文档库 最新最全的文档下载
当前位置:文档库 › PMAC PID调整方法

PMAC PID调整方法

PMAC PID调整方法
PMAC PID调整方法

1 设置M变量M118、M218、M318、M418

它们的地址的PMAC建议的地址。看是否编码器反馈有问题。如果等于1说明编码器计数有错误。

2、打开PMAC Tuning Pro2

3、一般第一步是看系统的开环特性

看开环特性是否正确:指令和反馈是否方向一致,

另外是观察系统的线性度,如果驱动器是力矩环,速度反馈最好是三角波,上图为力矩环。如果是速度环,速度反馈应为方波。总之要求反馈的线性度要好,不应该有其它频率波动成份。

开环特性正确后,开始调整稳态特性,用阶越响应。

比例明显过小

加大比例后。

再加大比例

微分有点大了,稳态特性有一定的频率波动。

适合减小微分

这样的阶越响应特性还不错。但为保证系统的稳定,还要减小比例值,即系统的刚性。减到原来的75%比较好。

这是比例或微分太大了的例子,电机很振!

下面来调整动态响应性能。要说明的是“Move Size”和“Move Time”要接近系统的实际运行特性。

没有速度前馈时“Following Error”大约有1240Cts。

加入速度前馈后。一般Ixx32=Ixx31.

再细调速度前馈后的曲线。跟踪误差进一步缩小。

加入加速度前馈前

比较好的加入加速度前馈后,这样的曲线说明系统存在摩擦。我们还要加入摩擦前馈。

加入正确的摩擦前馈后,除了在系统加速度突变的三个点外的跟踪误差都在20CTS内。实际的系统不会有这样的指令,也不应该有。

这就是比较好的动态响应曲线了!

这是另一台电机的开环特性,线性度要比上面的好。

这是另一台好一点的电机动态特性。PMAC力矩方式PID调整口绝

阶越响应调反馈

反馈先调P和D

其它增益先置零

P是刚性D阻尼

刚性越强速越快

阻尼抑制超调量

刚性过强易振荡

阻尼过大噪声响

参数调整要细心

先小后大慢慢增

参数调整并不难

关键找寻故障源

性能克星有两种

机械共振与噪声

噪声过大查走线

尽量避免用低通

如果系统有共振

则需陷波来参与

倘若以上不奏效机械系统需改善

反馈调完调前馈二阶速度来助阵速度前馈不用调直接设为微分量加速前馈意明了惯量与之可等效惯量越大值越大参数范围可很宽摩擦前馈勿忽略补偿摩擦有一手最后在把积分加

下面的供您参考。

(完整word版)PID调节方法分享S7-1200PID

1.S7 1200 PLC PID参数翻译 i_Mode : pid 控制器模式(Int)0:未激活1:预调节2:手动精确调节3:自动模式4:手动模式。 i_ModeOld: i_SveModeByEnMan: i_StateOld: r_Ctrl_Gain:比例增益(Real) r_Ctrl_Ti:积分作用时间(Real) r_Ctrl_Td:微分作用时间(Real) r_Ctrl_A: r_Ctrl_B: r_Ctrl_C: r_Ctrl_Cycle:PID算法采样时间(Real)

2 . PID参数输入输出参数 Setpoint:设定值(Real) Input:过程值实测值(Real) Input_PER:模拟量过程值(Word) Output:输出值(Real) Output_PER:模拟量输出值(Word) Output_PWM:脉冲宽度输出值(Bool) ManualEnable:手动模式 ManualValue:手动输出值 Reset:复位PID控制器 b_InvCtrl:取反逻辑 3.PID调试方法: a.设定一个比较大的积分时间,比较小的微分作用时间, 比例由小到大,到曲线发生振 荡。调小比例使曲线相对平稳。 b.--调小积分到消除静态误差,使曲线趋于平稳。 c.--干扰系统,使其产生动态误误差,观察系统抑制误差能力是否达标,抑制能力弱, 放大微分作用时间或者比例增益,使其抑制能力增强。 比例作用:加快系统反应速度,有利于抑制动态误差,太强会过调,曲线震荡,太小动态误差抑制能力弱。 积分作用:消除静态误差,使曲线趋于平稳 微分作用:感知曲线变化趋势,提前启动调节,太大不利于曲线平稳,太小动太误差抑制能力弱。

PID参数设置及调节方法

PID参数设置及调节方法 方法一: PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 我在手册上查到的,并已实际的测试过,方便且比较准确 应用于传统的PID 1。首先将I,D设置为0,即只用纯比例控制,最好是有曲线图,调整P值在控制范围内成临界振荡状态。 记录下临界振荡的同期Ts 2。将Kp值=纯比例时的P值 3。如果控制精度=1.05%,则设置Ti=0.49Ts ;Td=0.14Ts ;T=0.01 4 控制精度=1.2%,则设置Ti=0.47Ts ;Td=0. 16Ts ;T=0.043 控制精度=1.5%,则设置Ti=0.43Ts ;Td=0. 20Ts ;T=0.09 朋友,你试一下,应该不错,而且调试时间大大缩短 我认为问题是,再加长积分时间,再减小放大倍数。获得的是1000rpm以上的稳定,牺牲的是系统突加给定以后系统调节的快速性,根据兼顾原则,自己掌握调节指标吧。 方法二: 1.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 2.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,

PID调节方法

PID调节方法 PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求...PLC编程指令里都会有PID这个功能指令...至于P,I,D 数值的确定要在现场的多次调试确定.. 比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个

系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制.比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0 u(t)——输出 Kp——比例放大系数 Ki——积分放大系数 e(t)——误差 u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。 PI两个结合使用的情况下,我们的调整方式如下: 1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P 值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,

PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。P值增减先按倍 数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。 2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。直到偏差小到符合要求。 3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值, 又不发生震荡为度。 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后 再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘 往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长, 理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节 系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 PID控制原理与PID参数的整定方法 PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对 炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制 与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。 假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使 炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根 据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差 为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大 于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。 上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的 转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后 不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟 作用。比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即

PID调试步骤(精)

1. PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID 的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能

PID调节方法

PID调节方法: ●你先设定I和D参数为0,P参数设小点,观察一下控制流量的效果,如果响应过慢的 话,再适当加大P值和I值。如果反复振荡,则减小P值,加大I值;D值就为0,可以不管。要达到好的效果,只能慢慢试,耐心点。 ●PID参数设定直接影响流量的稳定度,PI设定值大电动阀稳定,PI设定值小电动阀灵 敏。要根据工艺流程来设定。 ●pid的设定需要一定的经验我的经验是先将PI的值设大一些,之后逐渐减少. ●PID是比例,积分,微分的缩写, Uo(N)=P*E(N)+I*[E(N)+E(N-1)+...+E(0)]+D*[E(N)-E(N-1)] E-误差 P--改变P可提高响应速度,减小静态误差,但太大会增大超调量和稳定时间。 I--与P的作用基本相似,但要使静态误差为0,必须使用积分。 D--与P,I的作用相反,主要是为了减小超调,减小稳定时间。 三个参数要综合考虑,一般先将I,D设为0,调好P,达到基本的响应速度和误差,再加上I,使误差为0,这时再加入D,三个参数要反复调试,最终达到较好的结果。不同的控制对象,调试的难度相差很大,祝好运! ●PID调试步骤 PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID一般表达式 PID模拟算法:U(t)=P*[e(t)+ 1/Ti*∫0te(t)dt+Td*de(t)/dt] PID数字算法:U(K)=P*{[e(K)-e(K-1)+Ts/Ti*e(K-1)+Td/Ts*[e(K)-2e(K-1)+e(K-2)]]}+ U(K-1) 其中P为比例增益;Ti为积分时间常数;Td为微分时间常数;PID调节器要调节的也就是这三个参数。e(t)为输入误差;Ts为数字PID运算的采样周期。 3.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 4.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P

完整介绍pid调试方法

1.1 衰减曲线法 衰减曲线法是在总结临界比例带法基础上发展起来的,它是利用比例作用下产生的4:1衰减振荡(ψ=0.75)过程时的调节器比例带δs 及过程衰减周期s T , 据经验公式计算出调节器的各个参数。 衰减曲线法的具体步骤是: (1)置调节器的积分时间i T →∞,微分时间d T →0,比例带δ为一稍大的值;将系统投入闭环运行。 (2)在系统处于稳定状态后作阶跃扰动试验,观察控制过程。如果过渡过程衰减率大于0.75,应逐步减小比例带值,并再次试验,直到过渡过程曲线出现4:1的衰减过程。记录下4:1的衰减振荡过程曲线,如图所示的曲线上求取ψ=0.75时的振荡周期s T 结合此过程下的调节器比例带s δ,按表计算出调节器的各个参数。 表衰减曲线法计算公式 4:1衰减曲线法PID 参数整定经验公式 10:1衰减曲线法PID 参数整定经验公式

图衰减曲线 (3)按计算结果设置好调节器的各个参数,作阶跃扰动试验,观察调节过程,适当修改调节器参数,到满意为止。 与临界比例带法一样,衰减曲线法也是利用了比例作用下的调节过程。从表3-5可以发现,对于ψ=0.75,采用比例积分调节规律时相对于采用比例调节规律引入了积分作用,因此系统的稳定性将下降,为了仍然能得到ψ=0.75的衰减

率,就需将s δ放大1.2倍后作为比例积分调节器的比例带值。 1.2临界比例带法 临界比例带法又称边界稳定法,其要点是将调节器设置成纯比例作用,将系统投入自动运行并将比例带由大到小改变,直到系统产生等幅振荡为止。这时控制系统处于边界稳定状态,记下此状态下的比例带值,即临界比例带K δ以及振荡周期K T ,然后根据经验公式计算出调节器的各个参数。可以看出临界比例带法无需知道对象的动态特性,直接在闭环系统中进行参数整定。 临界比例带法的具体步骤是: (1)将调节器的积分时间置于最大,即i T →∞;置微分时间d T =0;置比例带δ于一个较大的值。 (2)将系统投入闭环运行,待系统稳定后逐渐减小比例带δ,直到系统进入等幅振荡状态。一般振荡持续4~5个振幅即可,试验记录曲线如图3-7所示。 图等幅振荡曲线 (3)据记录曲线得振荡周期K T ,此状态下的调节器比例带为K δ,然后按表3-6计算出调节器的各个参数。 表1 临界比例带法计算公式()75.0=ψ (4)将计算好的参数值在调节器上设置好,作阶跃响应试验,观察系统的调节过程,适当修改调节器的参数,直到调节过程满意为止。

PID调节参数(FB41)

PID调节-----西门子FB41使用 准备用连续PID调节来实验一个控制,在软件上做了一个简单的PID41用仿真模拟了一把,情况还好,基本可以运行,但是其中的一些小的功能还是没有做好.想仔细再看看说明.幸好有一位网又一起讨论,得到了一个比较好的说明.传上来以免以后找不到. 使用FB41进行PID调整的说明 FB41称为连续控制的PID用于控制连续变化的模拟量,与FB42的差别在于后者是离散型的,用于控制开关量,其他二者的使用方法和许多参数都相同或相似。PID的初始化可以通过在OB100中调用一次,将参数COM-RST置位,当然也可在别的地方初始化它,关键的是要控制COM-RST;PID的调用可以在OB35中完成,一般设置时间为200MS,一定要结合帮助文档中的PID框图研究以下的参数,可以起到事半功倍的效果以下将重要参数用黑体标明.如果你比较懒一点,只需重点关注黑体字的参数就可以了。其他的可以使用默认参数。 A:所有的输入参数: COM_RST: BOOL: 重新启动PID:当该位TURE时:PID执行重启动功能,复位PID内部参数到默认值;通常在系统重启动时执行一个扫描周期,或在PID进入饱和状态需要退出时用这个位; MAN_ON:BOOL:手动值ON;当该位为TURE时,PID 功能块直接将MAN的值输出到LMN,这可以在PID框图中看到;也就是说,这个位是PID的手动/自动切换位;

PEPER_ON:BOOL:过程变量外围值ON:过程变量即反馈量,此PID可直接使用过程变量PIW(不推荐),也可使用PIW 规格化后的值(常用),因此,这个位为FALSE; P_SEL:BOOL:比例选择位:该位ON时,选择P(比例)控制有效;一般选择有效; I_SEL:BOOL:积分选择位;该位ON时,选择I(积分)控制有效;一般选择有效; INT_HOLD BOOL:积分保持,不去设置它; I_ITL_ON BOOL:积分初值有效, I-ITLV AL(积分初值)变量和这个位对应,当此位ON时,则使用I-ITLV AL变量积分初值。一般当发现PID功能的积分值增长比较慢或系统反应不够时可以考虑使用积分初值; D_SEL :BOOL:微分选择位,该位ON时,选择D(微分)控制有效;一般的控制系统不用; CYCLE :TIME:PID采样周期,一般设为200MS;SP_INT:REAL:PID的给定值; PV_IN :REAL:PID的反馈值(也称过程变量); PV_PER:WORD:未经规格化的反馈值,由PEPER-ON选择有效;(不推荐)MAN :REAL:手动值,由MAN-ON选择有效;GAIN :REAL:比例增益; TI :TIME:积分时间; TD :TIME:微分时间;

PID调节心得

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。 比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 常用口诀: 参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 可以用MATLAB仿仿,感受一下参数对典型对象动态特性影响 请参考“先进PID控制及其MATLAB仿真”,刘金琨编,电子工业出版社2003年1月版 控制电动阀的开度来达到控制温度是可以的,我个人认为用比例电磁阀替代电动阀完全可以实现PID的控制。因为比例电磁阀有标准的模拟量输入信号和反馈

PID调节方法

谈如何整定PID 参数 各种工艺装置采用DCS 系统主要实现生产过程的自动化控制,DCS 系统在各类生产装置工艺过程中占有举足轻重的地位,它好比工艺生产过程的眼睛,是指挥和控制生产过程的大脑和神经中枢,是各类生产装置保证工艺指标、安全稳定运转、节能降耗及优化操作和改善生产管理的关键,DCS 能否发挥应有的作用和取得用户满意的效果,其中自控率是一项很重要的指标,调节系统能否投入自动,PID 参数整定很关键。 壱、调节器正/反作用的确定方法 调节系统投自动:往往在控制方案确定好且判断出调节器的正/反作用后,最关键的是P 、I 、D 参数如何整定,根据多年的现场工作经验,谈谈如何整定调节系统的P 、I 、D 参数,请大家在工程中参考。 在整定调节系统的P 、I 、D 参数前,要保证一个闭环调节系统必须是负反馈,即Ko*Kv*Kc >0。 “C” 确定调节器正/反作用之简单示例图

单回路PID调节系统方框图 调节对象Ko:阀门、执行器开大,测量PV增加,则Ko>0;反之,则Ko<0; 调节阀门Kv:阀门正作用(气开、电开),则Kv>0;阀门反作用(气关、电关),则Kv<0; Ko、Kv的正负由工艺对象和生产安全决定,根据Ko、Kv的正负和Ko*Kv*Kc >0,我们可以确定Kc的正负, 调节器Kc:若Kc>0,则调节器为反作用;若Kc<0,则调节器为正作用;软件组态中要设置正确,在装置调试和开车及P、I、D参数整定前,调节器的正/反作用务必检查,且正确无 误。 1)在整定调节系统的P、I、D参数前,要保证测量准确、阀门动作灵活; 2)在整定调节系统的P、I、D参数时,打好招呼,要求用户工艺操作密切注意生产运行 状况,确保安全生产; 3)在整定调节系统的P、I、D参数时,先投自动后串级,先投副环后主环,副环粗,主 环细。在操作站CRT上,打开调节器的整定调整画面窗口,改变给定值SP或输出值 OP,给出一个工艺允许的阶跃信号,观察测量值PV变化和趋势图,不断修定PID参 数,往往反复几次,直至平稳控制。实际中,一般能达到工艺满意的一阶特性即可。 二、经验PID整定参数预置 对介质为流体(气体、液体)情况,经验PID整定参数参考如下,(在出所前最好在软件组态中要设置好,到现场再细调或不动): 1、对流量调节(F): 一般P=120~200%,I=50~100S,D=0S; 对防喘振系统:一般P=120~200%,I=20~40S,D=15~40S; 2、对压力调节(P): 一般P=120~180%,I=50~100S,D=0S; 对放空系统:一般P=80~160%,I=20~60S,D=15~40S; 3、对液位调节(L): 1]、大容器(直径4米、高2米以上塔罐):一般P=80~120%,I=200~900S,D=0S; 2]、中容器(直径2--4米、高1.5--2米塔罐):一般P=100~160%,I=80~400S,D=0S; 3]、小容器(直径2米、高1.5米以下塔罐):一般P=120~300%,I=60~200S,D=0S; 4、对温度调节(T):一般P=120~260%,I=50~200S,D=20~60S; 上述参数是经验性的东西,不是绝对的。另外实际中,有时一个调节系统工艺过程对象或阀门(定位器)存在问题,也能靠改变PID参数予以克服,使自动投入。投自动需要耐心观察、不断修正。实践中

温控电路PID参数的调节方法

在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。调节器是根据设定值和实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量是加热或制冷的功率。PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。PID调节按基本理论是属于线性调节。但由于直接控制量的幅度总是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。这时系统是非线性工作。手动对PID进行整定时,总是先调节比例环节,然后一般是调节积分环节,最后调节微分环节。温度控制中控制功率和温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。许多文献对PID整定都给出推荐参数。 PID是依据瞬时误差(设定值和实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动.大家讲的都不错. 比例:实际温度与设定温度差得越大,输出控制参数越大。例如:设定温控于60度,在实际温度为50和55度时,加热的功率就不一样。而20度和40度时,一般都是全功率加热.是一样的. 积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点是随时间延长而增大.在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡. 方法是按比例.微分.积分的顺序调.一次调一个值.调到振荡范围最小为止.再调下一个量.调完后再重复精调一次. 要求不是很严格. 先复习一下P、I、D的作用,P就是比例控制,是一种放大(或缩小)的作用,它的控制优点就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。举个例子:如果你煮的牛奶迅速沸腾了(你的火开的太大了),你就会立马把火关小,关小多少就取决于经验了(这就是人脑的优越性了),这个过程就是一个比例控制。缺点是对于具有自平衡性的被控对象存在静态误差,加大Kp可以减小静差,但Kp过大时,会导致控制系统的动态性能变坏,甚至出现不稳定。所谓自平衡性是指系统阶跃响应的终值为一有限值,举个例子:你用10%的功率去加热一块铁,铁最终保持在50度左右,这就是一个自平衡对象,那静差是怎样出现的呢?比例控制是通过比例系数与误差的乘积来对系统进行闭环控制的,当控制的结果越接近目标的时候,误差也就越小,同时比例系数与误差的乘积(控制作用)也在减小,当误差等于0时控制作用也为0,这就是我们最终希望的控制效果(误差=0),但是对于一个自平衡对象来说这一时刻是不会持续的。就像此时你把功率降为0,铁是不会维持50度的(不考虑理想状态下),铁的温度开始下降了,误差又出现了(本人文采不是很好,废这么多话相信大家应该明白了!)。也就是比例控制最终会维持一个输出值来使系统处于一个固定状态,既然又输出,误差也就不等于0了,这个误差就是静差。

PID控制简介及PID调节经验方法

PID控制简介及PID调节经验方法 PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 1、开环控制系统 开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过

PID调试和使用方法

PID 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统

PID控制方式

PID 是控制系统中的重要参数,指控制方式,指输出与输入之间的响应方式,英文字母比例积分微分。顾名思义,比例是输出与输入是按一个比例进行的,可调节快慢,通常是改变反馈。积分是输出是输入的积分,就是累加,当输入变化很大输出只按时间长短变化,起到滤波作用,也叫滞后,等效于在输入端并连一个电容。微分是输出只对输入变化部分敏感,特别是输入有尖峰的时候,输出剧烈的响应,但输入不变,不管有多大,输出就为零,因此,也叫超前调节,起加速作用,等效串联一个电容。 PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti 越小, 积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。 微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编

PID控制原理与调整方法

一、前言 在我们燃烧器的自动燃烧控制中,普遍的使用到了PID控制,由于我们对它的了解程度不够深刻,在许多应用现场和用户面前给我们带来了很多尴尬。 为了让大家能深刻的理解并掌握PID,这里我将我搜集到的一些资料结合本人现场调试的一些经验与心得,与大家共同学习探讨。 二、PID控制类型与意义 所谓的PID控制其实是自动控制输出的一种控制类型。它还有P(比例)控制、I(积分)控制、D(微分)控制,组合在一起使用的有PI控制、PD 控制、PID控制。尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 1、比例(P)控制 单独的比例控制也称“有差控制”,控制器输出的变化与输入控制器的偏差(偏差指目标值与实际值之间的差)成比例关系,偏差越大输出越大(或越小根据正反比例有关)。输出=偏差*比例 比如说,一个热风炉出口温度的PID控制的比例是10,它的预定值是500°C。那么它在小于490°C的时候会输出100%,在495°C的时候会输出50%,在499°C的时候输出10%,在偏差是0的时候,控制器的输出也是0。 实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象(例如热风炉的温度控制),为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象(例如蒸汽压力的控制),比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。这里说的比例度的大小不是指P值数字的大小,而是指P值在整个被控对象中所占比例的大小,例如,我们平常的蒸汽压力控制目标为2.0MPa,它的比例取值为1,但它已占最大差值比例的50% ,1/(2-0)*100%=50%。而热风温度控制中,热风目标为500℃,比例取10时,它占最大差值的10%,10/(500-0)*100%=2% 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。

PID调试方法

PID参数确定方法 在实际应用中,我们尽量避免使用高深复杂的数学公式,希望能使经验法更多的发挥能力,这样既可以节省很多时间,也可以通过经验的传授使更多的工程师或工人可以掌握一种简单有效的方法来进行PID控制器的调节。 传统的PID经验调节大体分为以下几步: 1.关闭控制器的I和D元件,加大P元件,使产生振荡。 2.减小P,使系统找到临界振荡点。 3.加大I,使系统达到设定值。 4.重新上电,观察超调、振荡和稳定时间是否符合系统要求。5.针对超调和振荡的情况适当增加微分项。 以上5个步骤可能是大家在调节PID控制器时的普遍步骤,但是在寻找合时的I和D参数时,并非易事。如果能够根据经典的Ziegler-Nichols(ZN 法)公式来初步确定I和D元件的参数,会对我们的调试起到很大帮助。John Ziegler和Nathaniel Nichols发明了著名的回路整定技术使得PID算法在所有应用在工业领域内的反馈控制策略中是最常用的。Ziegler-Nichols 整定技术是1942年第一次发表出来,直到现在还被广泛地应用着。 所谓的对PID回路的“整定”就是指调整控制器对实际值与设定值之间的误差产生的反作用的积极程度。如果正巧控制过程是相对缓慢的话,那么PID算法可以设置成只要有一个随机的干扰改变了过程变量或者一个操作改变了设定值时,就能采取快速和显著的动作。 相反地,如果控制过程对执行器是特别地灵敏而控制器是用来操作过程变量的话,那么PID算法必须在比较长的一段时间内应用更为保守的校正力。回路整定的本质就是确定对控制器作用产生的过程反作用的积极程度和PID算法对消除误差可以提供多大的帮助。 经过多年的发展,Ziegler-Nichols方法已经发展成为一种在参数设定

PID调节方法分享--S7-1200--PID

PID调节方法分享--S7-1200--PID

1.S7 1200 PLC PID参数翻译 i_Mode : pid 控制器模式(Int)0:未激活 1:预调节 2:手动精确调节 3: 自动模式 4:手动模式。 i_ModeOld: i_SveModeByEnMan: i_StateOld: r_Ctrl_Gain:比例增益(Real) r_Ctrl_Ti:积分作用时间(Real) r_Ctrl_Td:微分作用时间(Real) r_Ctrl_A: r_Ctrl_B: r_Ctrl_C: r_Ctrl_Cycle:PID算法采样时间(Real)

2 . PID参数输入输出参数 Setpoint:设定值(Real) Input:过程值实测值(Real) Input_PER:模拟量过程值(Word)Output:输出值(Real) Output_PER:模拟量输出值(Word)Output_PWM:脉冲宽度输出值(Bool)ManualEnable:手动模式ManualValue:手动输出值 Reset:复位PID控制器 b_InvCtrl:取反逻辑

3.PID调试方法: a.设定一个比较大的积分时间,比较小的微分 作用时间, 比例由小到大,到曲线发生振荡。 调小比例使曲线相对平稳。 b.--调小积分到消除静态误差,使曲线趋于平 稳。 c.--干扰系统,使其产生动态误误差,观察系 统抑制误差能力是否达标,抑制能力弱,放大微分作用时间或者比例增益,使其抑制能力增强。 比例作用:加快系统反应速度,有利于抑制 动态误差,太强会过调,曲线震 荡,太小动态误差抑制能力弱。 积分作用:消除静态误差,使曲线趋于平稳 微分作用:感知曲线变化趋势,提前启动调 节,太大不利于曲线平稳,太小 动太误差抑制能力弱。 4. S7-1200 PID程序: 循环中断组织块调用工艺指令PID_Compact

PID调试步骤(附口诀)

时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td 微分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 (1)开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。(2)闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 (3)阶跃响应 阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、

相关文档