文档库 最新最全的文档下载
当前位置:文档库 › 电磁场大作业

电磁场大作业

电磁场大作业
电磁场大作业

电磁场大作业

一、画出线极化、圆极化、椭圆极化平面波图形

1.线极化

Y

X

Y

clc;clear;close;

t=0:0.01:4*pi;

z=0:0.01:4*pi;

Exm=1;Eym=3;

w=2;k=1;Fy=pi;

%%线极化

subplot(1,2,1)

Ex=Exm*cos(w*t-k*z+Fy); Ey=Eym*cos(w*t-k*z+Fy); plot3(Ex,z,Ey)

title('?????ˉ')

grid Xlabel('X')

Ylabel('Z')

Zlabel('Y')

subplot(1,2,2)

Ex=Exm*cos(w*t+Fy); Ey=Eym*cos(w*t+Fy); plot(Ex,Ey)

title('?????ˉ')

grid

Xlabel('X')

Ylabel('Y')

2.圆极化

Y

X

Y

clc;clear;close;

t=0:0.01:4*pi;

z=0:0.01:4*pi;

Em=2;

w=2;k=1;Fy1=pi;Fy2=2*pi; %%圆极化ˉ

subplot(1,2,1)

Ex=Em*cos(w*t-k*z+Fy1); Ey=Em*sin(w*t-k*z+Fy2); plot3(Ex,z,Ey)

grid Xlabel('X')

Ylabel('Z')

Zlabel('Y')

subplot(1,2,2)

Ex=Em*cos(w*t+Fy1); Ey=Em*sin(w*t+Fy2); plot(Ex,Ey)

grid

Xlabel('X')

Ylabel('Y')

3.椭圆极化

Y

X

Y

clc;clear;close;

t=0:0.01:4*pi;

z=0:0.01:4*pi;

Emx=2;Emy=3;

w=2;k=1;Fy1=3;Fy2=4;

%%椭圆极化

subplot(1,2,1)

Ex=Emx*cos(w*t-k*z+Fy1); Ey=Emy*sin(w*t-k*z+Fy2); plot3(Ex,z,Ey)

grid Xlabel('X')

Ylabel('Z')

Zlabel('Y')

subplot(1,2,2)

Ex=Emx*cos(w*t+Fy1); Ey=Emy*sin(w*t+Fy2); plot(Ex,Ey)

grid

Xlabel('X')

Ylabel('Y')

二、画出线极化平面电磁波垂直入射到理想介质分界面之后

1.图

取n1=3,n2=7,即反射系数为0.4,透射系数为1.4.选取k1=7,k2=3.

Magnetic Field

分解图

合成图

2.代码

clc;clear;close;

z=-2*pi:0.01:0;

Z=0:0.01:2*pi;

x=zeros(1,2*pi*100+1);

y=x;

k1=7;k2=3;

n1=3;n2=7;

T=2*n2/(n1+n2);%%反射系数=T-1

Eio=10;

Ero=Eio*(T-1);

Eto=Eio*T;

figure(1)

%%电场

subplot(2,1,1)

Ei=Eio*exp(-1*j*k1*z);

Er=Ero*exp(j*k1*z);

Et=Eto*exp(-1*j*k2*Z);

%%E=Ei+Er;

E=Eio*(T*exp(-1*j*k1*z)+j*2*(T-1)*sin(k1*z));

plot(z,Ei,z,Er,'*',Z,Et,'--',z,E,'o')

title('Electronic Field')

grid on

%%磁场

subplot(2,1,2)

Hi=Ei/n1;

Hr=-1*Er/n1;

Ht=Et/n2;

%%H=Hi+Hr

H=Eio*(T*exp(-1*j*k1*z)-2*(T-1)*cos(k1*z))/n1;

plot(z,Hi,z,Hr,'*',Z,Ht,'--',z,H,'o')

grid on

title('Magnetic Field')

%%电磁场

figure(2)

plot3(y,z,Ei,y,z,Er,'*',y,Z,Et,'s',Hi,z,x,'--',Hr,z,x,'o',Ht,Z,x,'+') grid

title('Electromagnetic Field')

2016年《电磁场与电磁波》仿真实验 (1)

《电磁场与电磁波》仿真实验 2016年11月

《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题

目录 一、电磁场仿真软件——Matlab的使用入门 (4) 二、单电荷的场分布 (10) 三、点电荷电场线的图像 (1) 2 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17)

实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。 注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6)

电磁场与电磁波习题及答案

1 麦克斯韦方程组的微分形式 是:.D H J t ???=+? ,B E t ???=-? ,0B ?= ,D ρ?= 2静电场的基本方程积分形式为: 0C E dl =? S D d s ρ=? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。 6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。8.电场强度E 的单位是, 电位移D 的单位是 。9.静电场的两个基本方程的微分 形式为 0E ??= ρ?= D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 3.0 0n S n n n S e e e e J ρ??=??=???=???=?D B E H 4.D E ε= ,B H μ= ,J E σ= 5. J t ρ ??=- ? 6.2ρ?ε?=- 12??= 12 12n n εεεε??=?? 7.唯一性定理 8.V/m C/m2 1.在分析恒定磁场时,引入矢量磁位A ,并令 B A =?? 的依据是(c.0B ?= ) 2. “某处的电位0=?,则该处的电场强度0=E ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( ) l n (0 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性) 分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω= 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-? 其振幅值为:304510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510 .dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。 试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S S d q =?得2 4q D r π= 24D e e r r q D r π== 空间的电场分布2 04D E e r q r επε== 导体球的电位 2 0044E l E r e r r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε= = 五、两块无限大接地导体板分别置于x=0和x=a 处,其间在x=x0处有一面密度为σ2C/m 的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分) 解:()2 102d 00;d x x x ?=<<()22 02d 0 d x x a x ?=<< 得: ()()11100;x C x D x x ?=+<< ()()2220x C x D x x a ?=+< <

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

武大电气工程电磁场仿真实验报告

武汉大学 工程电磁场及高电压综合实验

一、题目 有一极长的方形金属槽,边宽为1cm,除顶盖电位为100sinπxV外,其他三面的电位均为零,试用差分法求槽内电位的分布。 二、解题原理:均匀媒质中的有限差分法 我们在求解场的分布时,当边界形状比较复杂时,解析分析法不再适合了,我们可以采用数值计算的方法,数值计算法的基本思想,是将整体连续的场域划分为若干个细小区域,一般称之为网格或单元,如图1所示,然后用所求的网格交点(一般称为节点或离散点)的数值解,来代替整个场域的真实解。因而数值解,即是所求场域离散点的解。虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点数目也愈多,近似解(数值解)也就愈逼近于真实值。 实解。在此处键入公式。 图1场域的剖分,网格节点及步长

(一)、场域的剖分、网格节点及步长 由边界Γ所界定的二维平行平面场(见图1),若采用直角坐标系则可令该场处在xoy 平面内。 所谓场域的剖分就是场域的离散化,即将场域剖分为若干个网格或单元。最常见最简单的剖分为正方形剖分,这种剖分就是在xy 平面上作许多分别与x 轴及y 轴平行的直线,称为网格线。网格线的交点称为节点或离散点,场域内的节点称为内节点,场域边界上的节点称为边界节点。两相邻网格线间距离称为步长,一般以h 表示。若步长相等则整个场域就被剖分为许多正方形网格,这就是正方形剖分。节点(离散点)的布局不一定采用正方形剖分,矩形剖分也常采用,正三角形剖分偶尔也被应用,不过最常见的最简单的仍然是正方形剖分。 (二)、差分与微分 从前面的分析可知,稳恒电、磁场的求解问题,归根到底是求解满足给定边界条件的偏微分方程(泊松方程或拉普拉斯方程)的解的问题所谓差分方法,就是用差商近似代替偏微商,或者说用差分代替微分,从而把偏微分方程转换为差分方程,后者实际上为代数方程。因此这种转化有利于方程的求解。 下面分别对一阶及二阶的差分公式进行推导。首先回顾有关偏导数的定义,有 00(,)(,)(,)(,) lim lim x x f f x x y f x y f x y f x x y x x x →→?+---==? (1) 因此当|x| 充分小时,可近似地用(,)(,)f x x y f x y x +- 或(,)(,) f x y f x x y x -- 代 替 f x ??,所谓差分公式,即是基于上述观点推得的。 设图1所示场域中的位函数为A ,任取一网格节点0,它在xy 平面上的坐标为(x ,i i y ),记节点0的矢量磁位为,i j A ,并把与节点0相邻的其他四个节点1、2、3、4的矢量磁位分别记为1,i j A +、,1i j A +、1,i j A -、,1i j A -,将节点0处函数A 的 一阶偏微商A x ??,用1、0两点函数值的差商1,,i j i j A A h +-近似代替,则有

电磁场试题A及答案

2010-2011 学年第 1 学期末考试试题(A 卷) 电磁场与电磁波 使用班级: 08050641X-3X 一、简答题(30分,每题6分) 1 根据自己的理解,解释什么是场?标量场?矢量场?并举例说明。 场是某一物理量在空间的分布; 具有标量特征的物理量在空间的分布形成标量场;如电位场、温度场。 具有矢量特征的物理量在空间的分布形成矢量场;如电场、磁场。 2写出电流连续性方程,并说明其意义。 ()()t t r t r J ??- =??,,ρ 电荷守恒定理 3 写出坡印廷定理,并说明各部分的意义。 ? ???+?+?=??-V V S V V t d d )2121(d d d )(J E B H D E S H E

等式左边表示通过曲面S 进入体积V 的电磁功率。 等式右边第一项表示单位时间内体积V 中所增加的电磁能量 等式右边第二项表示单位时间内电场对体积V 中的电流所做的功; 在导电媒质中,即为体积V 内总的损耗功率。 4 根据自己的理解,解释镜像法的基本原理。 用位于场域边界外虚设的较简单的镜像电荷分布来等效替代该边界上未知的较为复杂的电荷分布,在保持边界条件不变的情况下,将边界面移去,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种间接求解法。 5 写出麦克斯韦方程组,并说明每个方程的意义。 麦克斯韦第一方程,表明传导电流和变化的电场都能产生磁场 麦克斯韦第二方程,表明变化的磁场产生电场 麦克斯韦第三方程表明磁场是无源场,磁感线总是闭合曲线 麦克斯韦第四方程,表明电荷产生电场 ??? ?????? ? ?=??=????-=????+=??ρD B t B E t D J H

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????= ==??由此说明了矢量场的散度与坐标的选择无关。

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

电磁场习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。 (2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。 解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。对此圆柱体的外表面应用高斯通量定理,得 l S D s τ=?? d 考虑到此问题中的电通量均为r e 即半径方向,所以电通量对圆柱体前后 两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是 l rD l τπ=2 即 r e r D πτ2= , r e r E 02πετ= 由此可得 a b r e e r r E U b a r r b a ln 2d 2d 00 ? ?επτ=?επτ=?= 1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的

内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。内导体的半径为 a ,其值可以自由选定但有一最佳值。因为a 太大,内外导体的间隙就变得很 小,以至在给定的电压下,最大的E 会超过介质的击穿场强。另一方面,由于 E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。试问a 为何值时,该电缆能承受最大电压?并求此最大电压。 (击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。 解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为 r E πετ2= , a E πετ 2max = 而内外导体之间的电压为 a b r r r E U b a b a ln 2d 2d πετπετ? ?===

电磁场课后习题答案

一 习题答案(第二章) 2.4 由E =-?? 已知?=+2ax b 得2E a =-??=- x ax 根据高斯定理:0 .E ?= ρ ε得 电荷密度为: 00.E ==? -2a ρεε 2.6 取直角坐标系如图所示,设圆盘位于xoy 平面,圆盘中心与坐标原点重合 方法1: 由 ' 04s s ds R ρ?=πε? 在球坐标系求电位值,取带点坐标表示源区

2'''0 00 4a s π ρ?=πε? ? 02s z ρ?= ?ε 因此,整个均匀带电圆面在轴线上P 点出产生的场强为 001 z>0 21 z<02s z s z ???ρ??ε?? =-??=? ? ?ρ?+??ε??a E -a 方法2 :(略) 2.7 当r>a (球外)时, 10 .E ?= ρε 221.(.)0E ??==? r r E r r 10.E ∴=? =0ρε 当r

2 22242()33x a y z a ??-++= ??? 由此可见,零电位面是以点(4 a /3,0,0)为球心,2 a /3为半径的球面。 2.20 由高斯定理.s D dS q =? 由 00r x r x D E E =εε=εεa 得 0() x qd E s x d =ε+a 由0 .d x U E dx =? 得 0ln 2qd U s = ε 由 q C U = 得 0ln 2 s C d ε= 2.22 由于d a ,球面的电荷可看作均匀分布的 先计算两导体球的电位1?、2?: 则112...d a a d E dr E dr E dr ∞ ∞ ?==+??? 112001144d a d q q q r r ∞ +???? = -+- ? ?πεπε???? 12 0044q q a d = + πεπε '''212...d a a d E dr E dr E dr ∞ ∞ ?==+??? 212001144d a d q q q r r ∞ +???? = -+- ? ?πεπε???? 120044q q d a = +πεπε 得 1122014P P a == πε,1221 01 4P P d ==πε

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较要点

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式 是:.D H J t ???=+?,B E t ???=-?,0B ?=,D ρ?= 2静电场的基本方程积分形式为: C E dl =? S D d s ρ =? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。 6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。8.电场强度E 的单位是, 电位移D 的单位是 。9.静电场的两个基本方程的微分 形式为 0E ??= ρ?=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 3.00n S n n n S e e e e J ρ??=? ?=?? ?=?? ?=?D B E H 4.D E ε=,B H μ=,J E σ= 5. J t ρ??=-? 6.2ρ?ε?=- 12??= 1212n n εεεε??=?? 7.唯一性定理 8.V/m C/m2 1.在分析恒定磁场时,引入矢量磁位A ,并令 B A =??的依据是(c.0B ?= ) 2. “某处的电位0=?,则该处的电场强度0=E ”的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( ) l n (0 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一 定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω= 则位移电流密度为:0sin d x r m D J e E t t ωεεω?= =-? 其振幅值为: 304510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S S d q =?得2 4q D r π= 24D e e r r q D r π== 空间的电场分布2 04D E e r q r επε== 导体球的电位 2 0044E l E r e r r a a a q q U d d d r a πεπε∞ ∞ ∞ ==== ??? 导体球的电容04q C a U πε= = 五、两块无限大接地导体板分别置于x=0和x=a 处,其间在x=x0处有一面密度为σ2C/m 的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分) 解:()2 102d 00;d x x x ?=<<()22 02d 0 d x x a x ?=<< 得: ()()11100;x C x D x x ?=+<< ()( )222 0x C x D x x a ?=+< < ()()()()()()()(122112102000,0;, x x x x a x x x x ???????????===-???? 和满足得边界条件为

电磁场作业答案

2.6 在圆柱坐标系中电荷分布为P ={①r∕a, r≤a②0, r>a , r为场点到 常数。求电场强度。 解:电场强度只有沿r方向分量,选取长度为I的圆柱 2.7在直角坐标系中电荷分布为P (X,y,Z)={①P 0 ∣ X ∣≤a②O 度。解:电场与y,Z均无关,电场强度只有沿X方向分量, 4 ■J~?. E= : EX= 一X X > O时E X为有限值所以C=O 「0 r a 时]=0 代入(1)得:Er=C 在x=a处E r连续,所以C'二 E r Z轴的距离,a为 IE dS =2二rlE r S (1) r a求电场强 (1) 代入(1)得: :?0X ‘0 q

V 2.16已知电场强度为E=3x+4y-5z ,试求点(0,0,0)与点(1,2,1)之间的电 b b b b 压 解:U=E dl = E X dX E y dy E Z dZ = 6 a a a a 2.26两同心导体球壳半径分别为a 、b ,两导体之间有两层介质,介电常数 分别为ε 1、ε 2,介质界面半径为C ,内外导体球壳电位分别为 V 和0,求两导 体球壳之间的电场和球壳上的电荷面密度, 以及介质分界面上的束缚电荷面密度。 解:两球壳之间电介质不带电电位分布满足拉普拉斯方程 ? ? -0 C 1 ' —C1 r C 2 ' -C 2 代入边界条件 φ I _ — 2 r z b _ b C 1 _ C 1 =V a 由上式可得: I I ■ I I ,(…:C) (1-1) S 1Jr 2 a C ;2 c b ■ I I I I ,(c"b ) 2(1j ) (^1)r 2 j 1 a C C b 在介质与导体分界面上的电荷密度匚= D n 选取球坐标则有:V 2 =1 : r 2 ;:r / ;:r C 2 =0 D Inr Z C= D 2n r =C C I C 2 (1 T)J(1 -[) a C ;2 c b V 1 1 1 )(-) C C b 2 (1 E 1 E 2

电磁场作业题答案全

第1章 矢 量 分 析 1.1 什么是场?什么是矢量场?什么是标量场?什么是静态场?什么是时变场? 答:如果在空间某一个区域内上任意一点都有一确定物理量值与之对应,则这个区域就构了一个物理量的场。 如果这个确定物理量值是一个标量(只有大小没有方向),我们称这种场为标量场,如温度场、密度场、电位场等等。 如果这个确定物理量值是一个矢量(既有大小又有方向),我们称这种场为矢量场,如电场、磁场、重力场等等。 如果在场中的这个物理量仅仅是空间位置的函数,而不是时间的函数(即不随时间变化的场),我们称这种场为静态场。 如果在场中的这个物理量不仅仅是空间位置的函数,而且还是时间的函数(即随时间变化的场),我们称这种场为时变场。 1.2 什么是标量?什么是矢量?什么是常矢?什么是变矢?什么是单位矢量? 答:一个物理量如果仅仅只有大小的特征,我们称此物理量为标量。例如体积、面积、重量、能量、温度、压力、电位等。 如果一个物理量不仅仅有大小,而且还具有方向的特征,我们称此物理量为矢量。例如电场强度,磁感应强度、电位移矢量、磁场强度、速度、重力等。 一个矢量如果其大小和方向都保持不变的矢量我们称之为常矢。 如果矢量的大小和方向或其中之一是变量的矢量称为变矢。 矢量与矢量的模值的比值,称为单位矢量。即模值为1的矢量称为单位矢量 1.3什么是等值面?什么是等值面方程?什么是等值线?什么是等值线方程? 答:在标量场中许多相同的函数值(他们具有不同的位置)。构成的曲面,称为等值面。例如,温度场中由相同温度构成的等温面,电位场中相同电位构成的等位面等都是等值面。 描述等值面的方程称为等值面方程。假定()z y x u ,,是坐标变量的连续可微函数。则等值面方程可表述为 ()C z y x u =,, (c 为任意常数) 在标量场中平面中相同的函数值构成的曲线,称为等值线。 描述等值线的方程称为等值线方程。假定()y x u ,是坐标变量的连续可微函数。则等值线方程可表述为 ()C y x u =, (c 为任意常数) 1.4求下列电场的等位线方程 (1) z x =?, (2) 2 2 4y x += ? 解:根据等值线方程的定义即电位函数应为一常数,所以等位线方程为 ⑴ xz c ==?,即 z c x = ; ⑵ c 42 2=+=y x ? 即 k y == +c 4 x 22 (为常数k )

2016年《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验

2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用MATLAB仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题

目录 一、电磁场仿真软件——Matlab的使用入门......... (4) 二、............................................................ 单电荷的场分布 1O 三、........................................................ 点电荷电场线的图像 12- 四、................................................................ 线电荷产生的电位............................................................. : ..... 14 - 五、....................................................................... 有限差分法处理电磁场问题17…

大学物理电磁场练习题含答案

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二 者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布, 则空间各处的B 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021 ≠+B B ,但B 3 ≠ 0. [ ]

ANSYS电磁场仿真实验报告

电磁场仿真实验报告

求平行输电线周围的电位和电场分布 一、报告要求:该生学号尾号为1,建立3条垂直排布的导线。电位由下到上分别为1V,2V,3V,如下图所示: 二、模型说明:静电场计算,求解区域为模型的5倍,截断边界条件。最下方导线对地高度为10米,导线半径为0.01米,导线之间间距为5米。 (即:H1=10m,H2=15m,H3=20m,U1=1V,U2=2V,U3=3V,R0=0.01m,求解区域为一半圆,题目要求求解区域为模型的5倍,模型尺寸认为是40m,故取半圆半径L=200m。) 如下图所示:

三、实验步骤: 1、确定文件名,选择研究范围。 点击Utility Menu>File>Change Title,输入你的文件名。 例如“姓名_学号”(ZLM_2012301530051) 点击Main Menu>Preferences,选择Electric。 点击Main Menu>Preprocessor>,进入前处理模块 (command: /TITLE,ZLM_2012301530051 /COM,Preferences for GUI filtering have been set to display: /COM, Electric /PREP7 ) 2、定义参数 点击Utility Menu>Parameters>Scalar Parameters,在下面“Selection”空白区 域填入参数: H1=10 H2=15 H3=20 R0=0.01 U1=1 U2=2 U3=3 每一个参数输入完毕,点击“Accept ”按钮,输入的参数就导入上方“Items”指示的框中,等参数导入完毕后,点击“close”按钮关闭对话框。(command: *SET,H1,10 *SET,H2,15 *SET,H3,20 *SET,R0,0.01 *SET,U1,1 *SET,U2,2 *SET,U3,3) 3、定义单元类型 点击Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现单元类型 对话框“Element Types”,点击Add,弹出单元类型选择库对话框“Library of ElementTpes”选择Electrostatic 和2D Quad 121(二维四边形单元plane121)。点 击ok,关闭单元类型选择库对话框,此时在单元类型对话框中显示所添加的单元类型“Type 1 PLANE121”,表示单元类型添加成功,点击Close 按钮,关闭对 话框。 (command: ET,1,PLANE121)

相关文档