文档库 最新最全的文档下载
当前位置:文档库 › 特殊形状三通管道的应力分析

特殊形状三通管道的应力分析

特殊形状三通管道的应力分析
特殊形状三通管道的应力分析

管道应力分析基础知识

管道应力分析基础知识 2009-04-09 13:55 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什

么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1)管道端点 (2)管道约束点、支撑点、给定位移点 (3)管道方向改变点、分支点 (4)管径、壁厚改变点 (5)存在条件变化点(温度、压力变化处) (6)定义边界条件(约束和附加位移) (7)管道材料改变处(包括刚度改变处,如刚性元件) (8)定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9)需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载) (8) 查看弹簧表

CaesarII应力分析模型设计解读

第一部分支架形式模拟 (2) 1.0 普通支架的模拟 (2) 1.1 U-band (2) 1.2 承重支架 (3) 1.3 导向支架 (3) 1.4 限位支架 (7) 1.5 固定支架 (7) 1.6 吊架 (8) 1.7 水平拉杆 (8) 1.8 弹簧支架模拟 (9) 2.0 附塔管道支架的模拟 (11) 3.0弯头上支架 (13) 4.0 液压阻尼器 (14) 5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15) 第二部分管件的模拟 (15) 1.0 法兰和阀门的模拟 (15) 2.0 大小头模拟 (17) 3.0 安全阀的模拟 (18) 4.0 弯头的模拟 (19) 5.0 支管连接形式 (20) 6.0 膨胀节的模拟 (21) 6.1 大拉杆横向型膨胀节 (22) 6.2 铰链型膨胀节 (34) 第三部分设备模拟 (42) 1.0 塔 (42) 1.1 板式塔的模拟 (42) 1.2 填料塔的模拟 (44) 1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47) 2.0 换热器,再沸器 (48) 2.1 换热器模拟也分两种情况 (48)

3.0 板式换热器 (51) 4.0 空冷器 (52) 4.1 空冷器进口管道和出口管道不在同一侧 (52) 4.2 空冷器进口管道和出口管道在同一侧 (54) 5.0 泵 (56) 6.0 压缩机,透平 (58) 第四部分管口校核 (59) 1.0 WRC107 (59) 2.0 Nema 23 (62) 3.0 API617 (64) 4.0 API610 (65) 第五部分工况组合 (68) 1.0 地震 (69) 2.0 风载 (70) 3.0 安全阀起跳工况 (72) 4.0 沉降 (74) 第一部分支架形式模拟 1.0 普通支架的模拟 1.1 U-band

管道设计资料-压力管道应力分析[汇编]

压力管道应力分析部分 第一章任务与职责 1.管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性 ,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1)因应力过大或金属疲劳而引起管道破坏; 2)管道接头处泄漏; 3)管道的推力或力矩过大 , 而使与管道连接的设备产生过大的应力或变形 ,影响设备正常运行; 4)管道的推力或力矩过大引起管道支架破坏; 2.压力管道柔性设计常用标准和规范 1) GB 50316-2000《工业金属管道设计规范》 2) SH/T 3041-2002《石油化工管道柔性设计规范》 3) SH 3039-2003《石油化工非埋地管道抗震设计通则》 4) SH 3059-2001《石油化工管道设计器材选用通则》 5) SH 3073-95《石油化工企业管道支吊架设计规范》 6) JB/T 8130.1-1999《恒力弹簧支吊架》 7) JB/T 8130.2-1999《可变弹簧支吊架》 8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9) HG/T 20645-1998《化工装置管道机械设计规定》 10)GB 150-1998《钢制压力容器》 3.专业职责 1) 应力分析(静力分析动力分析) 2) 对重要管线的壁厚进行计算 3) 对动设备管口受力进行校核计算 4) 特殊管架设计 4.工作程序 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系 ,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计 5) L型 U型管系可采用图表法进行应力分析 6) 立体管系可采用公式法进行应力分析 7) 宜采用计算机分析方法进行柔性设计的管道 8) 采用CAESAR II 进行应力分析 9) 调整设备布置和管道布置

管道培训材料3doc-管道应力

3 管道应力 3.1 石油化工管道应力分析常用规范、标准有哪些? 答:石油化工管道应力分析常用规范、标准有: (1)《工业金属管道设计规范》(国标报批稿); (2)《石油化工企业管道柔性设计规范》(SHJ41-91); (3)《石油化工企业非埋地管道抗震设计通则》(SHJ39-91); (4)《石油化工企业管道设计器材选用通则》(SH3059-94); (5)《石油化工企业管道支吊架设计规范》(SH3073-95); (6) 化工管道设计规范(HG20695-1987); (7) 化工部设计标准《管架标准图》(HG/T21629-1991)。 3.2 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 静力分析包括: (1) 压力荷载和持续荷载作用下的一次应力计算—防止塑性变形破坏; (2) 管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算—防止疲劳破坏; (3) 管道对设备作用力的计算—防止作用力太大,保证设备正常运行; (4) 管道支吊架的受力计算—为支吊架设计提供依据; (5) 管道上法兰的受力计算—防止法兰泄漏。 动力分析包括: (1) 管道自振频率分析—防止管道系统共振; (2) 管道强迫振动响应分析—控制管道振动及应力; (3) 往复压缩机(泵)气(液)柱频率分析—防止气柱共振; (4) 往复压缩机(泵)压力脉动分析—控制压力脉动值。 3.3 管道上可能承受的荷载有哪些? 答:管道上可能承受的荷载有: (1) 重力荷载,包括管道自重、保温重、介质重和积雪重等; (2) 压力荷载,压力荷载包括内压力和外压力; (3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4) 风荷载; (5) 地震荷载; (6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击; (7) 两相流脉动荷载; (8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

管道应力分析程序使用说明

管道应力分析程序(GLIF)使用说明 第一章概述 本程序吸收了国内管道应力计算程序和美国2010管道应力计算程序的优点,采用结构程序设计方法,开发的符合《火力发电厂汽水管道应力计算技术规定(SDGJ6-90)》的程序。 11功能 程序计及了内压、自重、外载、设备接口附加位移、冷紧、安全阀排放产生的载荷、以及风载、静力地震载荷等,既能对持续荷载,又能对临时荷载、偶然荷载进行分析计算。 程序可对正常运行条件下的热状态、冷状态,由热至冷及由冷至热状态进行计算。其中对冷状态考虑了管道运行初期和应变达到自均衡后两种情况。 程序可对水压试验工况进行分析计算。程序可对异常运行条件下的安全阀排放荷载、风载、地震荷载的静力分析计算。 本程序管道结构分析和应力验算更趋于精细和合理,提高了管道投资的经济性和运行的安全性。 12特点 程序的编制,按功能采用模块型结构,使其可读性和可维护性好。尽量用标准语言而避免采用依赖于机型和硬件的特殊语句,使程序可

移植性好。程序功能强,使用简便,程序对管道的结构没有限制,按管道的设计模型组织数据文件,为CAD绘图创造了良好条件。输入灵活易学,输出集中简明。输入数据、输出成果的单位可分别选取工程制和法定单位制。程序应力验算符合SDGJ6-90标准,为了使用户计算方便、便于掌握程序按照定工况进行组织,可自动检查出输入数据的错误。减少对错误题目进行运算的可能性,节省时间和费用。 13计算内容 a.管道在工作状态下,由持续荷载(即内压、自重等)作用下产 生的应力进行验算,计算持续荷载对设备或端点的推力。 b.管道在运行初期工作状态下,计算管道约束装置的荷载及管道 对设备(或端点)的推力。考虑自重、热膨胀、有效冷紧和端点附加位移的影响。 c.管道应变自均衡后在冷状态下,计算管道刚性约束装置的荷载 及管道对设备(或端点)的推力。 d.管道由冷状态到工作状态的热位移计算,按管道沿坐标轴的全 补偿值和钢材在20℃时的弹性模量计算,并考虑弹簧附加力的影响。 e.管道热膨胀应力范围的验算。 f.管道在运行初期冷状态下,计算管道约束装置的荷载及对设备 (或端点)的推力。 g.管道由于冷紧和弹簧附加力作用下的冷位移的计算,以其作为

管道应力设计基础

管道应力设计基础 1 适用范围 1.0.1适用于管道机械专业对非埋地碳素钢、合金钢及不锈钢管道的柔性设计。 1.0.2不适用于长输管道、加热炉炉管及设备内部管道的柔性设计。 2 相关标准 2.0.1 《石油化工管道柔性设计规范》SH3041-2001 《石油化工企业非埋地管道抗震设计通则》SH3039-1991 《石油化工企业管道支吊架设计规范》SH3073-95 《石油化工企业管道设计器材选用通则》SH3059-94 《金属波纹管膨胀节通用技术条件》GB/T12777-1999 《工业金属管道设计规范》GB50316-2000 《钢制压力容器》GB150-1998 3 设计原则 3.0.1 管道柔性设计包括简化分析方法和详细分析方法。简化分析采用直观经验判断、经验公式和图表法等;详细分析采用计算机程序进行。 3.0.2 以下两种情况的管道,宜采用详细分析方法进行柔性设计: (1)DN≥100且 t≥150℃的管道; (2)DN≥100且t ≤-45℃的管道; (3)t ≥315℃或t ≤-140℃的所有管道; (4)DN≥650的管道; (5)DN≥100的与空冷器连接的管道,t≥120℃的与空冷器连接的管道; (6)DN≥600受外压的薄壁管道; (7)与放在称量设备上的容器相连接的管道; (8)夹套管道; (9)进出加热炉及蒸汽发生器的高温管道; (10)进出汽轮机的蒸汽管道; (11)进出往复压缩机、透平鼓风机的工艺管道; (12)进出反应器的高温管道; (13)与离心泵连接的管道,可根据设计要求或按图3.0.1确定柔性设计方法;

(14) 连接易碎设备(如:石墨换热器、搪瓷设备等)的管道; (15) 需要设置弹簧支吊架或特殊管架的管道及配管设计人员要求提供支承点详细 受力状况的管道 (16) 与下沉量较大的设备(塔、罐、槽等)相连接的管道; (17) 利用简化分析方法分析后,表明需要进一步详细分析的管道。 3.0.3 计算机分析采用美国COADE 公司的CAESAR II 软件。 3.0.4 下列管道可不再进行柔性设计: 图3.0.1 离心泵柔性设计方法的选择图 (1) 温度在 -45℃至100℃之间的管道,但管道在两固定点间不能直线相连(软连接除外)。 (2) 对运行良好的管道进行复制的管道,或在系统中未作重大改动且有完整满意的操作记录的更换管道。 (3) 与已分析并合格的管道相比较,能作出肯定的判断,认为具有足够的柔性的管道。 (4) 对具有同一直径、同一壁厚、无支管、两端固定、无中间约束并能满足下式要求的非极度危害或非高度危害介质管道: D Y L U 02083()2 .-≤ (3.0.3-1) Y = (△X 2+△Y 2+△Z 2)1/2 (3.0.3-2) 式中 D 0──管道外径(mm); Y ──管道总变形量(mm);

应力分析设计规定

目次 1 总则 (1) 1.1 范围 (1) 1.2 管道应力分析的任务 (1) 2 引用文件 (2) 3 设计 (2) 3.1 一般规定 (2) 3.2 管道冷紧 (3) 3.3 摩擦力 (3) 3.4 弹簧支吊架 (3) 3.5 设计条件 (4) 3.6 应力计算 (5) 3.7 力与力矩计算 (5) 3.8 管道应力分析评定标准 (5) 3.9 应力分析的方法 (8) 3.10 应力分析管道分类 (9) 4 应力分析报告 (12)

1 总则 1.1 范围 本标准规定了石油化工装置内管道应力分析的原则和相关要求。 本规定适用于石油化工装置设计压力不大于 42MPa,设计温度不超过材料允许使用温度的碳钢、合金钢及不锈钢管道的应力设计。 专利设备或成套设施,其设备的操作、维修、管道布置还应满足设备制造厂的特殊要求及标准。 执行本规定的同时,尚应符合国家现行有关标准。 1.2 管道应力分析的任务 管道应力分析的任务是保证管道系统布置的安全和经济性,避免发生以下情况: a) 因管道应力过大或金属疲劳而引起管道或支架损坏; b) 管道连接处发生泄漏; c) 因管道的推力和力矩过大而使管道或与管道连接的设备产生不允许的应力或变形; d) 管道从所在支架上脱落; e) 由于外部振动或管内流体引起的管道共振; f) 管道挠度过大,尤其是对于带有一定坡度自流排液的管道。 2 引用文件 GB50009 建筑结构荷载规范 GB/T20801 压力管道规范工业管道 SH/T3039 石油化工非埋地管道抗震设计通则 ASME B31.3 Process Piping API610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries API617 Centrifugal Compressors for Petroleum, Chemical, and Gas Service Industries API661 Air-Cooled Heat Exhangers for General Refinery Service NEMA SM23 Steam Turbines for Mechanical Drive Service 3 设计

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

管道设计中关于管道应力的分析与考虑

管道设计中关于管道应力的分析与考虑 摘要:管道应力分析应该保证在设计的条件下有足够的柔性,为的是防止管道因为过度膨胀冷缩、管道自振或者是端点附加位移造成应力问题,在管道设计的时候,一部分管道要求必须进行管道应力分析和相关计算,同时还有一部分管道是不需要进行应力分析的,这种的管道分为两个部分,一种是根据实际的经验或者是已经成功的工程案例,在管道的设计中加上相应的弯管、膨胀节等环节来避免,所以就不需要进行管道应力分析,另一种就是管道的管径比较小,管道比较短,常温常压,不连接设备或者是不会产生振动,所以就不需要进行应力分析,文章就对管道的应力分析进行了详细的介绍说明。 关键词:管道设计应力分析柔性标准 一、管道应力分析的主要内容 管道应力分析主要分为两个部分,动力分析和静力分析: 1、管道应力分析中的动力分析 动力分析主要包括了六个方面,第一是管道自振频率的分析,为的是有效的防止管道系统的共振现象;第二是管道强迫振动相应的分析,目的是能够有效的控制管道的振动和应力;第三是往复压缩机(泵)气(液)柱的频率分析,通过对压缩机(泵)气(液)柱的频率的相关分析有效的防止气(液)柱的共振现象发生;第四是往复压缩机(泵)压力脉动的分析,起到控制压力脉动值的作用;第五是冲击荷载作用下的管道应力分析,可以防止管道振动和应力过大;第六是管道地震分析,为防止管道地震应力过大。 2、管道应力分析中的静力分析 静力分析包括了六个方面的内容:第一是压力荷载以及持续荷载作用下的一次应力计算,为的是有效的防止塑性变形的破坏;第二是管道热胀冷缩和端点附加位移产生的位移荷载作用下的二次应力计算,通过二次应力分析计算防止疲劳破坏;第三是管道对设备产生的作用力的相应计算,能够防止作用力太大,有效的保证设备的正常运行;第四是对于管道的支吊架的受力分析计算,能够为支吊架的设计提供充足的依据;第五是为了有效的防止法兰的泄漏而对管道法兰进行的受力分析;第六是管系位移计算,防止管道碰撞和支吊点位移过大 2、管道应力分析的目的 对管道进行应力分析为的就是能够使管道以及管件内的应力不超过许可使用的管道应力值;为了能够使和管道系统相连接的设备的管道荷载保持在制造商或者是国际规定的许可使用范围内;保证和管道系统相连接的设备的管口局部管道应力在ASME Vlll允许的范围内;为了计算管道系统中支架以及约束的设计荷

压力容器应力分析设计方法的进展和评述优选稿

压力容器应力分析设计方法的进展和评述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。

分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理 论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿 命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。 综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法 和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME 新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为:

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

管道应力分析设计规定——寰球标准

2003年 月 日发布 2003年 月 日实施 质 量 管 理 体 系 文 件 HQB-B06-05.306PP-2003 设计规定 管道应力分析设计规定 版 号:0 受控号:

管道应力分析设计规定HQB-B06-05.306PP- 2003版号编制校核审核批准批准日期 主编部室:管道室参编部室: 参编人员: 参校人员: 会签部室 签署 会签部室 签署 会签部室 签署 说明: 1.文件版号为A、B、C......。 2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。

本规定(HQB-B06-05.306PP-2003)自2003年月实施。 目录 1. 总则 (1) 2. 应力分析管线的分类及应力分析方法 (2) 3. 管道应力分析设计输入和设计输出 (6) 4. 管道应力分析条件的确定 (9) 5. 管道应力分析评定准则 (11) 附件1 管线应力分析分类表 (14) 附件2 设备管口承载能力表 (15) 附件3 柔性系数k和应力增强系数i (16) 附件4 API 610《一般炼厂用离心泵》(摘录) (17) 附件5 NEMA SM23 (摘录) (22) 附件6 API 661 《一般厂用空冷器》(摘录) (23)

1. 总则 1.1 适用范围 1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。 本规定所列内容为管道应力分析设计工作的最低要求。 1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题: 1)管道的应力过大或金属疲劳引起管道或支架破坏。 2)管道连接处泄漏。 3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应 力,而影响了设备的正常运行。 4)管架因强度或刚度不够而造成管架破坏。 5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。 6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管 道振动及破坏。 1.2 应力分析设计工作相关的标准、规范: 1) GB150-1999 《钢制压力容器》 2) GB50316-2000 《工业金属管道设计规范》 3) HG/T20645-1998 《化工装置管道机械设计规定》 4) JB/T8130.2-95 《可变弹簧支吊架》 5) JB/T8130.1-95 《恒力弹簧支吊架》

PDMS11.6管道应力分析接口用户指南

psi116/psi_user_guide116 Issue 201106 Rev 1 PDMS 11.6管道应力分析接口用户指南 NOTE: AVEVA Solutions has a policy of continuing product development: therefore, the information contained in this document may be subject to change without notice. AVEVA SOLUTIONS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. While every effort has been made to verify the accuracy of this document, AVEVA Solutions shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance or use of this material. This manual provides documentation relating to products to which you may not have access or which may not be licensed to you. For further information on which Products are licensed to you, refer to your license conditions. Copyright 1991 through 2006 AVEVA Solutions Limited All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of AVEVA Solutions. The software programs described in this document are confidential information and proprietary products of AVEVA Solutions or its licensors. For details of AVEVA's worldwide sales and support offices, see our website at: https://www.wendangku.net/doc/575553731.html, PSI 11.6 User Guide Contents-i Contents 1 Introduction (1) 1.1 About this User Guide (1) 1.2 Overview of the PSI application (1) 2 Starting the application (2) 3 The Groups Tab (5) 3.1 Creating a Stress Group (5) 3.2 Adding and Removing Members (5) 3.3 Rebuild Selected Group (7) 3.4 Find a Group (7) 4 The Display Tab (8) 4.1 Graphics (8) 4.2 Animation (10) 4.2.1 Animation Speed (10) 4.2.2 Processing Order (11) 4.3 Active Stress Group (11) 5 Menus and

管道设计之管道应力分析

管道设计之管道应力分析 开篇 Email: 156578102@https://www.wendangku.net/doc/575553731.html, 对管道支撑件(如固定支架、止推支架、导向支架、滑动支架、滚动支架、吊架、弹簧支架等)、阻尼件(如阻尼器)、柔性件(如膨胀节)的选型与设置;对与管道相连的设备的定位、操作的理解;对管道走向的调整与斟酌;对管道元件的局部分析与处理(如法兰、支架生根、SIF);对管道开停车工况及其介质特性的理解;对管道可能遭受的偶然载荷(如气液两相流、水锤、气锤、安全阀反力、风载荷、地震载荷)的理解程度,一定程度上体现了一个设计院管道设计的水平。 虽然柔性分析仍然是管道应力分析的主要内容,但与振动有关的破坏也越来越受到重视,所以管道设计需要刚柔并济。话虽这么说,但有时候确实很难,这个时候应该查找相关资料来佐证自己的想法,做到有分寸的考虑相关问题,不能一味按某个不切实际方向去做。1.管道应力专业工作 1.1编写本装置的应力分析统一规定,明确本装置执行的规范及版本,软件及版本; 1.2根据统一规定,编写本装置的应力分析关键管线表; 1.3参与关键管线及其设备的布置研究; 1.4参与关键设备的技术谈判; 1.5的委托条件进行详细应力分析(这部分内容很多,等以后大家都了解后可以针对不同管系展开说明),提出应力计算报告及修改意见; 1.6受报告并解读报告,按要求修改管道走向及选取支架,向土建、设备专业返回受力及扰度要求; 1.7置的三查四定及开车。 2.配管委托条件应包括哪些内容 2.1单线图:

2.2设备总装图:设备外形图、材质、温度等; 2.3调节阀、安全阀数据表:重量、反作用力、压力等级、材质等; 2.4其他应力分析过程中需要的资料:如PID流程图、管道表、材料等级表、当地风、地震等数据等等。 3.如何理解应力分析报告 3.1节点号: 在单线图上感兴趣的点称为节点,通常会在管道端点、支吊点、三通、弯头、大小头、管道属性改变处(如管径、壁厚、保温、温度、压力等)、阀门端面、法兰端面、膨胀节及一些特殊需要而增设等处设置节点号。 3.2 支架类型: 在单线图上应该清楚的表示管道的支架型号示意图,配管专业应按图示要求结合该点的受力、位移要力求选取合适的支架或者组合支架。 【选读材料】 支吊架的强度及刚度应满足该点的受力及位移要求;配管预设管道支架位置,应满足管道的许用跨距;在载荷集中处、弯管和大直径三通分支管附近处应留有支架位置;支架与管道生根处的材质宜与管道同材质;输送介质温度等于或高于400℃的碳钢管道、输送冷冻介质的管道、合金钢、不锈钢、需热处理的管道应尽可能需用抱箍型支架;比较常见的支架类型有: 固定支架:进出装置的边界点宜设置固定支架(应与另一装置负责人协调,至少应告之对方);应力分析管系与非应力分析管系断开点在详细考虑后可设置固定支架;在有冲击载荷的阀门如减温减压阀、有相变的调节阀、安全阀在充分考虑各种工况后在合适的位置设置固定支架;管道柔性元件(如会产生压力推力型的膨胀节)的直管两端合适位置应设置固定支架;复杂管系分为若干简单管系处宜设置固定支架; 防振支架:对往复式压缩机等具有压力脉动的管系应尽可能的设置防振支架,宜独立生根,宜采用抱箍型内嵌缓冲垫,如讲究,对支架还需提刚度要求; 刚性滑动支架:应注意管托长度,使其满足管道膨胀位移量的要求; 刚性可调支架:在泵进出口管道可设置刚性支架的情况,一般选用可调支架; 刚性滚动支架:对管口受力要求苛刻的敏感设备,为了减少摩擦力,有可能会选择滚动支架; 刚性吊架:选取吊杆时应使吊杆长度满足管道膨胀位移量的要求,通常来说,当管道热态时,吊杆与垂直线的夹角应该控制在3o(不同设计院根据不同要求,但是最好不要太大)以内;吊杆与钢结构的生根形式应可偏转,不可固定住(除非特别注明,或者无温度的管道);吊架也可用于对摩擦力有苛刻要求的场合。导向吊架:为了使管道较高的固有频率,抵御风、地震、安全阀排放反力、水击等偶然载荷应在合适的位置设置导向支架;为了保持管道的稳定应在合适的位置设置导向支架;为了控制管道热涨位移在合理的范围内或者控制热涨位移的分配应在合适的位置设置导向支架;有些管道柔性元件的要求(如装有通用型膨胀节的直管道应按规范要求设置导向支架,控制管道沿轴向膨胀及柱稳定;为控制设备管嘴受力、法兰泄露等可在合适的位置设置导向支架; 止推支架:为了使管道较高的固有频率,抵御风、地震、安全阀排放反力、水击等偶然载荷应在合适的位

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

管道应力设计规定

管道应力设计规定 1 范围 1.1 本标准对管道应力分析设计条件、评定标准以及分析方法进行了规定。 1.2 适用于设计压力不大于42 MPa,设计温度不超过材料允许使用温度,非直接埋地且无衬里的低碳素钢、合金钢或不锈钢管道。 2 引用标准 使用本标准时,应使用下列标准的最新版本。 GB 50316 《工业金属管道设计规范》 GB 50009 《建筑结构荷载规范》 SH 3039 《石油化工企业非埋地管道抗震设计通则》 API 610 《石油、化工和气体工业用离心泵》 API 617 《石油、化工和气体工业用离心式压缩机》 NEMA SM23 《机械驱动用汽轮机》 3 设计规定 3.1 一般要求 3.1.1 应兼顾管道热补偿及防振要求。 3.1.2 应兼顾管道及设备安全,应避免管道对相关设备造成危害。 3.1.3 应优先采取自然补偿方法解决管道柔性问题,安装空间狭小而不具备自然补偿条件时方考虑采用金属膨胀节。采用膨胀节应考虑满足工艺条件及防腐要求,不得采用填函式伸缩节和球形补偿器。 3.1.4 可采取冷紧措施减小管道对设备、法兰以及固定架的作用力,但不可以应用在敏感转动设备的管道上。 3.1.5 存在明显振源的管道应优先考虑防止其振动。 3.1.6 往复式压缩机管道应按照与制造商签定的合同要求进行防振计算。 3.2 设计条件 3.2.1 计算基础数据应由相关各专业提供。 3.2.2 计算工况应涵盖最不利工况,如烘炉、催化剂再生、烧焦、吹扫等特殊工况。 3.2.3 另有规定除外,热态计算温度按最高操作温度状态确定。对于有外隔热层管道,计算温度取介质温度;对于无外隔热层管道,计算温度可取95 %介质温度;对于有内隔热层管道,计算温度应根据热传导计算确定。 3.2.4 另有规定除外,安装温度取20 ℃。 3.2.5 另有规定除外,冷态计算温度取安装温度。 3.2.6 另有规定除外,计算压力取最高操作压力。 3.2.7 金属管道的许用应力按GB 50316附录A取值。 3.2.8 柔性系数及应力加强系数按GB 50316附录E计算。

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 姓名:XXX 部门:XXX 日期:XXX

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 第 2 页共 6 页

2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、工艺和检测水平是保证分析设计能得以实施的前提条件。应力分类法 3.1.应力分类法是当今分析设计的主流方法 应力分类法有如下优点: 3.1.1.简单。采用工程设计人员非常熟悉的弹性应力分析方法。应力评定时直接给出各类等效应力的许用值,因而应力分类后的强度校核与常规设计类似。 第 3 页共 6 页

相关文档