文档库 最新最全的文档下载
当前位置:文档库 › 数列求和错位相减法,裂项相消法后附答案

数列求和错位相减法,裂项相消法后附答案

数列求和错位相减法,裂项相消法后附答案
数列求和错位相减法,裂项相消法后附答案

一、解答题

1.已知等差数列的前项和为,且,.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,,求数列的前项和.

【详解】

(Ⅰ),∴

,∴

则,

.

(Ⅱ)由(Ⅰ)可知,

,

-(

()()

=

=

2.已知数列的前n项和为,且,,

求数列的通项公式;

设,求数列的前n项和.

【答案】(1)(2)

【详解】

,,,

即,,

两式相减,得,即,

又,,

即数列是首项为2,公比为2的等比数列,

所以;

设,则,

两式相减,得:

【点睛】

本题考查数列的递推关系,通项公式,前n项和,错位相减法,利用错位相减法是解决本题的关键,属于中档题.

3.已知等差数列的前项和为,满足.数列的前项和为

,满足.

(1)求数列和的通项公式;

(2)求数列的前项和.

【答案】(1),;(2).

【解析】

【分析】

(1)根据题意,求得,然后求得公差,即可求出数列的通项,再利用

求得的通项公式;

(2)先求出的通项,然后利用数列求和中错位相减求和.

【详解】

解:(1)由,得,解得.

由,解得或.

若,则,所以.所以,故不合题意,舍去.

所以等差数列的公差,

故.

数列对任意正整数,满足.

当时,,解得;

当时,,

所以.

所以是以首项,公比的等比数列,

故数列的通项公式为.

(2)由(1)知,

所以,①

所以,②

①-②,得

所以.

4.已知数列的首项,且满足

求证:数列为等差数列,并求数列的通项公式;

记,求数列的前项和为.

【答案】(1)证明见解析,(2)

【解析】

【分析】

由,得,由此可判断为等差数列,可求,进而得到;

求出,利用错位相减法可求.

【详解】

由,得,

又,

为等差数列,首项为1,公差为2,

得,

【点睛】

5.已知等差数列的前项的和为,,.

(1)求数列的通项公式;

(2)设,记数列的前项和,求使得恒成立时的最小正整数.

【分析】

(1)先设设等差数列的公差为,由,列出方程组求出首项和公差即可;

(2)由(1)先求出,再由裂项相消法求数列的前项和即可.

【详解】

解:(1)设等差数列的公差为,因为,,

所以解得

所以数列的通项公式为.

(2)由(1)可知

,

∴,∴,∴的最小正整数为1

6.已知是首项为的等比数列,各项均为正数,且.

(1)求数列的通项公式;

(2)设,求数列的前项和.

【分析】

(1)由得q方程求解即可;(2)变形为

裂项求和即可.

【详解】

(1)设的公比为,

由得,

解得,或,

因各项都为正数,所以,所以,所以,

7.已知数列为等差数列,,且,,依次成等比数列.

(1)求数列的通项公式;

(2)设,数列的前项和为,若,求的值.

【分析】

(1)设等差数列的公差为d,运用等差数列的通项公式和等比数列中项性质,解方程可得首项和公差,即可得到所求通项公式;

(2)求得bn(),运用裂项相消求和可得Sn,解

方程可得n.

【详解】

(1)设数列的公差为,因为,

所以,解得.

因为,,依次成等比数列,所以,

即,解得.

所以.

(2)由(1)知,

所以,

所以,

由,得.

8.设正项数列的前项和,且是与的等比中项,其中. (Ⅰ)求数列的通项公式;

(Ⅱ)设,记数列的前项和为,求证:.

【分析】

(Ⅰ)由是与的等比中项列方程整理,可得出:数列是首项为1,公差为1的等差数列,问题得解。

(Ⅱ)整理,代入的表示式子即可求解。

【详解】

解:(Ⅰ)∵是与的等比中项,

∴,

等时,,∴.

当时,,

整理得.

又,∴,

即数列是首项为1,公差为1的等差数列.

∴.

(Ⅱ),

.

【点睛】

本题主要考查了法的应用及等差数列概念,通项公式,还考查了数列裂项求和,属于基础题。

9.已知等差数列是递增数列,且,.

求数列的通项公式;

若,求数列的前项和.

【答案】(1);(2)

【解析】

【分析】

根据等差数列中,,,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可得

,利用裂项相消法求和即可得结果.

【详解】

设首项为,公差为d的等差数列是递增数列,且,.则:,解得:或9,或1,由于数列为递增数列,则:,.故:,则:.

由于,则:.

所以:.

【点睛】

本题主要考查的知识要点为等差数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,属于中档题型.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:

(1);(2);(3)

;(4);需注意裂项之后相消的过程

中容易出现丢项或多项的问题,导致计算结果错误.

10.等差数列的公差为正数,,其前项和为;数列为等比数列,,且.

(I)求数列与的通项公式;

(II)设,求数列的前项和.

【答案】(Ⅰ) ,;(Ⅱ) .

【解析】

【分析】

(Ⅰ)等差数列{an}的公差d为正数,数列{bn}为等比数列,设公比为q,运用等差数列和等比数列的通项公式和求和公式,解方程可得公差和公比,即可得到所求通项公式;

(Ⅱ)求得cn=bn2n2n+2(),数列的分组求和和裂项相消求和,

化简整理即可得到所求和.

【详解】

解:(Ⅰ)设等差数列的公差为d,等比数列的公比为q,则

解得

∴,.

(Ⅱ)由(Ⅰ)知.

∴,

∴.

【点睛】

本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的分组求和和裂项相消求和,考查化简整理的运算能力,属于中档题.

11.已知数列满足,,数列满足,且是公差为2的等差数列.

(Ⅰ)求和的通项公式;

(Ⅱ)求的前n项和.

【答案】(Ⅰ),(Ⅱ)

【解析】

【分析】

(Ⅰ)利用等差数列以及等比数列的通项公式,转化求{an}和{bn}的通项公式;

(Ⅱ)利用分组求和法求{bn}的前n项和Sn即可.

【详解】

解:(Ⅰ)由,,是首项为,公比为的等比数列.所以.因为,所以是首项为,公差为的等差数列.

可得.所以.

(Ⅱ)由(Ⅰ)知,.

数列的前项和为

.

【点睛】

本题考查等差数列以及等比数列的应用,考查分组求和法,是基本知识的考查.

经典研材料裂项相消法求和大全

开一数学组教研材料 (裂项相消法求和之再研究 ) 张明刚 一项拆成两项,消掉中间所有项,剩下首尾对称项 基本类型: 1.形如 )1 1(1)(1k n n k k n n +-=+型。如1n n +1=1n -1n +1; 2.形如a n = 1 2n -1 2n +1 = )1 21121(21+--n n 型; 3.)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n 4.]) 2)(1(1 )1(1[21)2)(1(1++-+=++= n n n n n n n a n 5.n n n n n n n n S n n n n n n n n n a 2 )1(1 1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 6.形如a n =n +1 n 2 n +22型. 7.形如a n = 4n 4n -1 4 n +1 -1=13?? ? ??---+1411411n n 型; = 2n -(n -1)n (n -1)·2n =1(n -1)2n - 1-1 n · 2n . 9.形如a n = ( ) n k n k k n n -+= ++1 1 型;1 )1(1 +++= n n n n a n 10. ( ) b a b a b a --= +1 1 11.()!!1!n n n n -+=? 12.m n m n m n C C C -=+-11 13.()21≥-=-n S S a n n n 14.1) tan(tan tan tan tan ---= βαβ αβα 15.利用两角差的正切公式进行裂项 把两角差的正切公式进行恒等变形,例如 β αβ αβαtan tan 1tan tan )tan(+-= - 可以 另一方面,利用()[]k k k k k k tan )1tan(1tan )1tan(1tan 1tan ?+--+= -+=,得

裂项相消法求和附答案

裂项相消法 利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。 (1)若是{a n }等差数列,则)11.(111 1++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11 111+-=+n n n n )( (3))1 1 (1 )(1k n n k k n n +-=+ (4))121 121 (21 12)121 +--=+-n n n n )(( (5)] )2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111 (7))(1 1n k n k k n n -+=++ 1.已知数列的前n 项和为, . (1)求数列的通项公式; (2)设,求数列的前n 项和为. [解析] (1) ……………① 时, ……………②

①②得: 即……………………………………3分 在①中令, 有, 即,……………………………………5分 故对 2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8. (Ⅰ)求公差d的值; (Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值; [解析](Ⅰ)设数列{a n}的公差为d, ∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8, 解得d=2.……………………………………………………………………4分 (Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分 ∴ =.…………………………………………6分 ∴ T n= = =≥,…………………………………………8分 又∵ 不等式T n≥对所有的n∈N*恒成立, ∴ ≥,…………………………………………10分 化简得:m2-5m-6≤0,解得:-1≤m≤6. ∴ m的最大正整数值为6.……………………………………………………12分 3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.

数列求和之错位相减法练习

数列求和之错位相减法专项练习 一、解答题 1.已知正项数列{a a}是递增的等差数列,且a2?a4=6,a6=4. (1)求数列{a a}的通项公式; }的前n项和. (2)求数列{a a 2a?1 2.在数列{a a}中,前n项和为a a,a a+a a=a,a1=a1,a a=a a? a a?1(a≥2). 3.(1)设a a=a a?1,求证:{a a}为等比数列. 4.(2)求{(a+1)a a}的前n项和a a. 5. 6. 7. 8. 9. 10. 11. 12.设数列{a a}的前n项和为a a,且a a=2(a a?1)

(1)求数列{a a}的通项公式; (2)若a a=a(a a?1),求数列{a a}的前n项和a a. 13.已知等差数列{a a}的公差是1,且a1,a3,a9成等比数列. (1)求数列{a a}的通项公式; (2)求数列{a a 2a a }的前n项和a a . 14.已知{a a}是公差不为零的等差数列,满足a2+a4+a5=19,且a2是a1与a5的 等比中项,a a为{a a}的前n项和. (1)求a a及a a; (2)若a a=a a+1?3a a,求数列{a a}的前n项和.

15.已知数列{a a}是首项为1的等差数列,数列{a a}是首项a1=1的等比数列,且 a a>0,又a3+a5=21,a5+a3=13.(Ⅰ)求数列{a a}和{a a}的通项公 式; 16.(Ⅱ)求数列{2a a a a}的前n项和a a. 17. 18. 19. 20. 21. 22. 23. 24.已知数列{a a}的前n项和a a=3a2+8a,{a a}是等差数列,且a a=a a+ a a+1. (1)求数列{a a}的通项公式; (2)令a a=(a a+1) (a a+2)a a+1 ,求数列{a a}的前n项和.

利用错位相减法解决数列求和的答题模板

利用错位相减法解决数列求和的答题模板 数列求和是高考的重点,题型以解答题为主,主要考查等差、等比数列的求和公式,错位相减法及裂项相消求和;数列求和常与函数、方程、不等式联系在一起,考查内容较为全面,在考查基本运算、基本能力的基础上又注重考查学生分析问题、解决问题的能力. [典例] ( 满分12分)已知数列{a n }的前n 项和S n =-12 n 2+kn ,k ∈N *,且S n 的最大值为8. (1)确定常数k ,求a n ; (2)求数列???? ??9-2a n 2n 的前n 项和T n . 规范审题模板 1.审条件,挖解题信息 观察条件―→S n =-12 n 2+kn 及S n 的最大值为8 n S n ???????→是于的二次函关数 当n =k 时,S n 取得最大值 2.审结论,明解题方向 观察所求结论 ―→求k 的值及a n ――――→应建立关于k 的方程S n 的最大值为8,即S k =8,k =4n S ?????→可求的表式达 S n =-12n 2+4n 3.建联系,找解题突破口 根据已知条件,可利用a n 与S n 的关系求通项公式 ―――――→注意公式的使用条件a n =S n -S n -1=92-n n ,a 1=S 1=72 ―――――→验证n =1时,a n 是否成立a n =92-n 教你快速规范审题

1.审条件,挖解题信息 观察条件―→a n =92-n 及数列???? ??9-2a n 2n 922n n a ?????????????→-可化列简数 9-2a n 2n =n 2 n -1 2.审结论,明解题方向 观察所求结论―→求数列??????9-2a n 2n 的前n 项和T n 12n n ???????→-分析通的特项点 可利用错位相减法求和 3.建联系,找解题突破口 ――――→同乘以2 ――――→错位相减

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

错位相减法数列求和法

特定数列求和法一错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归 纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求 和的方法一一错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学 习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过 程: 数列a n 是由第一项为a i ,且公比为q 的等比数列,它的前n 项和是 由已知有 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简 化了,从而得到等比数列的求和公式, 这种方法叫错位相减法,那我们是不是遇 到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过 程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的 复杂数列的。可以归纳数学模型如下: S n a i a i q a i q 2 a i q n i ,求S n 的通项公式。 两端同乘以 q ,有 i 时, i 时, 于是 S n a i a i q a i q 2 ... qs n aiq 2 aiq 3 a i q n ... (1 q)s n a i n a i q 由①可得 由③可得 S n s n S n n a i (q i)或者 na i i)

已知数列4是以a i 为首项,d 为公差的等差数列,数列 0是以b i 为首 项,q(q 1)为公比的等比数列,数列C n a n b n ,求数列C n 的前n 项和. 解 由已知可知 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接 地写明所求数列是一个等比数列乘以一个等差数列的形式, 通过对最近几年高考 中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知 这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差 数列,则只要证明或者求出另一个是等比数列, 那么就可以用错位相减法来求解 该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解, 得另 找他法了 ■ 例1.(2013湖南文)设S n 为数列{a n }的前n 项和,已知: a 1 0,2a n a 1 S 1 S n , n N (1)求a 1,并求数列{a n }的通项公式 (2)求数列{na n }的前n 项和. 两端同乘以q 可得 qC n a1?q :a 1b 2 a 2 b 2q a ? b 3 asdq 83 匕4 .. . ...a n 1 b n 1 q a n b n q a n 1b n a n b n q 由①-②得 (1 q)C n a 1 b 1 d(b 2 b 3 ...b n 1 b n ) a n b n q 化简得 C n Cd d(b 2 b 3 ... b n 1 b n ) a n b n q / (q C n a i b 1 a 2b 2 a 3b 3 ■■- i q

裂项相消法求和(公开课)学案

姓名:___________ 班级:_____________ 数列求和(1)—— 裂项相消法 目标: 1 理解裂项相消法思想。 2 使用裂项相消法解决特殊数列求和问题。 3 在自学与探究中体验数学方法的形成过程。 一、复习巩固 1 公式求和法: 2 倒序相加法: 二、自学讨论 学习以下例题,完成填空。(限时8分钟) 思考与讨论: 什么数列可用裂项相消法求和? 如何裂项?你有好的方法吗? 如何相消?你能发现其中的规律吗? 利用裂项相消法求和的一般步骤是什么? 例一:n n S n n a 求已知,) 1(1 += 解:1 1 1)1(1+-=+= n n n n a n Θ n n n a a a a a S +++++=∴-1321Λ ) 1(1)1(1431321211++-++?+?+?= n n n n Λ )1 11()111( )4131()3121()211(+-+--++-+-+-=n n n n Λ 1111+= +-=n n n 1 += ∴n n S n 裂项相消法求和的一般步骤: _____________ ____________ _____________ ____________ 裂项: ○ 1你能证明1 1 1)1(1+-=+n n n n 吗? ○ 2猜想:()2 1 +n n =_____________________ 验证: =+-2 11n n ___________________ 结论: =+) 2(1 n n ____________________ ○ 3一般地; () k n n +1 =________________ 相消:怎么消? 哪些项是不能消去的?

高二经典裂项相消法求和大全

1 裂项相消法求和基本类型: 一项拆成两项,消掉中间所有项,剩下首尾对称项(相邻、间隔相消) 1.如1n (n +1)=1n -1 n +1 ; 2.形如a n =1 (2n -1)(2n +1)=)121121(21+--n n 型; 3.)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n 4.]) 2)(1(1 )1(1[21)2)(1(1++-+=++= n n n n n n n a n 5.n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121 )1()1(221)1(21+-=+-?=? +-+=?++= -则 6.形如a n =n +1n 2(n +2)2 型.=___________________ 7.形如a n =4n (4n -1)(4n +1 -1)=13?? ? ??---+1411411n n 型; 8. n +1n (n -1)·2n =2n -(n -1)n (n -1)·2n =1(n -1)2 n -1-1 n ·2n . 9.形如a n = ( ) n k n k k n n -+= ++1 1型; 1 )1(1 +++= n n n n a n =_____________________ 10. ( ) b a b a b a --= +1 1 11.()21≥-=-n S S a n n n 12.1) tan(tan tan tan tan ---= βαβ αβα 13.利用两角差的正切公式进行裂项 把两角差的正切公式进行恒等变形, 例如 β αβ αβαtan tan 1tan tan )tan(+-= - 可以利用 ()[]k k k k k k tan )1tan(1tan )1tan(1tan 1tan ?+--+= -+=, 得,11 tan tan )1tan(tan )1tan(--+= ?+k k k k 14 利用对数的运算性质进行裂项对数运算有性质 N M N M a log log log -=,有些试题则可以构造这种形式进行裂项 .

错位相减法数列求和法(供参考)

特定数列求和法—错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法——错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程: 数列{}n a 是由第一项为1a ,且公比为q 的等比数列,它的前n 项和是 111121...n n a a q a q a q s -=++++ ,求 n s 的通项公式。 解 由已知有 111121...n n a a q a q a q s -=++++, ○ 1 两端同乘以q ,有 ○ 1-○2得 当1q =时,由○ 1可得 当1q ≠时,由○ 3可得 于是 1(1)n s na q == 或者 11(1)1n n a a q s q q -=≠- 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是遇到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下: 已知数列{}n a 是以1a 为首项,d 为公差的等差数列,数列{}n b 是以1b 为首项,(1)q q ≠为公比的等比数列,数列n n n c a b =,求数列{}n c 的前n 项和. 解 由已知可知 两端同乘以q 可得 = 11223311...n n n n n qc a b q a b q a b q a b q a b q --=+++++

七.裂项相消法求和

七、 裂项相消法求和 基本方法: 1. 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 2. 常见的裂项方法(其中n 为正整数) ) k 为非零常数111) k k n n k 2141 n 21111 41 22121 n n n 1 (1)(2) n n n 111 2(1) (1)(2)n n n n 1n n k 11 ()n k n k n n k 1log 1 a n 0,1a a 11 log (1)log a a a n n n 一、典型例题 1. 已知数列n b n N 是递增的等比数列,且135b b ,134b b ,若2log 3n n a b ,且1 1 n n n c a a ,求 数列n c 的前n 项和n S . 2. 已知数列n a 是等比数列,且14a ,358a a a ,令111 n n n n a b a a ,求数列n b 的前n 项和n T . 二、课堂练习 1. 已知数列n a 的前n 项和为n S ,且满足2*12,n n S a n n n N ,求证: … 1 2 11134 n S S S . 2. 已知等比数列n a 的前n 项和为n S ,12a ,*0n a n N ,66S a 是44S a 和55S a 的等差中项. (1)求数列n a 的通项公式; (2)设1212 log n n b a ,数列 1 2n n b b 的前n 项和为n T ,求n T . 三、课后作业 1. , ,, ,1 22 31 n n 的前n 项和. 2. 已知数列n a 的通项为1 lg n n a n ,若其前n 项和为2n S ,求n 的值. 3. 设212 n b n n ,记数列n b 的前n 项和为n T ,求使24 25 n T 成立的n 的最大值.

数列求和(1)--裂项相消法

数列求和(1) --裂项相消法的应用 教学内容:从每年的广东高考题可以看到,数列不管是从选择、填空和解答题中都是必考题型,并且数列考点有:数列几何性质的应用、数列的通项公式、数列求和问题。这三类问题是高考的必考点,更是热点。对于数列求和问题又是重点中的重点,本节课我们就数列求和中的裂项相消法做重点学习。 教学重难点:对于裂项相消法的基本形式和基本题型熟练掌握和应用,要识别清裂项相消法和其它求和方法的区别,真正会识别裂项相消法的本质面目,且灵活运用进行解题,达到高考要求。 一、基础练习: 1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25 答案 B 2.在数列{a n }中,a n =1n n +1 ,若{a n }的前n 项和为2 013 2 014 ,则项数n 为( ). A .2 011 B .2 012 C .2 013 D .2 014 答案 C 3.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列? ???????? ?1b n b n +1的前n 项和S n =________. 答案 n n +1 对于数列求和问题要稳扎稳打。 二、基本题型讲解和运用

总结:(1)中式子的变形方向很重要,这种形式在数列和函数问题中都是很常见,要学会。(2)中的裂项求和很是常规,要熟练。 练习:

(2)中的1/Sn变形为裂项相消很重要,所以要认清裂项相消的真面目。对于Tn的范围求解,完全是借助和式和数列的单调性完成。

数列求和错位相减法,裂项相消法后附答案

一、解答题 1.已知等差数列的前项和为,且,. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,,求数列的前项和. 【详解】 (Ⅰ),∴ ,∴ 则, . (Ⅱ)由(Ⅰ)可知, , -( ()() = = ∴ 2.已知数列的前n项和为,且,, 求数列的通项公式; 设,求数列的前n项和. 【答案】(1)(2) 【详解】 ,,, 即,, 两式相减,得,即, 又,, 即数列是首项为2,公比为2的等比数列, 所以; 设,则, , , 两式相减,得: . 【点睛】 本题考查数列的递推关系,通项公式,前n项和,错位相减法,利用错位相减法是解决本题的关键,属于中档题.

3.已知等差数列的前项和为,满足.数列的前项和为 ,满足. (1)求数列和的通项公式; (2)求数列的前项和. 【答案】(1),;(2). 【解析】 【分析】 (1)根据题意,求得,然后求得公差,即可求出数列的通项,再利用 求得的通项公式; (2)先求出的通项,然后利用数列求和中错位相减求和. 【详解】 解:(1)由,得,解得. 由,解得或. 若,则,所以.所以,故不合题意,舍去. 所以等差数列的公差, 故. 数列对任意正整数,满足. 当时,,解得; 当时,, 所以. 所以是以首项,公比的等比数列, 故数列的通项公式为. (2)由(1)知, 所以,① 所以,② ①-②,得

, 所以. 4.已知数列的首项,且满足 求证:数列为等差数列,并求数列的通项公式; 记,求数列的前项和为. 【答案】(1)证明见解析,(2) 【解析】 【分析】 由,得,由此可判断为等差数列,可求,进而得到; 求出,利用错位相减法可求. 【详解】 由,得, 又, 为等差数列,首项为1,公差为2, , . , , , 得, , . 【点睛】 5.已知等差数列的前项的和为,,. (1)求数列的通项公式; (2)设,记数列的前项和,求使得恒成立时的最小正整数. 【分析】 (1)先设设等差数列的公差为,由,列出方程组求出首项和公差即可; (2)由(1)先求出,再由裂项相消法求数列的前项和即可. 【详解】

数列求和的“裂项相消法”讲解

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 对于本题通项公式类型的数列,采用的“求前n项和”的方法叫“裂项相消法”——就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。 很多题目要善于进行这种“拆分” 请看几例: (1)本题: ()() 22 11 1 11 n n n n n a n n n n ++ === - ++-+ (变形过程中 用了“分子有理化”技巧) 得 122334111 11 11111 n n n n S n ++ =++++==+ ----- … 【往下自己求吧!答案C 】 (2)求和 1111 122334(1) n S n n =++++ ???+ …

解:通项公式:()()()11 11111 n n n a n n n n n n +-= = =-+++ 所以 111111*********n S n n ????????=- +-+-++- ? ? ? ?+???????? … 111 1 n n n =-+= + (3)求和 1111 377111115(41)(43) n S n n = ++++ ???-+… 解:()() ()()()()43411 111141434414344143n n n a n n n n n n +--?? = = =- ?-+-+-+?? 得 1111 377111115(41)(43) n S n n = ++++???-+ (11111111) 143771111154143n n ??????????= -+-+-++- ? ? ? ???-+?????????? … 1114343n ??= - ?+?? () 343n n = + (4)求和 1111 132435(2) n S n n = ++++ ???+… ()()()21111122222n n n a n n n n n n +-??= ==- ?+++?? ()()()() 11111111 13243546572112n S n n n n n n = ++++++++?????--++… 1111111111111112132435462112n n n n n n ????????????????=-+-+-+-++-+-+- ? ? ? ? ? ? ???--++???????????????? …

高中数学数列求和-错位相减法

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可. 目录 简介 举例 错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列. 编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 编辑本段错位相减法解题 错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)在(1)的左右两边同时乘上a.得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式.(1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S 的通用公式了.例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x 的n-1次方所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方.化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法这个在求等比数列求和公式时就用了Sn= 1/2+1/4+1/8+.+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+.+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n

数列求和裂项法错位相减法分组求和法

数列求和裂项法错位相减法分组求和法 Modified by JEEP on December 26th, 2020.

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412,813,……n n 21+,…… (2)1,211+,3211 ++…… n +??+++3211 …… (3)5,55,555.……,55……5,……(4),,,……,……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+= n n a n (2)) 2(1 +=n n b n (3){a n }满足a n = 1 1++n n ,求S n (4)求和:+?+?= 5 34 3122 2 n S ……+) 12)(12()2(2 +-n n n (5)求和) 2)(1(1 43213211+++??+??+??=n n n S n 例4、求数列 ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 2 1 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足 )3(2,,2,1,02525≥=?=>-n a a n a n n n 且 ,则当1≥n 时,=+++-1221212log log log n a a a A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 11 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

高中数学复习_数列求和_裂项相消法

裂项相消法求和 把数列的通项拆成两项之差、正负相消剩下首尾若干项。 1、 特别是对于? ?????+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用 1+n n a a c =??? ? ??-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:1 11)1(1+-=+n n n n )1 21121(21)12)(12(1+--=+-n n n n ]) 2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n !)!1(!n n n n -+=? )! 1(1!1)!1(+-=+n n n n 例1 求数列1{ }(1)n n +的前n 和n S . 例2 求数列1{ }(2) n n +的前n 和n S .

例3 求数列1{ }(1)(2)n n n ++的前n 和n S . 例4 求数列 ???++???++,11,,321,211n n 的前n 项和. 例5:求数列 311?,421?,531?,…,) 2(1+n n ,…的前n 项和S 例6、 求和) 12)(12()2(5343122 22+-++?+?=n n n S n

一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) ()n n a a f a a f a a f n +-=-=-= 两边分别相加得 111()n n k a a f n +=-=∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)12 (1)(1)1 n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则

数列求和--裂项相消法

1.已知数列{}n a 的前n 项和为n S ,且12a =,()() *21n n S n a n N =+∈. (1)求{}n a 的通项公式; (2)令()()1422n n n b a a += ++,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,且23a =,636S =. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足2142 n n b a n =+-(*n N ∈),求数列{}n b 的前n 项和n T . 3.在数列{}n a 中,1114,340n n a a a +=-+=. (1)证明:数列{}2n a -是等比数列. (2)设()() 1(1)3131n n n n n a b +-=++,记数列{}n b 的前n 项和为n T ,若对任意的*,n n N m T ∈≥恒成立,求m 的取值范围.

4.正项数列{}n a 的前项和n S 满足:242n n n S a a =+,()*n ∈N , (1)求数列{}n a 的通项公式; (2)令()22 1 2n n n b n a +=+,数列{}n b 的前n 项和为n T ,证明:对于任意的*n ∈N 都有 564 n T < . 5.已知等差数列{}n a 中,13212a a +=,12421a a a +=+. (1)求数列{}n a 的通项公式; (2)记数列{}n a 的前n 项和为n S ,证明:121112123 n S S S n +++<+++. 6.已知数列{}n a 满足15a =,2123n n a a n +=+-. (1)求证:数列{}22n a n n --为等比数列; (2)若数列{}n b 满足2n n n b a =-,求12111n n T b b b =++???+.

裂项相消法求和之再研究(例题有答案,习题无答案)

裂项相消法求和之再研究 撰写人:刘小明 一、多项式数列求和。 (1)用裂项相消法求等差数列前n 项和。即形如n a an b =+的数列求前n 项和 此类型可设22()[(1)(1)]n a An Bn A n B n an b =+--+-=+左边化简对应系数相等求出A,B 。 123222()0(42)()(93)(42)()[(1)(1)] n n S a a a a A B A B A B A B A B An Bn A n B n An Bn =+++=+-++-+++-++++--+-=+ 则 例1:已知数列{}n a 的通项公式为21n a n =-,求它的前n 项和n S 。 2222 222222 123()[(1)(1)]21 2=21 22110 (1)12132(1)n n n n n a An Bn A n B n n a An B A n A A B A B a n n S a a a a n n n =+--+-=-=+--==??∴???-=-=??∴=--∴=+++=+-+-++--= 解:令 则有 (2)用裂项相消法求多项式数列前n 项和。即形如121210m m n m m a b n b n b n b ----=++++ 的数列求前n 项和。 此类型可111111()[(1)(1)(1)]m m m m n m m m m a c n c n c n c n c n c n ----=+++--+-++- 设 121210m m m m b n b n b n b ----=++++ 上边化简对应系数相等得到一个含有m 元一次方程组。 说明:解这个方程组采用代入法,不难求。系数化简可以用二项式定理,这里不解释。 解出12,,,m c c c 。再裂项相消法用易知111m m n m m S c n c n c n --=+++ 例2:已知数列{}n a 的通项公式为3n a n =,求它的前n 项和n S 。 432432322323 [(1)(1)(1)(1)] (4641)(331)(21)4(63)(432)() 14411630243200n a An Bn Cn Dn A n B n C n D n A n n n B n n C n D An A B n A B C n A B C D n A A A B B A B C C A B C D =+++--+-+-+-=-+-+-++-+=+-++-++-+-+===??-+==?∴??-+=??-+-+=?解:设() 140D ???????=???=?

错位相减法求和 优秀教学设计

教学设计 一、课程基本描述 课程名称:错位相减法 课程内容所属学科:高中数学 教材选用:人教A版必修五 授课对象:高中学生 课前准备:多媒体课件、笔记本电脑 二、教学背景 数列是高中数学的重要内容之一,数列的求和是高考重点考查内容,错位相减法在书本上没有专门的要求,但错位相减法是求和中考察最多的,考察有变革,有创新,但在变中有不变性,因此,要求考生有效地分析通项,然后根据通项特征选择相应的求和方法。而错位相减法就是针对一个由等差数列{an}及一个等比数列{bn}对应项之积组成的数列求和方法.由等比数列求和的推导后,考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此类题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项或符号的正负出错,特别是含字母的需要讨论等,需要学生在不断的尝试练习、巩固练习中来提高学生的观察能力、分析问题与解决问题的能力以及计算能力,体现数学的核心素养。 三、教学目标 1.知识与技能:会用错位相减求通项为等差数列与等比数列对应项乘积的数列前n项和。 2.过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,让学生体会数学的转化思想。 3.情感、态度与价值观:在学习的过程中,培养学生的探究能力、化归能力、运算能力,真正理解和掌握基本的数学知识与技能、转化与化归的数学思想和方法、获得广泛的数学经验。 教学重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n项和。 教学难点:错位相减后的项数、符号、计算问题,以及对转化数学思想的理解。 教学方法:探究式教学

四、教学过程 错位相减法的基本介绍: 通常一个公差为d 的等差数列{a n }与一个公比为q 的等比数列{b n }的对应项的乘积构成的新数列 c n ={an·bn },则求新数列的前n 项和Sn ,一般将{a n ·b n }的各项乘以其公比,并向后错一项与{a n ·b n }的同项对应相减,相减时通常是用系数大的项减去系数小的项,避免出现太多的负号,相减后的式子,有n+1项相加,然后再把n-1项构成的等比数列相加,再跟剩余两项能合并的合并,力求结果形式上简洁。(有字母的需要注意讨论公比q 是否等于1)这就是错位相减法求和的基本步骤。 例题展示1:求和T n =1×2+4×22+7×23+?+(3n ?2)×2n 解: (1) T n =1×2+4×22+7×23+?+(3n ?2)×2n (2) 2T n =1×22+4×23+7×24+?+(3n ?2)×2n +1(1)减(2)得: ?T n =1×2+3×22+3×23+?+3×2n ?(3n ?2)×2n +1 =3(2+22+23+?+2n )?(3n ?2)×2n +1?4 =3(2n +1?2)?(3n ?2)×2n +1?4 =3×2n +1?6?3n ×2n +1+2n +2?4 =2n +2+3(1?n )×2n +1?10 所以:T n =3(n ?1)×2n +1?2n +2+10 跟踪练习:求和T n =3×13+5×(13)2+7×(13)3+?+(2n +1)×(13)n 例题展示2.已知等比数列的公比为,前项和为,,分{a n }q ≠1n S n a 1+a 3=S 4 S 2a 1?1,a 2?1,a 3?1别是一个等差数列的第1项,第2项,第5项. (Ⅰ)求数列的通项公式; {a n }(Ⅱ)设,求数列的前项和. b n =a n lga n {b n }n T n 解:由分别是一个等差数列的第1项,第2项,第5项, a 1?1,a 2?1,a 3?1得, a 3?1?(a 1?1)=4[(a 2?1)?(a 1?1)]即, a 3?a 1=4(a 2?a 1)因 为,所以 {a n }是等比数列a n ≠0 即, q 2?1=4(q ?1)又因为,所以, q ≠1q +1=4,q =3由得,,所以,所以. a 1+a 3=S 4S 2a 1+a 1q 2=S 2(1+q 2)S 2=1+q 2a 1=1a n =3n ?1

相关文档
相关文档 最新文档