { // 返回S 的元素个数,即栈的长度, 编写此函数

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构实验报告

数据结构实验报告 第次实验 学号: 20141060106 姓名:叶佳伟 一、实验目的 1、复习二叉树的逻辑结构、存储结构及基本操作; 2、掌握二叉链表及二叉树的创建、遍历; 3、了解二叉树的应用。 二、实验内容 1、(必做题)假设二叉树中数据元素类型是字符型,请采用二叉链表实现二叉树的以下基本操作: (1)根据二叉树的先序序列和中序序列构造二叉树; (2)根据先序遍历二叉树; (3)根据中序遍历二叉树; (4)根据后序遍历二叉树。 测试数据包括如下错误数据: 先序:1234;中序:12345 先序:1234;中序:1245 先序:1234;中序:4231 2、(必做题)对于一棵二叉树,请实现: (1)计算二叉树的叶子数目; (2)计算二叉树的深度。 三、算法描述 (采用自然语言描述) 1、先构造一个二叉树的结构体,再构造createtree的函数实现数据的输入。在键盘上输入先序和中序序列。先判断先序和后序序列是否符合逻辑。若符合逻辑,则在先序、中序、后序函数将二叉树输出。 四、详细设计 (画出程序流程图) 五、程序代码 (给出必要注释) #define max 5 #define TEL 2*max+1

#include "stdio.h" #include "stdlib.h" #include "string.h" typedef char TElemType; typedef struct BiTNode{ TElemType data; //数据域 struct BiTNode *lchild, *rchild; //左右孩子指针域 } BiTNode, *BiTree; BiTNode root; BiTree rt=&root; int calculate(char c,char s[],int st) {char *p; p=s+st; while(*p!=c && *p!='\0') p++; return p-s; } void createtree(BiTree *t,int i1,int i2,int len,char preorder[],char pinorder[]) {int r,llen,rlen; if(len<=0) *t=NULL; else {*t=(BiTree)malloc(sizeof(BiTNode)); (*t)->data=preorder[i1]; r=calculate(preorder[i1],pinorder,i2); llen=r-i2; rlen=len-(llen+1); createtree(&(*t)->lchild,i1+1,i2,llen,preorder,pinorder); createtree(&(*t)->rchild,i1+llen+1,r+1,rlen,preorder,pinorder); } } void PostOrderTraverse(BiTree t) {if(t) {PostOrderTraverse(t->lchild); PostOrderTraverse(t->rchild); putchar(t->data); } } void PreOrderTraverse(BiTree t) {if(t) {putchar(t->data);

数据结构实验报告

《用哈夫曼编码实现文件压缩》 实验报告 课程名称数据结构 实验学期2015至2016学年第一学期 学生所在系部计算机学院 年级2014专业班级物联B142班 学生姓名杨文铎学号201407054201 任课教师白磊 实验成绩

用哈夫曼编码实现文件压缩 1、了解文件的概念。 2、掌握线性表的插入、删除的算法。 3、掌握Huffman树的概念及构造方法。 4、掌握二叉树的存储结构及遍历算法。 5、利用Haffman树及Haffman编码,掌握实现文件压缩的一般原理。 微型计算机、Windows系列操作系统、Visual C++6.0软件 根据ascii码文件中各ascii字符出现的频率情况创建Haffman树,再将各字符对应的哈夫曼编码写入文件中,实现文件压缩。 本次实验采用将字符用长度尽可能短的二进制数位表示的方法,即对于文件中出现的字符,无须全部都用S为的ascii码进行存储,根据他们在文件中出现的频率不同,我们利用Haffman算法使每个字符能以最短的二进制数字符进行存储,已达到节省存储空间,压缩文件的目的,解决了压缩需要采用的算法,程序的思路已然清晰: 1、统计需压缩文件中的每个字符出现的频率 2、将每个字符的出现频率作为叶子节点构建Haffman树,然后将树中结点引向 其左孩子的分支标“0”,引向其右孩子的分支标“1”;每个字符的编码 即为从根到每个叶子的路径上得到的0、1序列,这样便完成了Haffman 编码,将每个字符用最短的二进制字符表示。 3、打开需压缩文件,再将需压缩文件中的每个ascii码对应的haffman编码按bit 单位输出。 4、文件压缩结束。 (1)构造haffman树的方法一haffman算法 构造haffman树步骤: I.根据给定的n个权值{w1,w2,w3…….wn},构造n棵只有根结点的二叉 树,令起权值为wj。 II.在森林中选取两棵根结点权值最小的树作左右子树,构造一棵新的二叉树,置新二叉树根结点权值为其左右子树根结点权值之和。 III.在森林中删除这两棵树,同时将得到的二叉树加入森林中。 IV.重复上述两步,知道只含一棵树为止,这棵树即哈夫曼树。 对于haffman的创建算法,有以下几点说明: a)这里的Haffman树采用的是基于数组的带左右儿子结点及父结点下标作为

数据结构实验1

《数据结构》实验报告 实验序号:1 实验项目名称:概论

附源程序清单: 1. #include void main() { int i; int num[10]; int *p; for(i=0;i<=9;i++) num[i]=i+1; for(p=(num+9);p>=(num+0);p--) printf("%d ",*p); printf("\n"); }

2. #include void main() { void swap(int *a,int *b); int i; int a[10]; int *p,*max,*min; for(i=0;i<10;i++) scanf("%d",&a[i]); max=min=a; for(i=0;i<10;i++) { if(*maxa[i]) min=&a[i]; } p=a; swap(p,max); swap((p+9),min); for(p=a;p<=(a+9);p++) printf("%d ",*p); printf("\n"); } void swap(int *a,int *b) { int temp; temp=*a; *a=*b; *b=temp; } 3. #include #include #include #include typedef struct { char num[5]; char name[20]; float score1; float score2; float score3; float average;

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

数据结构实验一 实验报告

班级: 姓名: 学号: 实验一线性表的基本操作 一、实验目的 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入与删除等。 二、实验内容 定义一个包含学生信息(学号,姓名,成绩)的顺序表与链表(二选一),使其具有如下功能: (1) 根据指定学生个数,逐个输入学生信息; (2) 逐个显示学生表中所有学生的相关信息; (3) 根据姓名进行查找,返回此学生的学号与成绩; (4) 根据指定的位置可返回相应的学生信息(学号,姓名,成绩); (5) 给定一个学生信息,插入到表中指定的位置; (6) 删除指定位置的学生记录; (7) 统计表中学生个数。 三、实验环境 Visual C++ 四、程序分析与实验结果 #include #include #include #include #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int Status; // 定义函数返回值类型 typedef struct

{ char num[10]; // 学号 char name[20]; // 姓名 double grade; // 成绩 }student; typedef student ElemType; typedef struct LNode { ElemType data; // 数据域 struct LNode *next; //指针域 }LNode,*LinkList; Status InitList(LinkList &L) // 构造空链表L { L=(struct LNode*)malloc(sizeof(struct LNode)); L->next=NULL; return OK; } Status GetElem(LinkList L,int i,ElemType &e) // 访问链表,找到i位置的数据域,返回给 e { LinkList p; p=L->next;

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

数据结构实验1

天津科技大学 2015—2016学年第2学期数据结构实验任务书 课程名称:数据结构实验学时: 2 实验题目:线性表的基本操作 实验环境: Visual C++ 实验目的: 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入和删除等。 实验内容: 定义一个包含学生信息(学号,姓名,成绩)的顺序表和链表(二选一),使其具有如下功能: (1) 根据指定学生个数,逐个输入学生信息; (2) 逐个显示学生表中所有学生的相关信息; (3) 根据姓名进行查找,返回此学生的学号和成绩; (4) 根据指定的位置可返回相应的学生信息(学号,姓名,成绩); (5) 给定一个学生信息,插入到表中指定的位置; (6) 删除指定位置的学生记录; (7) 统计表中学生个数。 实验提示: 学生信息的定义: typedef struct { char no[8]; //8位学号 char name[20]; //姓名 int score; //成绩 }Student; 顺序表的定义 typedef struct { Student *elem; //指向数据元素的基地址 int length; //线性表的当前长度 }SqList; 链表的定义:

typedef struct LNode{ Student data; //数据域 struct LNode *next; //指针域 }LNode,*LinkList; 实验要求: (1) 程序要添加适当的注释,程序的书写要采用缩进格式。 (2) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应,如插入删除时指定的位置不对等等。 (3) 程序要做到界面友好,在程序运行时用户可以根据相应的提示信息进行操作。 (4) 根据实验报告模板详细书写实验报告,在实验报告中给出链表根据姓名进行查找的算法和插入算法的流程图。 (5) 以班为单位实验周周五上传源程序和实验报告。顺序表的源程序保存为SqList.cpp,链表的源程序保存为LinkList.cpp,实验报告命名为:实验报告1.doc。源程序和实验报告压缩为一个文件(如果定义了头文件则一起压缩),按以下方式命名:学号姓名.rar,如07081211薛力.rar。

数据结构实验报告 - 答案汇总

数据结构(C语言版) 实验报告

专业班级学号姓名 实验1 实验题目:单链表的插入和删除 实验目的: 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序 的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码: #include"stdio.h" #include"string.h" #include"stdlib.h" #include"ctype.h" typedef struct node //定义结点 { char data[10]; //结点的数据域为字符串 struct node *next; //结点的指针域 }ListNode; typedef ListNode * LinkList; // 自定义LinkList单链表类型 LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表 LinkList CreatList(void); //函数,用头插入法建立带头结点的单链表 ListNode *LocateNode(); //函数,按值查找结点 void DeleteList(); //函数,删除指定值的结点 void printlist(); //函数,打印链表中的所有值 void DeleteAll(); //函数,删除所有结点,释放内存

相关文档