文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计第四章 随机变量的数字特征

概率论与数理统计第四章 随机变量的数字特征

概率论与数理统计第四章 随机变量的数字特征
概率论与数理统计第四章 随机变量的数字特征

第四章 随机变量的数字特征

前面讨论了随机变量的分布函数,我们知道分布函数全面地描述了随机变量的统计特性.但是在实际问题中,一方面由于求分布函数并非易事;另一方面,往往不需要去全面考察随机变量的变化情况而只需知道随机变量的某些特征就够了.例如,在考察一个班级学生的学习成绩时,只要知道这个班级的平均成绩及其分散程度就可以对该班的学习情况作出比较客观的判断了.这样的平均值及表示分散程度的数字虽然不能完整地描述随机变量,但能更突出地描述随机变量在某些方面的重要特征,我们称它们为随机变量的数字特征.本章将介绍随机变量的常用数字特征:数学期望、方差、相关系数和矩.

第一节 数学期望

1.数学期望的定义

粗略地说,数学期望就是随机变量的平均值.在给出数学期望的概念之前,先看一个例子.

要评判一个射手的射击水平,需要知道射手平均命中环数.设射手A 在同样条件下进行射击,命中的环数X 是一随机变量,其分布律如下:

表4-1

由X 的分布律可知,若射手A 共射击N 次,根据频率的稳定性,所以在N 次射击中,大约有0.1×N 次击中10环,0.1×N 次击中9环,0.2×N 次击中8环,0.3×N 次击中7环,0.1×N 次击中6环,0.1×N 次击中5环,0.1×N 次脱靶.于是在N 次射击中,射手A 击中的环数之和约为

10×0.1N +9×0.1N +8×0.2N +7×0.3N +6×0.1N +5×0.1N +0×0.1N .

平均每次击中的环数约为

N

1

(10×0.1N +9×0.1N +8×0.2N +7×0.3N +6×0.1N +5×0.1N +0×0.1N ) =10×0.1+9×0.1+8×0.2+7×0.3+6×0.1+5×0.1+0×0.1 =6.7(环).

由这样一个问题的启发,得到一般随机变量的“平均数”,应是随机变量所有可能取值与其相应的概率乘积之和,也就是以概率为权数的加权平均值,这就是所谓“数学期望的概念”.一般地,有如下定义:

定义4.1 设离散型随机变量X 的分布律为

P {X =x k }=p k k =1,2,…, 若级数

∑∞

=1

k k k

p x

绝对收敛,则称级数

∑∞

=1

k k k

p x

为随机变量X 的数学期望(Mathematical expectation),记为E (X ).

E (X )=

∑∞

=1

k k k

p x

. (4.1)

设连续型随机变量X 的概率密度为f (x ),若积分

?

+∞

-x x xf d )(

绝对收敛,则称积分

?

+∞

-x x xf d )(的值为随机变量X 的数学期望,记为E (X ).即

E (X )=

?

+∞

-x x xf d )(. (4.2)

数学期望简称期望,又称为均值.

例4.1 某商店在年末大甩卖中进行有奖销售,摇奖时从摇箱摇出的球的可能颜色为:红、黄、蓝、白、黑五种,其对应的奖金额分别为:10000元、1000元、100元、10元、1元.假定摇箱内装有很多球,其中红、黄、蓝、白、黑的比例分别为:0.01%,0.15%,1.34%,10%,88.5%,求每次摇奖摇出的奖金额X 的数学期望. 解每次摇奖摇出的奖金额X 是一个随机变量,易知它的分布律为

因此,E (X )=10000×0.0001+1000×0.0015+100×0.0134+10×0.1+1×0.885=5.725. 可见,平均起来每次摇奖的奖金额不足6元.这个值对商店作计划预算时是很重要的.

例4.2 按规定,某车站每天8点至9点,9点至10点都有一辆客车到站,但到站的时刻是随机的,且两者到站的时间相互独立

.其分布律为

一旅客8点20分到车站,求他候车时间的数学期望.

解 设旅客候车时间为X 分钟,易知X 的分布律为

表4-4

在上表中p k 的求法如下,例如

P {X =70}=P (AB )=P (A )P (B )=1/6×3/6=3/36,

其中A 为事件“第一班车在8:10到站”,B 为事件“第二班车在9:30到站”,于是候车时间的数学期望为

E (X )=10×3/6+30×2/6+50×1/36+70×3/36+90×2/36=27.22(分钟).

例4.3 有5个相互独立工作的电子装置,它们的寿命X k (k =1,2,3,4,5)服从同一指数分布,其概率密度为

f (x )=?????≤>-.00,0,1/x ,

x x θθe

(1) 若将这5个电子装置串联起来组成整机,求整机寿命N 的数学期望;

(2) 若将这5个电子装置并联组成整机,求整机寿命M 的数学期望.

解 X k (k =1,2,3,4,5)的分布函数为

F (x )=???≤>--.0,

0,

0,1/x x x θe

(1) 串联的情况

由于当5个电子装置中有一个损坏时,整机就停止工作,所以这时整机寿命为

N =min{X 1,X 2,X 3,X 4,X 5}.

由于X 1,X 2,X 3,X 4,X 5是相互独立的,于是i=min{X 1,X 2,X 3,X 4,X 5}的分布函数为

F N (x )=P {N ≤x }=1-P {N >x }

=1-P {X 1>x ,X 2>x ,X 3>x ,X 4>x ,X 5>x }

=1-P {X 1>x }·P {X 2>x }·P {X 3>x }·P {X 4>x }·P {X 5>x }

=1-[1-)(1x F X ][1- )(2x F X ][1-)(3x F X ][1-)(4x F X ][1-)(5x F X ] =1-[1-F (x )]5

=???

??≤>--.0,

0,0,15x x x

θe 因此N 的概率密度为

f N (x )=???

??≤>-.0,

0,0,55x x x

θθe

则N 的数学期望为

E (N )=

5

5)(5θ

θ

θ

=

=-

+∞

-∞

+∞

-?

?

x x

x x xf x

N d e

d

(2) 并联的情况

由于当且仅当5个电子装置都损坏时,整机才停止工作,所以这时整机寿命为

M =max{X 1,X 2,X 3,X 4,X 5}.

由于X 1,X 2,X 3,X 4,X 5相互独立,类似可得M 的分布函数为

F M (x )=[F (x )]5=?????≤>--.0,

0,0,)1(5

x x x θe 因而M 的概率密度为

f M (x )=?????≤>---.0,

0,

0,]1[54

x x x x θθθe e

于是M 的数学期望为

E (M )=

.60

137

)1(5)(0

max θθ

θ=

-=-

+∞

-∞

+?

?

x x

x x xf x

d e d 这说明:5个电子装置并联联接工作的平均寿命要大于串联联接工作的平均寿命.

例4.4 设随机变量X 服从柯西(Cauchy )分布,其概率密度为

f (x )=

)

1(1

2

x +π,-x

证 由于

,)

1(1

)(2

??

+∞

-+∞

-∞=+=x x x

x x f x d πd 故E (X )不存在.

2.随机变量函数的数学期望

在实际问题与理论研究中,我们经常需要求随机变量函数的数学期望.这时,我们可以通过下面的定理来实现.

定理4.1 设Y 是随机变量X 的函数Y =g (X )(g 是连续函数). (1) X 是离散型随机变量,它的分布律为P (X =x k )=p k ,k =1,2,…,若k

k k

p

x g ∑∞

=1

)(绝对收敛,则有

E (Y )=E [g (X )]=

k

k k

p

x g ∑∞

=1

)(. (4.3)

(2) X 是连续型随机变量,它的概率密度为f (x ),若?

+∞

-x x f x g d )()(绝对收敛,则

E (Y )=E [g (X )]=

?

+∞

-x x f x g d )()(. (4.4)

定理4.4的重要意义在于当我们求E (Y )时,不必知道Y 的分布而只需知道X 的分布就可以了.当然,我们也可以由已知的X 的分布,先求出其函数g (X )的分布,再根据数学期望的定义去求E [g (X )],然而,求Y =g (X )的分布是不容易的,所以一般不采用后一种方法.

定理4.1的证明超出了本书的范围,这里不证.

上述定理还可以推广到二个或二个以上随机变量的函数情形. 例如,设Z 是随机变量X ,Y 的函数,Z =g (X ,Y )(g 是连续函数),那么Z 也是一个随机变量,当(X ,Y )是二维离散型随机变量,其分布律为P {X =x i ,Y =y j }=p ij (i ,j =1,2,…)时,若

∑∑i

j

ij

i

i

p

y x g ),(绝对收敛,则有

E (Z )=E [g (X ,Y )]=

∑∑i

j

ij

i

i

p

y x g ),(. (4.5)

当(X ,Y )是二维连续型随机变量,其概率密度为f (x ,y )时,若??

+∞∞-+∞

-y

x y x f y z g d d ),(),(绝对收敛,则有

E (Z )=E [g (X ,Y )]=

??

+∞∞-+∞

-y x y x f y z g d d ),(),(. (4.6)

特别地有

E (X )=??+∞∞-+∞

∞-y x y x xf d d ),(=?+∞

-.)(x x xf X d

E (Y )=

??

+∞∞-+∞

-y x y x yf d d ),(=?+∞

-.)(y y yf Y d

例4.5 设随机变量X 的分布律为

表4-5

求E (X ),E (-2x +1).

解 由(4.5)式得

E (X 2)=(-1)2×

18+02×14+22×38+32×14=318

, E (-2X +1)=[-2×(-1)+1]×18+[-2×0+1]×14+[-2×2+1]×38+[-2×3+1]×1

4

= -74.

例4.6 对球的直径作近似测量,设其值均匀分布在区间[a ,b ]内,求球体积的数学

期望.

解 设随机变量X 表示球的直径,Y 表示球的体积,依题意,X 的概率密度为

f (x )=?????≤≤-.,

0,

,1其他b x a a b

球体积Y =

36

1

X π,由(4.6)式得 E (Y )=x a

b x X E b a d ππ-=?161)61(3

3

=

).)((24

)(6223b a b a x x a b b

a

++=

-?π

d π

例4.7 设国际市场每年对我国某种出口商品的需求量X (吨)服从区间[2000,4000]上的均匀分布.若售出这种商品1吨,可挣得外汇3万元,但如果销售不出而囤积于仓库,则每吨需保管费1万元.问应预备多少吨这种商品,才能使国家的收益最大? 解设预备这种商品y 吨(2000≤y ≤4000),则收益(万元)为

g (X )=??

?<--≥.

),(3,,

3y X X y X y X y

则 E [g (X )]=

?

?-?

=+∞

∞-4000

20002000

40001

)()()(x x g x x f x g d d =

[]??+--4000

2000320001)(320001y y x y x x y x d d =

)1047000(1000

1

62?-+-y y . 当y =3500吨时,上式达到最大值.所以预备3500吨此种商品能使国家的收益最大,最大收益为8250万元.

例4.8 设二维随机变量(X ,Y )在区域A 上服从均匀分布,其中A 为x 轴,y 轴及直

线x +

2

y

=1所围成的三角区域,求E (X ),E (Y ),E (XY ). 解 由于(X ,Y )在A 内服从均匀分布,所以其概率密度

f (x ,y )=???

??

????∈=?∈.),(,0,),(,1,),(,

0,),(,1A y x A y x A y x A y x A 的面积 E (X )=

12(1)

00

1

(,)d d d d d d ;3

x A

xf x y x y x x y x x y +∞+∞

--∞-∞===??

????

E (Y )=

2

12

2(,)d d d d d d ;3

y A

yf x y x y y x y y y x +∞+∞

-

-∞

-∞

===??

????

E (XY )=

;6

1

)1(2),()

1(20

10210

??

?

??+∞∞-+∞

--=-==x x x x y y x x y x y x xyf d d d d d

3.数学期望的性质

下面讨论数学期望的几条重要性质.

定理4.2 设随机变量X ,Y 的数学期望E (X ),E (Y )存在. 1°E (c )=c ,其中c 是常数; 2°E (cX )=cE (X );

3°E (X +Y )=E (X )+E (Y ); 4°若X ,Y 是相互独立的,则有

E (XY )=E (X )E (Y ).

证 就连续型的情况我们来证明性质3°、4°,离散型情况和其他性质的证明留给读者. 3°设二维随机变量(X ,Y )的概率密度为f (x ,y ),其边缘概率密度为f X (x ),f Y (y ),则

E (X +Y )=

??

+∞∞-+∞

-+y x y x f y x d d ),()(

=???

?

+∞∞-+∞

-+∞∞-+∞∞

-+y x y x yf y x y x xf d d d d ),(),(

=

)()()()(Y E X E y y yf x x xf Y X +=+??

+∞∞

-+∞

-d d .

4°又若X 和Y 相互独立,此时

f (x ,y )=f X (x )f Y (y ),故

E (XY )=

??

?

?+∞∞-+∞∞-+∞

-+∞

-=y x y f x xyf y x y x xyf Y X d d d d )()(),(

=

).()()()(Y E X E y y yf x x xf Y X =???

+∞∞

-+∞∞

-d d

性质3°可推广到任意有限个随机变量之和的情形;性质4°可推广到任意有限个相互

独立的随机变量之积的情形.

例4.9 设一电路中电流I (安)与电阻R (欧)是两个相互独立的随机变量,其概率密度分别为

g (i )=???≤≤.,0,10,2其他i i h (r )=?????≤≤.,

0,

30,92其他r r

试求电压V =IR 的均值.

解 E (V )=E (IR )

=E (I )E (R )=2

392)()(303102=????????????=????????????????∞+∞-∞+∞-r r i i r r rh i i ig d d d d (伏). 例4.10 设对某一目标进行射击,命中n 次才能彻底摧毁该目标,假定各次射击是独

立的,并且每次射击命中的概率为p ,试求彻底摧毁这一目标平均消耗的炮弹数.

解 设X 为n 次击中目标所消耗的炮弹数,X k 表示第k -1次击中后至k 次击中目标之间所消耗的炮弹数,这样,X k 可取值1,2,3,…,其分布律见表4-6.

其中q =1-p ,X 1为第一次击中目标所消耗的炮弹数,则n 次击中目标所消耗的炮弹数为

X =X 1+X 2+…+X n .

由性质3°可得

E (X )=E (X 1)+E (X 2)+…+E (X n )=nE (X 1). 又

E (X 1)=

,11

1

p

kpq

k k =

∑∞

=- 故 E (X )=p

n . 4.常用分布的数学期望 (1) 两点分布 设X 的分布律为 E (X )=0×(1-p )+1×p =p .

(2) 二项分布

设X 服从二项分布,其分布律为

P {X =k }=k

n k k n p p --)1(C , (k =0,1,2,…,n),(0

则X 的数学期望为

E (X )=

∑∑==----=-n

k n

k k n k k

n k

k n

p p k n k n k

p p k 0

)1()!

(!!

)

1(C

=[]

∑=----------n

k k n k p p k n k n np

0)]1()1[(1)1(!)1()1()!1()!

1(, 令k -1=t ,则

E (X )=[]∑-=------1

]

)1[()

1(!)1(!)!

1(n t t n t

p p t n t n np

=np [p +(1-p )]n -1=np .

若利用数学期望的性质,将二项分布表示为n 个相互独立的0-1分布的和,计算过程将简单得多.事实上,若设X 表示在n 次独立重复试验中事件A 发生的次数,X i (i =1,2,…,n )表示A 在第i 次试验中出现的次数,则有X =

1

n

i

i X

=∑.

所以E (X i )=p ,i =1,2,…,n .由定理4.2的性质3°有

E (X )=∑∑===??? ??n

i i n i i X E X E 1

1)( =np .

(3) 泊松分布

设X 服从泊松分布,其分布律为

P {X =k }=

λλ-e !

k k

, (k =0,1,2,…),(λ>0).

则X 的数学期望为

E (X )=

∑∑∞

=--∞

=--=1

1

)!1(!k k k k

k k k λλλλ

λ

e

e

,

令k -1=t ,则有

E (X )=.!0

λλλλλλλ

=?=-

=-∑e e e

k t

t .

(4) 均匀分布

设X 服从[a ,b ]上的均匀分布,其概率密度函数为

f (x )=?????≤≤-.,

0,,1其他b x a a b

则X 的数学期望为

E (X )=

.2

)(b

a x a

b x x x xf b

a +=-=?

?

+∞

-d d . (5) 指数分布

设X 服从指数分布,其分布密度为

f (x )=???<≥-.0,

0,0,x x x λλe

则X 的数学期望为

E (X )=

1

()d e d x xf x x x x λλλ

+∞

+∞

--∞

-∞

==

?

?

.

(6) 正态分布

设X ~N (μ,σ2),其分布密度为f (x )=

2

22)(21

σμσ

--

x e π,则X 的数学期望为

E (X )

=

22

()2()d e

d ,x xf x x x x μσ--

+∞

+∞

-∞

-∞

=

?

σ

μ

-x =t ,则E (X )=

?∞+∞

--+t t t d e π2

2)(21

σμ

注意到

t t d e π?

∞+∞

--

2

22μ

=μ,

t σt t d e π

?∞+∞--2

2

21=0, 故有E (X )=μ.

第二节 方 差

1.方差的定义

数学期望描述了随机变量取值的“平均”.有时仅知道这个平均值还不够.例如,有A ,B 两名射手,他们每次射击命中的环数分别为X ,Y ,已知X ,Y 的分布律为:

由于E (X )=E (Y )=9(环),可见从均值的角度是分不出谁的射击技术更高,故还需考虑其他的因素.通常的想法是:在射击的平均环数相等的条件下进一步衡量谁的射击技术更稳定些.也就是看谁命中的环数比较集中于平均值的附近,通常人们会采用命中的环数X 与它的平均值E (X )之间的离差|X -E (X )|的均值E [|X -E (X )|]来度量,E [|X -E (X )|]愈小,表明X 的值愈集中于E (X )的附近,即技术稳定;E [|X -E (X )|]愈大,表明X 的值很分散,技术不稳定.但由于E [|X -E (X )|]带有绝对值,运算不便,故通常采用X 与E (X )的离差|X -E (X )|的平方平均值E [X -E (X )]2来度量随机变量X 取值的分散程度.此例中,由于

E [X -E (X )]2=0.2×(8-9)2+0.6×(9-9)2+0.2×(10-9)2=0.4, E [Y -E (Y )]2=0.1×(8-9)2+0.8×(9-9)2+0.1×(10-9)2=0.2.

由此可见B 的技术更稳定些.

定义4.2 设X 是一个随机变量,若E [X -E (X )]2存在,则称E [X -E (X )]2为X

的方差(Variance ),记为D (X ),即

D (X )=

E [X -E (X )]2. (4.7)

称)(X D 为随机变量X 的标准差(Standard deviation )或均方差(Mean square deviation),记为σ(X ).

根据定义可知,随机变量X 的方差反映了随机变量的取值与其数学期望的偏离程度.若X 取值比较集中,则D (X )较小,反之,若X 取值比较分散,则D (X )较大. 由于方差是随机变量X 的函数g (X )=[X -E (X )]2的数学期望.若离散型随机变量X 的分布律为P {X =x k }=p k ,k =1,2,…,则

D (X )=

k k k

p X E x

∑∞

=-1

2)]([. (4.8)

若连续型随机变量X 的概率密度为f (x ),则

D (X )=

?

+∞

--.)()]([2x x f X E x d (4.9)

由此可见,方差D (X )是一个常数,它由随机变量的分布惟一确定.

根据数学期望的性质可得:

D (X )=

E [X -E (X )]2=E [X 2-2X ·E (X )+[E (X )]2]

=E (X 2)-2E (X )·E (X )+[E (X )]2=E (X 2)-[E (X )]2.

于是得到常用计算方差的简便公式

D (X )=

E (X 2)-[E (X )]2. (4.10)

例4.11 设有甲,乙两种棉花,从中各抽取等量的样品进行检验,结果如下表:

表4-10

且评定它们的质量.

解 由于

E (X )=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E (Y )=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30,

故得

D (X )=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1

=4×0.1+1×0.15+0×0.5+1×0.15+4×0.1=1.1, D (Y )=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13 =4×0.13+1×0.17+0×0.4+1×0.17+4×0.13=1.38.

因D (X )<D (Y ),所以甲种棉花纤维长度的方差小些,说明其纤维比较均匀,故甲种棉花质量较好.

例4.12 设随机变量X 的概率密度为

随机变量的数字特征试题答案

随机变量的数字特征试题 答案 It was last revised on January 2, 2021

第四章 随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )= B. E (X )=,D (X )= C. E (X )=2,D (X )=4 D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )= (C ) A. 1 B. 3 C. 5 D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004 B. C. D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(D ) A . D (X+Y )=D (X )+D (Y ) B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) D . D (X -C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 B . 21 C .2 3 D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D = (C ) A . 34 B . 37 C . 323 D . 3 26

7、设随机变量X 服从参数为3的泊松分布,)31 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A . -13 B . 15 C . 19 D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 B . 22 C . 30 D . 46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A . 31 B . 1 C . 3 10 D . 10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0 D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D B . )(X D -)(Y D C .)(X D +)(Y D -2),cov(Y X D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)2 1 ,10(~B X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数 XY ρ=(D ) A . B . -0.16 C . D . 13、已知随机变量X 的分布律为 25 .025.012p P x X i -,且E (X )=1?,则常数x =( B) A . 2 B . 4 C . 6 D . 8 14、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. B. 0 C. D. 2 15、已知随机变量X 的分布函数为F(x)=?? ?>--other x e x 00 12,则X 的均值和方差分别为(D )

四、随机变量的数字特征(答案)

概率论与数理统计练习题 、选择题: 二、填空题: 1 4.设随机变量 X 的密度函数为f(x) e |x| ( x ),则E(X) 0 三、计算题: 1.袋中有5个乒乓球,编号为1 , 2, 3, 4, 5,从中任取3个,以X 表示取出的3个球中最大编 号,求E(X) 解:X 的可能取值为3, 4, 5 E(X) 3 丄 4 色 5 3 4.5 10 10 5 1/5 1/6 1/5 1/15 11/30 系 _____ 第四章 专业 ______ 班 _________ 随机变量的数字特征(一) 学号 1 ?设随机变量 X 的可能取值为0, 1, 相应的概率分布为 0.6,0.3 , .01,则 E(X) 0.5 2 .设X 为正态分布的随机变量,概率密度为 f(x) 2?2 e (x 1)2 2 8 ,贝U E(2X 1) ,则 E(X 3X 2) 116/15 1 ?设随机变量X ,且 E(X)存在,则 E(X)是 (A )X 的函数 (B )确定常数 随机变量 (D )x 的函数 2 .设X 的概率密度为 f(x) 1 x e 9 9 0 ,则 E( 9X) 3 ?设 x x e 9 dx 1 (B) 9 x x e 9dx (C ) (D ) 1 是随机变量, E( )存在,若 ¥,则 E() E() (B)罟 (C ) E() P(X 3) 1 10 , P(X 4) C 5 3 10 P(X 5) § 10

2 ?设随机变量X 的密度函数为f(X ) 2 (1 %)0甘它1,求E(X) 0 其它 2 3?设随机变量X~N(,),求E(|X I) (1) Y 1 e 2X ( 2)Y 2 max{ X, 2} 解:(1) E(Y) 2x x 1 e e dx 0 3 (2) EM) 2 x 2e dx xe 0 2 x dx 2 2e 2 3e 2 2 2 e (3) E(Y 3) 2 e x dx 2e x 0 2 dx 1 c 2 c 2 」 2 3e 2e 1 e 概率论与数理统计练习题 ________ 系 _______ 专业 ______ 班 ___________________学号 _________ 第四章 随机变量的数字特征(二) 、选择题: 解:E(X) X 2(1 x)dx 解: |x (x )2 1 — dx 令y 2 y I y |e 2dy 4 .设随机变量 X 的密度函数为f (x) x 0 ,试求下列随机变量的数学期望。 x 0 (3) Y min{ X,2} 2 2~ 2 o ye dy

随机变量的数字特征

第四章 随机变量的数字特征 一、填空题 1. 设随机变量X 服从参数为1的指数分布,则数学期望____________)(2=+-X e X E 。 2. 若随机变量X 服从均值为2,方差为2 σ的正态分布,且3.0)42(=<=--其他,05,)()5(y e y y ?,则 _______________)(=XY E 。 二、选择题

四、随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案 一、选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )=? B. E (X )=,D (X )= C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )=? (??C?) A. 1 ? B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. ? C. ? D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) ?D . D (X-C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 ?B . 21 C .2 3 ?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D =(C ) A . 34 ? B . 37 C . 323 ? D . 3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y , X 与Y 相互独立,则)43(--Y X D =(C ) A . -13 ? B . 15 C . 19 ? D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 46 9、设)3 1,10(~B X ,则)(X E =(C ) A . 31 ?B . 1 C . 3 10 ?D . 10 10、设)3,1(~2 N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0? D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D ?B . )(X D -)(Y D

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=2 2 Y X -=,则34) A C 5A 6、)1= (C ) A .3 4?B .3 7C . 323?D .3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A .-13? B .15 C .19? D .23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )

A .6? B .22 C .30? D .46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A .31? B .1 C .3 10?D .10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A.E (X )=1? B.D (X )=3? C.P (X=1)=0? D.P (X<1)=0.5 11 A .C .12、XY ρ= (D 13x =(B) A . 14、(C ) A.-15、为(A .C .21)(,41)(== X D X E ?D .4 1 )(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为

则)(XY E =(B ) A .9 1-?B .0 C .9 1?D .3 1 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A 18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}2 2 εσεμn n X P ≥ <-?B .{} 22 1ε σεμn X P -≥<- C .{}2 2 1ε σεμn X P - ≤≥-?D .{}2 2 εσεμn n X P ≤ ≥-

第三章 随机变量的数字特征答案

第三章 随机变量的数字特征答案 一、1、35;2、 6175;;259,59,259, 563、σ σμ1 , =±=b a ; 4、()(),2 1212 1211 )(2 2 2 212111 2??? ? ??-- ---+-? = ? = = x x x x e e e x πππ ? ),(~所以2 1 1N ξ ,2 1 ,12 = ===σ ξμξD E 5、2 1-;6.a=2,b=0,或a=-2,b=2;32)(=ξE 或31 ; 7、()()125,01022===+=+=+=+a D a b a D b a b aE b a E ξξξξ 所以2,5 1 2,51=-=-== b a b a 或 8、()()6.2022,2=++=++=+ηξρηξηξηξηξξηD D D D Cov D D D ()()4.232,2=-+=-+=-ηξρηξηξηξηξξηD D D D Cov D D D 9、148,57; 10、()()()()n D a E D a E i i 2 2 ,,,σξ ξσξξ= ===所以 二、1、C 2、B 3、C 4、B 5、C 三、1、,2.03.023.004.02-=?+?+?-=ξE ()8.23.023.004.02222 2=?+?+?-=ξE ()() ()() ( )04.114,412,4.1353532 222=-==-=+=+ξξξξξξE E D D E E 2、ξ~[]10,0U ,()32512010,5210 02 =-==+=ξξD E , 3 35=ξD 3、4)(,1)2 (==ξξ D D ,则 1)(,4)1(==-ξξ E D 所以0)1(=-ξE 所以 ()()()() 2 2 2111404E D E ξξξ-=-+-=+= 4、()()()()()()32323223,2D D D D Cov ξηξηξηξη-=+-=+-+- ()( )941225.6D D ξηρ=+-=

随机变量的数字特征

随机变量的数字特征 讨论随机变量数字特征的原因 (1) 在实际问题中,有的随机变量的概率分布 难确定,有的不可能知道,而它的一些数字特征较易确定。 (2)实际应用中,人们更关心概率分布的数字特征。 (3)一些常用的重要分布,如二项分布、泊松 分布、指数分布、正态分布等,只要知道了它们的某些数字特征,就能完全确定其具体的分布。 §4.1 数学期望 一、数学期望的概念 1.离散性随机变量的数学期望 例4.1:大学一年级某班有32名同学,年龄情况如下: 解: 平均年龄=1 4810721 224218201019718217+++++?+?+?+?+?+? 25.19= 把上式改写为: 32 12232421328203210193271832217?+?+?+?+?+?

设X 为从该班任选一名同学的年龄,其概率分布为 定义4.1:设离散型随机变量X 的分布列为: 若 ∑k k k p x 绝对收敛(即 +∞ <=∑∑k k k k k k p x p x ),则称它为X 的 数学期望或均值(此时,也称X 的数学期望存在),记为E(X),即 若 ∑k k k p x 发散,则称X 的数学期望不存在。 说明: (1)随机变量的数学期望是一个实数,它体现了随机变量取值的平均; (2) 要注意数学期望存在的条件: ∑k k k p x 绝对 收敛; (3) 当X 服从某一分布时,也称某分布的数学 期望为EX 。 ∑=k k k p x EX

例4.2:设X服从参数为p的两点分布,求EX EX=p 例4.3:设X~B(n,p),求EX EX=np 例4.4:设X服从参数为λ的泊松分布,求EX EX=λ 2.连续型随机变量的数学期望 定义4.2: 设连续型随机变量X 的概率密度为f(x).若积分 ?+∞∞-dx x xf) ( 绝对收敛,(即?∞∞ - +∞ < dx x f x) ( ),则称它 为X的数学期望或均值(此时,也称X的数学期望存在),记为E(X),即 ) ( ) (?∞∞- =dx x xf X E 若?∞∞ - +∞ = dx x f x) ( , 则称X的数学期望不存在。 例4.5:设X服从U[a,b],求E(X)。 EX= 2b a+ 例4.6:设X服从参数为λ的指数分布,求EX EX=λ 例4.7: ) , ( ~2σ μ N X,求EX

随机变量的数字特征教案

§2.3.1随机变量的数字特征(二) 学习目标 1.熟练掌握均值公式及性质. 2.能利用随机变量的均值解决实际生活中的有关问题. 学习过程 【任务一】双基自测 1.分布列为 的期望值为 ( ) A .0 B .-1 C .-13 D .12 2.设E (ξ)=10,则E (3ξ+5)等于 ( ) A .35 B .40 C .30 D .15 3.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是 ( ) A .np (1-p ) B .Np C .n D .p (1-p ) 4.两封信随机投入A 、B 、C 三个空邮箱中,则A 邮箱的信件数ξ的数学期望E (ξ)=________ 【任务二】题型与解法 题型一 二项分布的均值 例1:一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分

100分.学生甲选对任意一题的概率为0.9,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求学生甲和学生乙在这次测验中成绩的均值. 跟踪训练1英语考试有100道选择题,每题4个选项,选对得1分,否则得0分.学生甲会其中的20道,学生乙会其中的80道,不会的均随机选择.求甲、乙在这次测验中得分的期望. 题型二超几何分布的均值 例2一名博彩者,放6个白球和6个红球在一个袋子中,定下规矩:

凡是愿意摸彩者,每人交1元作为手续费,然后可以一次从袋中摸出5个球,中彩情况如下表: 试计算:(1)摸一次能获得20元奖品的概率; (2)按摸10 000次统计,这个人能否赚钱?如果赚钱,则净赚多少钱? 跟踪训练2厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;

随机变量的数字特征

第四章随机变量的数字特征 【基本要求】理解随机变量的数学期望与方差的概念,掌握它们的性质与计算方法;掌握计算随机变量函数的数学期望方法;掌握二项分布、泊松分布、正态分布和指数分布的数学期望和方差;了解协方差、相关系数、矩的概念、性质及计算方法。 【本章重点】数学期望与方差的概念、性质与计算方法;求随机变量函数的数学期望的方法;二项分布、泊松分布、正态分布和指数分布的数学期望和方差。 【本章难点】数学期望与方差的概念计算方法;随机变量函数的数学期望的计算方法;协方差、相关系数、矩的概念、性质及计算方法 【学时分配】7-9学时 分布函数:) x F≤ =——全面描述随机变量X取值的统计规律。但是,在实际问题中 P X ) ( (x 分布函数的确定并不是一件容易的事,而且有时我们也不需要知道分布函数,只需知道随机变量的某些数字特征就够了。例如: 评价粮食产量,只关注平均产量; 研究水稻品种优劣,只关注每株平均粒数; 评价某班成绩,只关注平均分数、偏离程度; 评价射击水平,只关注平均命中环数、偏离程度。 描述变量的平均值的量——数学期望, 描述变量的离散程度的量——方差。 §4.1 数学期望 教学目的:使学生理解掌握随机变量的数学期望的实际意义及概念,会计算具体分布的数学期望; 使学生理解掌握随机变量函数的数学期望的计算及数学期望的性质。 教学重点、难点:数学期望的概念及其计算;随机变量函数的数学期望的计算及数学期望的性质。

教学过程: (一) 数学期望的概念 先看一个例子:一射手进行打靶练习,规定射入 区域2e 得2分, 射入区域1e 得1分,脱靶即射入 区域0e 得0分.设射手一次射击的得分数X 是一个 e 0 随机变量,而且X 的分布律为P{X=k}=k p ,k=0,1,2 现射击N 次,其中得0分0a 次,得1分1a 次,得2分2a 次,0a +1a +2a =N.则他射击N 次得分的总和为0a 0+ 1a 1+ 2a 2,他平均一次射击的得分数为 ∑==?+?+?2 210210k k N a k N a a a ,因为当N 充分大时, 频率k p 概率稳定值 ??→?N a k 。 所以当N 充分大时, 平均数∑=??→?2 k k k p x x 稳定值 。 显然,数值∑=2 k k k p x 完全由随机变量X 的概率分布确定,而与试验无关,它反映了平均数的大小。 定义: 1.离散型随机变量的数学期望:设离散型随机变量X 的分布律为{}k k P X x p ==,1,2,3k =…若级数1 k k k x p ∞ =∑绝对收敛,则称级数1 k k k x p ∞ =∑为随机变量X 的数学期望,记为()E X ,即()E X =1 k k k x p ∞ =∑。 2.连续型随机变量的数学期望:设连续型随机变量X 的密度函数为()f x ,若积分()xf x dx ∞ -∞ ?绝对 收敛,则称积分()xf x dx ∞-∞ ?的值为随机变量X 的数学期望,记为()E X 。即()E X =()xf x dx ∞ -∞ ?。 数学期望简称期望,又称为均值。 (二) 数学期望的计算 关键是:求出随机变量的分布律或者密度函数。 1、离散型——若 则()E X =1k k k x p ∞ =∑ (绝对收敛)

随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

随机变量的数字特征归纳

第四章 随机变量的数字特征 ㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义 (1) 定义 离散型和连续型随机变量X 的数学期望定义为 {}?????==?∑∞ ∞ - d )( )()( , , 连续型离散型x x xf x X x X k k k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望 1、离散型随机变量的数学期望 设离散型随机变量的概率分布为 ,若,则称级数为随 机变量 的数学期望(或称为均值),记为 , 即 2、两点分布的数学期望 设 服从0—1分布,则有 ,根据定义, 的数学期望为 . 3、二项分布的数学期望 设 服从以 为参数的二项分布, ,则 。 4、泊松分布的数学期望 设随机变量 服从参数为的泊松分布,即,从而有 。 ①常见的连续型随机变量的数学期望 1)均匀分布

设随机变量ξ服从均匀分布,ξ~U [a,b] (a0,- <μ<+ ) 则令得 ∴ E(ξ)=μ . 3)指数分布 设随机变量服从参数为的指数分布,的密度函数为 ,则. (2) 随机变量的函数的数学期望设)(x g y=为连续函数或分段连续函数,而X是任一随机变量,则随机变量) (X g Y=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数) , (Y X g Z=,有类似的公式: (){} ? ? ? ? ?= = = ? ∑ ∞ ∞ . ; (连续型) 离散型 - d) ( ) ( ) ( ) ( x x f x g x X x g X g Y k k k P E E

随机变量分布及数字特征

第十章 随机变量分布及数字特征 10.1 随机变量 10.2 离散型随机变量分布 1、学时:2学时 2、过程与方法: 结合实例介绍随机变量概念,离散型随机变量的概率分布、分布列、分布函数、概率及性质. 3、教学要求: (1)掌握随机变量及离散型随机变量的概率分布、分布列、分布函数、概率及性质 (2)几种常见概率分布 教学重点:离散型随机变量的概率分布、分布列、分布函数、概率及性质 教学难点:离散型随机变量的分布函数 教学形式:多媒体讲授 教学过程: 一、新课教学内容 10.1 随机变量 概率论与数理统计是从数量上来研究随机现象的统计规律,因此我们必须把随机事件数量化. 在随机试验中,结果有多种可能性,试验结果样本点很多可以与数值直接发生关系,如产品检验,我们关心的是抽样中出现的废品件数.商店销售我们重视每天销售额,利润值.在投骰子中是每次出现的点数等. 但是也有不少试验结果初看与数字无直接关系,但我们可通过如下示性函数使之数值化,比如,产品合格与不合格令???=01ξ 不合格 合格 事件10A A X ?=??发生与否用 不发生发生 这些事件数值化后,数量是会

变化的称为变量.变量取值机会有大有小所以叫随机变量 . 定义1:在某一随机试验中,对于试验的每一个样本点ω都唯一对应一个数,这样依不同样本点ω而取不同值的点叫随机变量.通常用希腊字母或大写英文字母X 、Y 、Z 等表示.用小写英文字母i i y x 、表示随机变量相应于某个试验结果所取的值. 举例: 1°投骰子出现的点数用随机变量X 表示,X 可取值为{ },,,,,,654321 2°电信局话务台每小时收到呼叫次数用Y 表示,Y 可取值为{}Λ210,, 3°总站每五分钟发某一路车,乘客在车站候车时间{} 50≤≤=t t ξ 4°某一电子零件的寿命用{} 30000≤≤=t t T 按其取值情况可以把随机变量分成两类: (1)离散型随机变量:取有限个或无限可列个值.如例1°、2°. (2)非离散型随机变量:可在整个数轴上取值或取实数某部分区间的全部值.非离散型随机变量范围较广,本书只研究其中常遇见的一种称为连续型随机变量如例3°、4°. 例1 设有2个一级品,3个二级品的产品,从中随机取出3个产品,如果用X 表示取出产品中一级品的个数,求X 取不同值时相应概率. 解 X 可取值为{}210,, 101)0(3533===C C X P 53)1(352312===C C C X P 103 )2(35 1 322==C C C X P 例2 抛一枚匀称的硬币,引进一变量Y 令???=0 1Y 出现反面 出现正面求出现正面与反面概率: 解 21)0(= =Y P 2 1)1(==Y P 10.2 离散型随机变量分布 10.2.1 离散型随机变量的概率分布 例1 某汽车公司销售汽车数据表示在过去100天营业时间是有24天每天销售汽车是为0辆,38天

随机变量数字特征习题课

第12讲 随机变量的数字特征习题课 教学目的:掌握随机变量的数字特征,了解切比雪夫不等式和大数定律。 教学重点:理解数学期望和方差的概念,掌握它们的性质与计算,熟悉常用分布的数 学期望和方差。 教学难点:随机变量函数的数学期望。 教学时数:2学时 教学过程: 一、知识要点回顾 1. 随机变量X 的数学期望()E X 2. 对离散随机变量 ()()i i i E X x p x =∑ 3. 若1,2,i =,则假定这个级数绝对收敛,否则就没有数学期望。 4. 对连续随机变量 ()()E X xf x dx +∞ -∞ =? 5. 假定这个广义积分绝对收敛,否则就没有数学期望。 6. 随机变量X 的函数()g X 的数学期望[()]E g X ,其中()g X 为实函数。 7. 对离散随机变量 [()]()()i i i E g X g x p x =∑ 8. 对连续随机变量 [()]()()E g X g x f x dx +∞ -∞ =? 9. 假定所涉及的无穷级数绝对收敛,所涉及的广义积分绝对收敛。 10. 二维随机变量(,)X Y 的函数(,)g X Y 的数学期望[(,)]E g X Y ,其中(,)g X Y 为二元 实函数。 11. 对离散随机变量 [(,)](,)(,)i j i j i j E g X Y g x y p x y =∑∑ 12. 对连续随机变量 [(,)](,)(,)E g X Y g x y f x y dxdy +∞ +∞ -∞ -∞ =? ? 13. 假定所涉及的无穷级数绝对收敛,所涉及的广义积分绝对收敛。 14. 数学期望的性质(假定所涉及的数学期望都存在) 15. (), ()E c c c =为常数 16. ()(), ()E cX cE X c =为常数

第四章 随机变量的数字特征课后习题参考答案

第四章 随机变量的数字特征 1. 解:令A 表示一次检验就去调整设备的事件,设其概率为p ,T 表示每次检验发现的次品个数,易知(10,0.1)T B ~,且(4,)X B p ~。 得, 0010119 1010(){1}1{1}1(0.1)(0.9)(0.1)(0.9)0.2639p P A P T P T C C ==>=-≤=--=。 因为(4,)X B p ~,得()4 1.0556E X p =?=。 2. 解:1500 3000 2220 1500 ()()(3000)5001000150015001500x x E X xf x dx dx x dx +∞ -∞ -= =+-=+=?? ?。 3. 解:1 ()(2)0.400.320.30.2k k i E X x p ∞ == =-?+?+?=-∑; 2 21 (35)(35)170.450.3170.313.4k k i E X x p ∞ =+=+=?+?+?=∑ 22(35)3()513.4E X E X +=+=。 4.解:(1)0 ()(2)2()2 ()22(| )2x x x E Y E X E X xf x dx x e dx xe e dx +∞ +∞ +∞ --+∞ --∞ ==== =-+=???. (2)223300 1 1 33 ()()()|X x x x E Y E e e f x dx e dx e +∞ +∞ ----+∞ -∞ == = =-=??. 5.解:(1)3 33 1 1 1 ()10.420.230.42i i i ij i i j E X x p x p ? ==== ==?+?+?=∑∑∑. 3 3 3 1 1 1 ()10.300.410.30j j j ij j j i E Y y p y p ?======-?+?+?=∑∑∑. (2) 7 1 11 ()10.2(0.50.1)...0.50.10.1315i i i E Z z p ===-?+-?++?+?=-∑。 2 2 1 ()40.400.340.3 2.8 k k i E X x p ∞ ===?+?+?=∑

第四章随机变量的数字特征单元测试题

随机变量的数字特征章节测试题 一、选择题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2 B .8 C .18 D .20 2.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和45 4,则n 、p 的 值分别是( ) A .50,1 4 B .60,14 C .50,3 4 D .60,3 4 . 3.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( ) A .68.26% B .95.44% C .99.74% D .31.74% 4.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( ) A.甲学科总体的方差最小 B.丙学科总体的均值最小 C.乙学科总体的方差及均值都居中 D.甲、乙、丙的总体的均值不相同 5.设随机变量X 和Y 独立同分布,若记随机变量,=-=+U X Y V X Y ,则随机变量U 与V 必然( ) A.不独立 B.独立 C.相关系数不为零 D.相关系数为零 6.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2.又已知E (X )=4 3,D (X ) =2 9 ,则x 1+x 2的值为( ) A.53 B.73 C.11 3 D .3 7.已知X 为随机变量,且E (X ), D (X )均存在,则下列式子不成立的是( ) .[()]() .[()]2() .[()]0.[()]() =+=-==A E E X E X B E X E X E X C E X E X D D E X E X 8.设随机变量X 服从[,]a b 上的均匀分布,若1 ()2,()3==E X D X ,则均匀分布中的常 数,a b 的值分别为( ) .1,3.1,2.2,3.2,2========A a b B a b C a b D a b

第三章、随机变量的数字特征

第三章、随机变量的数字特征 一、选择题: 1.设随机变量X 的分布函数为4 0,1(),011,1x F x x x x ? ,则EX= ( C ) A .140x dx ? B .15 14 x dx ? C .1 4 4x d x ? D .1 40 1 x dx xdx +∞ + ?? 2.设X 是随机变量,0x 是任意实数,EX 是X 的数学期望,则 ( B ) A .220()()E X x E X EX -=- B .22 0()()E X x E X EX -≥- C .220()()E X x E X EX -<- D .2 0()0E X x -= 3.已知~(,)X B n p ,且EX=2.4,EX=1.44,则参数,n p 的值为 (B ) A .n = 4,p = 0.6 B .n = 6,p = 0.4 C .n = 8,p = 0.3 D .n = 24,p = 0.1 4.设X 是随机变量,且EX a =,2 EX b =, c 为常数,则D (CX )=( D ) A .2 ()c a b - B .2 ()c b a - C .22()c a b - D .22 ()c b a - 5.设随机变量X 在[a ,b ]上服从均匀分布,且EX=3,DX=4/3,则参数a ,b 的值为 (B ) A .a = 0,b = 6 B .a = 1,b = 5 C .a = 2,b = 4 D .a = -3,b = 3 6.设ξ服从指数分布()e λ,且D ξ=0.25,则λ的值为 ( A ) A .2 B .1/2 C .4 D .1/4 7.设随机变量ξ~N (0,1),η=2ξ+1 ,则 η~ ( A ) A .N (1,4) B .N (0,1) C .N (1,1) D .N (1,2) 8.设随机变量X 的方 差DX =2 σ,则()D aX b += ( D )

随机变量与数字特征练习题及答案

1 第8章 随机变量与数字特征 一、填空题 ⒈ 设随机变量X 的概率分布为 则a = . ⒉ 设X 服从区间[1,5]上的均匀分布,当5121<<

随机变量的数字特征历年真题数学

随机变量的数字特征历年真题 数学一: 1(87,2分) 已知连续型随机变量X 的概率密度为 1 22 1 )(-+-= x x e x f π 则EX = ,DX = 。 2(89,6分) 设随机变量X 与Y 独立,且X~N (1,2),Y~N (0,1),试求随机变量Z =2X -Y +3的概率密度函数。 3(90,2分) 已知随机变量X 服从参数为2的泊松分布,且胡机变量Z =3X -2,则EZ = 。 4(90,6分) 设二维随机变量(X ,Y )在区域D :0

相关文档