文档库 最新最全的文档下载
当前位置:文档库 › 常用射频指标测试大纲

常用射频指标测试大纲

常用射频指标测试大纲
常用射频指标测试大纲

常用射频指标

测试大纲

通信对抗

2015/10/30

Ver. 1.0

目录

目录1

1.1dB压缩点(P1dB) (1)

1.1基本概念 (1)

1.2测量方法 (1)

2.三阶交调(IP3) (2)

2.1基本概念 (2)

2.2测量方法 (3)

3.三阶互调(IM3) (4)

3.1基本概念 (4)

3.2测量方法 (5)

3.2.1直接测量 (5)

3.2.2间接法 (5)

4.噪声系数(NF) (5)

4.1基本概念 (5)

4.2测量方法 (6)

4.2.1使用噪声系数测试仪 (6)

4.2.2增益法 (6)

4.2.3Y因数法 (8)

4.2.4测量方法小结 (10)

5.灵敏度 (10)

5.1基本概念 (10)

5.2测量方法 (11)

5.2.1间接法-噪声系数法测量 (11)

5.2.2直接法-临界灵敏度测量 (11)

6.镜频抑制 (11)

6.1基本概念 (11)

6.2测量方法 (12)

7.相位噪声 (13)

7.1基本概念 (13)

7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB)

1.1基本概念

射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。

随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。

通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。

1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。

图 1 输出功率随输入功率的变化曲线

1.2测量方法

频谱仪直接测量。

1,DUT的输入端连接信号源,输出端连接频谱仪;

2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

差值,保证DUT由线性区逐步进入非线性区。在过渡区适当减小功率步

进;

3,当增益G减小1时所对应的点即为1dB压缩点。

2.三阶交调(IP3)

2.1基本概念

当两个正弦信号经过射频电路(系统)时,此时由于射频电路(系统)的非线性作用,会输出包括多种频率的分量,其中以三阶交调分量的功率电平最大,它是非线性中的三次项产生的。假设两基频信号的频率分别是F1 和F2,那么,三阶交调分量的频率为2F1-F2 和2F2-F1。图2是输入信号和输出信号的频谱图。

图 2 输入、输出频谱图

当输入功率逐渐增加到IIP3 时,基频与三阶交调增益曲线相交,对应的输出功率为OIP3。IIP3 与OIP3 分别被定义为输入三阶交调截取点(InputThird-order Intercept Point)和输出三阶交调截取点(Output Third-order Intercept Point)。

三阶交调截取点(IP3)是表示线性度或失真性能的重要参数,IP3 越高表示线性度越好和更少的失真。

图3中A线是基频(有用的)信号输出功率随输入功率变化的曲线,B线是三阶失真输出功率随输入功率变化的曲线,B线的斜率是A 线的斜率的 3 倍(以dB 为单位),理论上会与A相交,这个交点就是三阶截取点。

假定射频电路(系统)的增益为G,它表示图3中A线(基频)的斜率,3G则表示图3中B线(三阶交调)的斜率,即在线性范围内,三阶交调输出功率是一阶交调输出功率的3倍。故两曲线的方程分别为:

OIP3-a=G(IIP3-Pi)

OIP3-b=3G(IIP3-Pi),

则有OIP3=a+(a-b)/2=(3a-b)/2=1.5(a-b)+b及OIP3=IIP3+G

图 3 功率变化曲线

2.2测量方法

进行此测量时,重要的是两测试信号源间有充分的隔离,从而防止产生更多的互调产物。可能需要使用隔离器、固定衰减器、隔离放大器或高隔离威尔金森功率合路器,可能还需要低通滤波器来衰减信号源的2次谐波。

图4为IP3测试框图,在信号源和频谱分析仪之间,附加了一些测试设备。附加在射频信号源与合成器之间的隔离器用以改善并隔离射频信号源之间的交调或混合,低通滤波器用以减少射频信号源的谐波成分。附加在被测放大器与频谱分析之间的隔离器用以改善与频谱分析仪的阻抗匹配,低通滤波器用以减少由被测放大器产生的谐波分量。

为了避免频谱分析仪产生非线性失真,输出到频谱分析仪的信号功率不能太高,对此要求射频信号源的输出功率要小,由图3可以看出,三阶交调输出功率(图3中的b点)比一阶交调输出功率(图3中的a点)要小很多倍,那么对测量的频谱分析仪的要求需要有高的动态范围。

综合以上的考虑后,要精确的测量IP3需要谨慎遵守几个步骤:

1,按照图4测试框连接好设备;

2,设置射频信号源F1的频率和输出功率;

3,设置射频信号源F2的频率和输出功率;

4,设置频谱分析仪衰减电平、参考电平、中心频率、范围(SPAN)、分辨率等参数;

5,提供符合被测件的工作条件(电压,电流);

6,调整射频信号源的输出功率并在频谱分析仪测得F1或F2的输出功率,此为a点的值并记录(比如-10dBm);

7,调整频谱分析仪测得2F1-F2或2F2-F1的输出功率并记录,此为b点的值;

8,用公式计算出OIP3和IIP3。

图 4 IP3测试框图

3.三阶互调(IM3)

3.1基本概念

三阶互调是指当两个基频信号在一个线性系统中,由于非线性因素存在使一个基频信号的二次谐波与另一个基频信号产生差拍(混频)后所产生的寄生信号。比如F1 的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是

二次谐波(二阶信号),另一个信号是基频信号(一阶信号),他们俩的合称为三阶互调信号。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于 F2,F1 信号一般比较接近,所以 2F1-F2,2F2-F1 会干扰到原来的基频信号 F1,F2(见图 2)。这就是三阶互调干扰。

既然会出现三阶,当然也有更高阶的互调,这些信号也干扰原来的基带信号,因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。

不管是有源还是无源器件,如射频电路(系统)、混频器和滤波器等都会产生三次互调产物。

3.2 测量方法

3.2.1 直接测量

用频谱分析仪直接测量DUT 输出端的基频信号输出功率Pout (dBm)和三阶互调输出功率 P’(dBm)。

则三阶互调抑制度由(5)计算。

3.2.2 间接法

用三阶截取点来定义三阶互调抑制度,三阶截取点OIP3 (dBm)、基频信号输出功率 Pout (dBm)和三阶互调IM3 (dBc)的关系如下:

IM3=2(Pout-OIP3)

4. 噪声系数(NF )

4.1 基本概念

在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为:

两者简单的关系为:NF = 10 * log10 (F)

IM3(dBc)=Pout (dBm)-

P(dBm)

4.2测量方法

4.2.1使用噪声系数测试仪

图 5 噪声系数测试仪连接框图

噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图5所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。

使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

4.2.2增益法

前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

在这个定义中,噪声由两个因素产生:第一个是到达射频系统输入的干扰,与需要的有用信号不同;第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为:

P NA = k*T*ΔF

这里的

k = 波尔兹曼常量(1.38 * 10-23焦耳/ΔK)

T = 温度,单位为开尔文

ΔF = 噪声带宽(Hz)

在室温(290ΔK)时,噪声功率谱密度P NAD = -174dBm/Hz。因而我们有以下的公式:

NF = P NOUT - (-174dBm/Hz + 20 * log10 (BW) + G)

在公式中,

P NOUT是已测的总共输出噪声功率;

-174dBm/Hz是290°K时环境噪声的功率谱密度;

BW是感兴趣的频率带宽;

G是系统的增益;

NF是DUT的噪声系数。

公式中的每个变量均为对数。为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时公式变为:

NF = P NOUTD + 174dBm/Hz – G

为了使用增益法测量噪声系数,DUT的增益需要预先确定的。DUT的输入需要端接特性阻抗(射频应用为50Ω,视频/电缆应用为75Ω)。输出噪声功率谱密度可使用频谱分析仪测量。

图 6 为增益法连接框图。作为一个例子,我们测量MAX2700噪声系数。在指定的LNA增益设置和V AGC下测量得到的增益为80dB。接着,如图6连接仪器,射频输入用50Ω负载端接。在频谱仪上读出输出噪声功率谱密度为-90dBm/Hz。为获得稳定和准确的噪声密度读数,选择最优的RBW (解析带宽)与VBW (视频带宽)为RBW/VBW = 0.3。计算得到的NF为:

-90dBm/Hz + 174dBm/Hz - 80dB = 4.0dB

只要频谱分析仪允许,增益法可适用于任何频率范围内。最大的限制来自于频谱分析仪的噪声基底。在公式中可以看到,当噪声系数较低(小于10dB )时,(P OUTD - 增益)接近于-170dBm/Hz ,通常LNA 的增益约为20dB 。这样我们需要测量-150dBm/Hz 的噪声功率谱密度,这个值低于大多数频谱仪的噪声基底。在上面的例子中,系统增益非常高,因而大多数频谱仪均可准确测量噪声系数。类似地,如果DUT 的噪声系数非常高(高于30dB ),这个方法也非常准确。

4.2.3 Y 因数法

Y 因数法是另外一种常用的测量噪声系数的方法。为了使用Y 因数法,需要ENR (冗余噪声比) 源。这和前面噪声系数测试仪部分提到的噪声源是同一个东西。ENR 头通常需要高电压的DC 电源,比如HP346A/B 噪声源需要28VDC 。这些ENR 头能够工作在非常宽的频段(例如HP346A/B 为10MHz 至18GHz),在特定的频率上本身具有标准的噪声系数参数,在标识频率之间的频率的噪声系数可通过外推法得到。装置图见图 7:

开启或者关闭噪声源(通过开关DC 电压)

,工程师可使用频谱分析仪测量输

图 6 增益法连接框图

出噪声功率谱密度的变化。计算噪声系数的公式为:

在这个式子中,ENR 为上表给出的值。通常ENR 头的NF 值会列出。Y 是输出噪声功率谱密度在噪声源开启和关闭时的差值。

这个公式可从以下得到:

ENR 噪声头提供两个噪声温度的噪声源: 热温度时T = TH (直流电压加电时)和冷温度T = 290°K 。ENR 噪声头的定义为:

冗余噪声通过给噪声二极管加偏置得到。现在考虑在冷温度T = 290°K 时与在热温度T = T H

时放大器(DUT)功率输出比: 这就是Y 因数法,名字来源于上面的式子。

根据噪声系数定义,F = Tn/290+1,F 是噪声因数(NF = 10 * log(F)),因而,Y = ENR/F+1。在这个公式中,所有变量均是线性关系,从这个式子可得到上面的噪声系数公式。

我们再次使用MAX2700作为例子演示如何使用Y 因数法测量噪声系数。装置图见图3。连接HP346A ENR 到RF 的输入。连接28V 直流电压到噪声源头。我们可以在频谱仪上监视输出噪声功率谱密度。开/关直流电源,

噪声谱密度

图 7 Y 因数法连接框图

Y = G(Th + Tn)/G(290 + Tn) = (Th/290 + Tn/290)/(1 + Tn/290

从-90dBm/Hz变到-87dBm/Hz。所以Y = 3dB。为了获得稳定和准确的噪声功率谱密度读数,RBW/VBW设置为0.3。从表2得到,在2GHz时ENR = 5.28dB,因而我们可以计算NF的值为5.3dB。

4.2.4测量方法小结

三种测试方法各有其优缺点,适用于特定的应用。下表是三种方法优缺点的总结。理论上,同一个射频器件的测量结果应该一样,但是由于射频设备的限制(可用性、精度、频率范围、噪声基底等),必须选择最佳的方法以获得正确的结果。

5.灵敏度

5.1基本概念

接收机灵敏度是指接收机在满足一定的误码率条件下接收机输入端需输入的最小信号电平。在通信过程中,灵敏度直接反应了接收机接收、解调无线信号的能力,关系到无线通信设备的通信质量和服务质量,对于无线覆盖、互联互通、网络优化也具有重要意义。

噪声系数和灵敏度都是衡量接收机对微弱信号接收能力的两种表示方法,它们是可以相互换算的。

S=-174dBm+NF+SNR+10*log10(BW)

其中,NF为接收机噪声系数;

SNR为满足一定误码率所需的最低信噪比;

BW为接收机工作带宽。

5.2测量方法

5.2.1间接法-噪声系数法测量

由5.1中灵敏度的基本概念可以通过测量噪声系数来间接估算出接收机的灵敏度。由于不同通信编码在实际工程中的SNR是已知的,只要测量出系统的噪声系数就可以计算出灵敏度。

5.2.2直接法-临界灵敏度测量

信号源待测器件示波器

图8测试框图

具体测量方法:

1)按图8连接好测试设备,确保接收机正常工作。

2)只给接收机加电工作不让信号源工作,记录示波器噪声均方值。

3)开启信号源,让射频输出约-120 dBm的余弦小功率信号。记录示波器显示的噪声加信号后的均值,将信号源输出功率调整使得输出信号的均方值与2中的噪声均方值的比值为1.426(此时信噪比为0),此时信号源输出的功率即为临界灵敏度。

6.镜频抑制

6.1基本概念

镜像频率抑制是超外差接收机特有的现象,镜像频率如果位于输入回路的通频带内,通过外差的变频作用就会把镜像频率的位置以及附近电台信号搬移到中频带内,对接收信号形成干扰。如果镜像频率附近无信号,就只增加了点噪声降低了信噪比;如果镜像频率处正好有一个电台信号,该信号就会和接收信号差拍形成嚣叫,较强的镜像频率会喧宾夺主,抑制掉输入信号;如果电台信号不在镜像频点上,而是在镜像频率附近,则会形成混台,产生偏调失真。

设信号频率为fs,振荡频率为flo,中频fif=flo-fs。如果在比fs高二个中频处有一个信号频率fm,它象是以flo为镜子,站在fs处看到的镜像,所以称像

频。这一信号和被测信号,都能够经过混频,得到中频分量,然后进入中频处理,这样就产生了混叠,我们叫这种干扰为镜像干扰。如图9所示:

图9 输入信号及其镜像频率混频输出

在超外差式无线电接收机中,符合以下条件,信号就能够进入中频放大器:(n×本机振荡频率)±(m×信号频率)=±k×中频频率

综上所述,镜频抑制是衡量接收机抗干扰能力的一项重要指标,也是体现接收机性能的一项指标。

6.2测量方法

由6.1中混频公式可以看出,能够进入中频放大器的频率很多,实际工程中以一次混频为主,而不过多关注多次谐波的情况,也就是说以本振为中心的镜像干扰。

信号源待测器件频谱仪

图10测试框图

如图10所示,测试步骤如下:

1.将频谱仪的测试频宽设置在待测器件中频输出范围内,调节好

RBW、VBW。

2.设置信号源输出频率为待测器件的工作频点f RF,在频谱仪上观

测待测器件的输出信号功率为Pr。

3.设置信号源输出频率为RF的镜像频率f IMG,在频谱仪上观测待

测器件的输出信号功率为Pi,则Pi-Pr为该频点的镜频抑制。

4.在待测器件工作频段内,取多个频点重复1-3进行测量。

7.相位噪声

7.1基本概念

相位噪声主要是衡量因信号的相位变化而带来的噪声,在频域中表现为噪声的频谱,在时域中又表现为信号边沿位置的抖动,因此在实际应用中,相位噪声和信号的抖动其实本质是相同的。通常表征为偏离载频Δf处1Hz带宽内的噪声功率。

7.2测量方法

7.2.1基于频谱仪的相位噪声测试方法

根据上文的分析,相位噪声是指信号相位的随机性波动的功率谱密度,在频域里相位噪声通常被表达为dBc/Hz。如果信号的相位噪声值非常小,那么则需要使用具有高动态范围的频域仪器进行测量,才能得到较好的结果。如果信号的相位噪声在-70dBc(或者结合平均方法为-80dBc)以上,则可以选择使用示波器进行测试。目前测量相位噪声主要有三种仪器,一是频谱仪,二是示波器,三是专用的相位噪声分析仪。频谱仪中通常具有相位噪声的测试项,可以从信号频谱上测量出相位噪声的值并进行适当的修正即可,测试原理即为测试某一指定偏移频率处的功率电平(1Hz带宽内)与载波总功率电平的比值;使用示波器进行相位噪声的测量则是在时域里先测试出抖动,然后再将抖动值按照上述提到的相位噪声与抖动的转换关系转换得到;由于示波器和频谱仪的动态范围有限,因此对于很小的相位噪声很难测试得非常准确。因此如果需要准确的测试比较小的相位噪声时,则可以选用专门测试相位噪声的相位噪声测试仪。

在频谱分析仪上,信号的所有不稳定度总和(即相位噪声和幅度噪声的总和)表现为载波两侧的噪声边带,通常当己知幅度噪声远小于相位噪声时(小于10dB),在频谱仪上读出的边带噪声即为相位噪声应该指出,不同场合对相位噪声的要求不同,测量方法也不同。典型的测试方法已有相应的测试设备用频谱仪测相位噪声的方法为简易的一种方法,仅适台于要求不高的场台,同时也是广泛应用和十分有效的方法,其特点为简单,易操作。

用频谱仪直接的测量方法为:

相位噪声的定义:偏离载频f 处(f 为指定频偏),单边带相位噪声功率密度(即单边带内1Hz 带宽内的功率)与载波功率之比:

ψ(f )=单边带噪声功率密度载波功率 (dBc/Hz)?

在频谱仪上偏离指定频偏处,得到的是在等效带宽内B 的总噪声功率电平Pssb ,须将分辨率带宽转换到1Hz 的等效噪声功率带宽,用公式B=101g1.2*RBW /1Hz 表示,加上频谱仪的修正因子2.5dB 。

用频谱直接测量相位噪声时,修正后的公式为:

ψ(f )=Pss Ps ?10Lg1.2RBW/1Hz +2.5

Pssb :指定偏移频率处,带宽一定时的一个边带的噪声功率电平; Ps :载波的功率电平

测试步骤:

1、如图11连接好测试设备,设置中心频率CENTER 使被测信号靠近屏幕的左删或中心。

2、设置参考电平REF LEVEL 略太于或等于载波信号的幅度。

3、设置适当的扫频宽度SPAN 使之能显现出带宽的一个或两个噪声边带。

4、利用频谱仪的AMARKER 功能使频谱仪直接读出指定频偏处的单边带相位噪声功率电平与载波功率电平之比(记录此时的分辩率带宽值)

5、用频谱仪的相位噪声公式,计算出归一化的相位噪声值。

若频谱仪自带测相噪功能,则将频谱仪切换至测相噪功能进行直接测量读取。 待测器件频谱仪或相噪仪

图 11相位噪声测试框图

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

射频测量指标参数

射频指标 1)频率误差 定义:发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的:通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定度。频率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳定。只有信号频率稳定,手机才能与基站保持同步。若频率稳定达不到要求(±0.1ppm),手机将出现信号弱甚至无信号的故障,若基准频率调节范围不够,还会出现在某一地方可以通话但在另一地方不能正常通话的故障。 条件参数: GSM频段选1、62、124三个信道,功率级别选最大LEVEL5;DCS频段选512、698、885三个信道,功率级别选最大LEVEL0进行测试。GSM频段的频率误差范围为+90HZ ——-90HZ,频率误差小于40HZ时为最好,大于40HZ小于60HZ时为良好,大于60HZ 小于90HZ时为一般,大于90HZ时为不合格;DCS频段的频率误差范围为+180HZ——-180HZ,频率误差小于80HZ时为最好,大于80HZ小于100HZ时为良好,大于100HZ小于180HZ时为一般,大于180HZ时为不合格。 2)相位误差 定义:发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位轨迹可根据一个已知的伪随机比特流通过0.3 GMSK脉冲成形滤波器得到。相位轨迹可看作与载波相位相比较的相位变化曲线。连续的1将引起连续的90度相位的递减,而连续的0将引起连续的90度相位的递增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有点相位误差的恶略程度,是一个整体性的衡量。 测试目的:通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I、Q数位类比转换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法:在业务信道(TCH)激活PHASE ERROR即可观测到相位误差值。测试时通过综合测试仪MU200产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕捉手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据抽样的正常突发中的样点计算出相位轨迹和误差。 测试条件:GSM频段选1、62、124三个频道,功率级别选最大LEVEL5;DCS频段选512、

射频测量指标参数

射频指标 1)频率误差 定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定 度。频 率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳 定。只有信号 频率稳定,手机才能与基站保持同步。若频率稳定达不到要求 (±0.1ppm),手机将出现信 号弱甚至无信号的故障,若基准频率调节范围不 够,还会出现在某一地方可以通话但在另一 地方不能正常通话的故障。 条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选 最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最 大LEVEL0 进行测试。 GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小 于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ 小于 90HZ 时为一般,大 于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ —— -180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大 于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。 2)相位误差 定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位 轨迹可 根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。相位轨迹可看作与载 波 相位相比较的相位变化曲线。连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递 增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有 点 相位误差的恶略程度,是一个整体性的衡量。 测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出 调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I 、Q 数位类比转 换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法 :在业务信道( TCH )激活 PHASE ERROR 即可观测到相位误差值。测试时通过 综合测试仪 MU200 产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕 捉 手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据

探讨射频电缆的各种指标和性能

探讨射频电缆的各种指标和性能 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小(<-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种"测试级"的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 特性阻抗 射频同轴电缆由导体,介质,外导体和护套组成。 "特性阻抗"是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸

射频各项测试指标.

双频段GSM/DCS移动电话射频指标分析 2003-7-14 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为 -105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小频移键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

推荐-WCDMA射频测试经验总结 精品

WCDMA主要射频指标测试经验总结 本文档列写了在使用Agilent 8960进行WCDMA射频各项测试的简要测试方法及步骤,注意事项和相关归纳总结,敬请参考。 一、测试前的设置 1.选择前面板上的“CALL SETUP” 2.按下F1键,把Operating Mode选择成“Cell Off” NOTE: 若不在CELL OFF状态下,有些参数无法设置

3.按More键,把页面切换到第二页,共四页。“2 of 4”4.按下F2,设置Cell Parameter --- 设置“BCCH Update Page” 到“Auto”状态 --- 设置“ATT Flag State” 到“set”状态 --- 按下F6,关闭当前窗口

5、按下F4设置“Uplink Parameters” --- 设置“Maximum Uplink Transmit Power Level”到24dBm --- 按下F6,关闭当前窗口 6、按下前面板左边的“More”切换页面到第一页,“1 of 4” 7、按下F1,设置“Operating Mode”到“Active Cell” 8、按下F7,设置“Cell Power”到-93dBm/3.84MHz 9、手机开机,等待手机registration 注:1、“security settings” 要依据UE的要求,通常情况应设置为“Auth.&Int”

NOTE: 使用小白卡,在8960关闭鉴全的情况下,依然可以注册,并且模块本身也应使用QPST关闭鉴全,若默认已关闭无需操作。 2、假如UE用的是Qualm chipset,就必须把“RLC Reestablish”设置成“Off”

常用射频指标测试大纲

常用射频指标 测试大纲 通信对抗 2015/10/30 Ver. 1.0

目录 目录1 1.1dB压缩点(P1dB) (1) 1.1基本概念 (1) 1.2测量方法 (1) 2.三阶交调(IP3) (2) 2.1基本概念 (2) 2.2测量方法 (3) 3.三阶互调(IM3) (4) 3.1基本概念 (4) 3.2测量方法 (5) 3.2.1直接测量 (5) 3.2.2间接法 (5) 4.噪声系数(NF) (5) 4.1基本概念 (5) 4.2测量方法 (6) 4.2.1使用噪声系数测试仪 (6) 4.2.2增益法 (6) 4.2.3Y因数法 (8) 4.2.4测量方法小结 (10) 5.灵敏度 (10) 5.1基本概念 (10) 5.2测量方法 (11) 5.2.1间接法-噪声系数法测量 (11) 5.2.2直接法-临界灵敏度测量 (11) 6.镜频抑制 (11) 6.1基本概念 (11) 6.2测量方法 (12) 7.相位噪声 (13) 7.1基本概念 (13) 7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB) 1.1基本概念 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。 通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图 1 输出功率随输入功率的变化曲线 1.2测量方法 频谱仪直接测量。 1,DUT的输入端连接信号源,输出端连接频谱仪; 2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

射频测试规范

1、目的 规范WCDMA射频测试标准,使工程师在作业时有所遵循,特制订本规范。 2、适用范围 本规范适用于公司研发的WCDMA产品项目。 3、参考文件 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetworkUserEquipment (UE)radiotransmissionandreception(FDD)(Release9)》 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetwork;Requirementsfo rsupportofradioresourcemanagement(FDD)(Release9)》 4、缩略语和术语 ACLRAdjacentChannelLeakagepowerRatio邻道泄漏抑制比 ACSAdjacentChannelSelectivity邻道选择性 AWGNAdditiveWhiteGaussionNoise加性高斯白噪声 BERBitErrorRatio误比特率 BLERBlockErrorRatio误块率 CPICHCommonPilotChannel公共导频信道 CQIChannelQualityIndicator信道质量指示 CWContinuousWave(un-modulatedsignal)连续波(未调制信号) DCHDedicatedChannel专用信道(映射到专用物理信道)DPCCHDedicatedPhysicalControlChannel专用物理控制信道DPCHDedicatedPhysicalChannel专用物理信道 DPDCHDedicatedPhysicalDataChannel专用物理数据信道 DTXDiscontinuousTransmission非连续发射 EcAverageenergyperPNchip每个伪随机码的平均能量 EVMErrorVectorMagnitude误差矢量幅度 FDDFrequencyDivisionDuplex频分复用 FuwFrequencyofunwantedsignal非有用信号频率 HARQHybridAutomaticRepeatRequest自动混合重传请求 HS-DPCCHHighSpeedDedicatedPhysicalControlChannel高速专用物理控制信道 HS-PDSCHHighSpeedPhysicalDownlinkSharedChannel高速物理下行共享信道 HS-SCCHHighSpeedSharedControlChannel高速共享控制信道IblockingBlockingsignalpowerlevel阻塞信号功率电平IoThetotalreceivedpowerspectraldensity总接收功率频谱密度IoacThepowerspectraldensityoftheadjacentfrequencychannel邻信道功率谱密度IocThepowerspectraldensityofabandlimitedwhitenoisesource带限白噪声功率谱密度IorThetotaltransmitpowerspectraldensityofthedownlinksignalattheNodeBantennaconnector基站发送的总功率谱密度orThereceivedpowerspectraldensityofthedownlinksignalasmeasuredattheUEantennaconnector下行链路所接收的功率谱密度 IouwUnwanted signalpowerlevel非有用信号功率电平 OCNSOrthogonalChannelNoiseSimulator正交信道噪声模拟器PCCPCHPrimaryCommonControlPhysicalChannel主公共控制物理信道PICHPagingIndicatorChannel寻呼指示信道 PRACHPhysicalRandomAccessChannel物理随机接入信道QqualminMinimumRequiredQualityLevel小区质量最小需求

蓝牙射频测试项

蓝牙一致性测试,(蓝牙射频测试),验证蓝牙产品的射频性能是否符合蓝牙射频规范。许多OEM厂家直接购买已经获得蓝牙认证的蓝牙芯片或模块,进而开发蓝牙产品,如移动电话、个人数字助理(PDA)、电脑、打印机、MP3播放器等。由于不同类型产品的需要,可能需要更换天线,或者由于其它无线模块或时钟模块的影响,以及电源的变化,这些都会导致蓝牙最终产品的射频性能发生变化,因此在研发和生产过程中必须对该产品的射频性能进行测试,以保证其无线指标符合蓝牙射频规范的要求。 1 蓝牙射频测试方法和指标 蓝牙无线测试规范的版本定义了蓝牙无线测试指标及其测试方法。蓝牙无线测试配置包括一台测试仪和被测设备(EUT,Equipment Under Test),其中测试仪作为主单元,EUT作为从单元。两者之间可以通过射频电缆相连也可以通过天线经空中传输相连(需要可靠的耦合以及屏蔽箱)。测试仪发送LMP指令,激活EUT进入测试模式,并对测试仪与EUT之间的蓝牙链路的一些参数进行配置。如测试方式是环回还是发送方式,是否需要进行跳频,分组是单时隙分组还是多时隙分组。 下面介绍蓝牙无线指标及其测试方法。 1.1发射测试 (1)输出功率 测试仪在低、中、高三个频点,对整个突发范围内测量峰值功率和平均功率。规范要求峰值功率和平均功率各小于23dBm和20dBm,并且满足以下要求:如果EUT的功率等级为1,平均功率> 0dBm;如果EUT的功率等级为2,-6dBm<平均功率<4dBm;如果EUT的功率等级为3,平均功率<0dBm。 (2)功率密度 测试仪通过扫频,在240MHz频带范围内找到对应最大功率的频点,然后以此频点进行时域扫描(扫描时间为1分钟),测出最大值,要求小于20dBm/100kHz。 (3)功率控制 初始状态为环回,非跳频。EUT分别工作在低、中、高三个频点,回送调制信号为DH1分组。测试仪通过LMP信令控制EUT输出功率,并测试功率控制步长的范围,规范要求在2dB和8dB之间。 (4)频率范围 测试仪对EUT回送的DH1分组扫频测量。当EUT工作在最低频点时,测试仪找到功率密度下降为-80dBm/Hz(-30dBm 100KHz带宽)时的频点fL;当EUT工作在最高频点时,测试仪找到功率密度下降为-80dBm/Hz(-30dBm 100KHz带宽)时的频点fH。要求fL、fH位于2.4~2.4835GHz 范围内。 (5)20dB带宽 EUT分别工作在低、中、高三个频点,回送调制信号DH1分组。测试仪扫频找到对应最大功率的频点,并且找到其左右两侧对应功率下降20dB时的fL和fH,20dB带宽Df = | fH - fL |,要求Df 小于1MHz。 (6)相邻信道功率 EUT工作频点分别为第0信道、第39信道和第78信道,回送净荷为PN9的DH1分组。测试仪

GSM射频指标详解

1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主 要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏 度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的 测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接 收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合 格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测 试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm, 则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF 输入电平为>-l00 dB mm,则接收灵 敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽 为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己 知的伪随机比特流通过GMSK脉冲成形滤波器得到。 频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间 的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回 归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。 (2)技术要求 ●对于GSM900MHz频段 ①频率误差Fe 若Fe<40Hz,则频率误差为优;

射频指标测试介绍

目录 1GSM部分 (1) 1、1常用频段介绍 ........................................................................................................................... 1 1。2发射(transmitter)指标?2 1、2、1发射功率?2 1。2、2发射频谱(OutputRFspectrum〈ORFS〉)?4 1。2.2.1调制频谱 ................................................................................................................ 4 1.2、2、2开关频谱 ........................................................................................................... 51。2.3杂散(spuriousemission) (5) 1.2。4频率误差(FrequencyError)?6 1.2。5相位误差(PhaseError)?6 1。2、6功率时间模板(PVT)?7 1。2接收(receiver)指标?8 1。2.1接收误码率(BER) (8) 2 WCDMA?9 2。1常用频段介绍?9 2.2发射(Transmitter)指标 (9) 2、3接收(receiver)指标 ................................................................................................ 153CDMA2000 . (15) 3。1常用频段介绍? 15 16 3、2发射(transmitter)指标? 3、3接收(receiver)指标? 19 20 4 TD-SCDMA部分? 4、1常用频段介绍 (20) 4。2发射(transmitter)指标.......................................................................................... 20

射频指标

姚方华李航广州南方高科有限公司 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一 -105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一 -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。 频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。 (2)技术要求 ●对于GSM900MHz频段 ①频率误差Fe 若Fe<40Hz,则频率误差为优; 若40Hz≤Fe6≤60Hz,则频率误差为良好; 若60Hz≤Fe≤90Hz,则频率误差为一般; 若Fe>90Hz,则频率误差为不合格。 ②相位误差峰值Pepeak 若Pepeak<7de8,则相位误差峰值为优; 若7deg≤Pepeak≤l0deg,则相位误差峰值为良好; 若10deg≤Pepeak≤20deg则相位误差峰值为一般; 若Pepesk>20deg,则这项指标为不合格。 ②相位误差有效值PeRMS 若PeRMs<2.5deg,则相位误差有效值为优;

射频指标测试介绍

目录

1GSM部分 常用频段介绍 发射(transmitter)指标 发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果发射功率在相应的级别超出指标的要求,则会造成邻道干扰。

测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。GSM频段分为124个信道,功率级别为5----33dBm,即LEVEL5----LEVEL19共15个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0----LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS?1?800

手机射频指标

1射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

信道机常见电性能指标含义及其测试方法

发信机主要电性能指标: 1.载波额定功率 载波额定功率是指无调制时馈给匹配负载(天线或等效电阻)的平均功率。对于常用的调频或调相方式,载波功率不因有无调制而变化。载波功率是决定通信距离与质量的重要因数之一。在系统设计中根据工作频率、服务范围和地形条件,对发信机载波额定功率提出适当的要求。不适当地增大发射功率不仅会造成浪费,更重要的是会增加系统间的干扰,不利于频谱的有效利用。国家规定移动通信设备的功率等级分为0.5W、2W、3.5W、10W、15W、25W和50W。 2.载波频率容限 载波频率容限是指发射载波频率与其表称值之最大允许差值,它决定了对频率稳定度的要求。 在移动通信中,随着工作频率的提升和信道间隔的减小,对频率稳定度的要求也越来越高。发信机中或者直接用晶体振荡器,或者用频率合成器作频率源。频率合成器的频率稳定度也取决于它的基准晶体振荡器。不同工作频段和不同信道间隔的移动通信中对载频容限的技术要求如下表: 3.调制频偏及其限制 调制频偏是指已调制信号瞬时频率与载频的差值。它是标志发信机调制特性的性能指标,具体有以下几项。 (1)最大允许频偏:最大允许频偏是根据信道间隔所规定的,已调信号瞬时频率与标称载频的最大允许差值。不同信道间隔的额定值如下表。 (2)调制灵敏度:调制灵敏度是指发信机输出获得“额定频偏”时,其音频输入端所需音频调制信号电压(一般指1KHz)的大小。所谓“额定频偏”通常规定为最大允许频偏的60%。例如查上表:信道间隔为25KHz时的最大频偏为±

5KHz,那么额定频偏即为±3KHz。 调制灵敏度应该足够高,否则不能正常工作,但也不是越灵敏越好,否则易受外界干扰的影响而引起辐射带宽的展宽,是十分不利的。一般调制灵敏度为mV 级。当送话器的灵敏度过高时,为减小环境噪声的影响,应认为降低调制灵敏度。(3)高音频调制特性:是指当音频调制频率超过3KHz时,调制信号频偏下降的情况。通常用相对于1KHz时额定频偏的相对值表示。 按技术要求是,在3-6KHz之间,频偏不得超过额定值;6KHz处,频偏至少比1KHz时的值低6dB;6-20KHz之间,至少以每倍频程14dB的斜率递减。(4)剩余频偏:是指在没有外加调制信号的情况下,由噪声和电源纹波引起的射频寄生调频频偏。剩余频偏相对于额定频偏应不大于-35dB。若最大允许频偏为5KHz,则额定频偏为3KHz。剩余频偏比它低35dB约为54Hz。 (5)呼叫音频偏:当音频输入端呼叫时,已调信号的调频频偏称为呼叫音频偏,它的额定值应为最大允许频偏的70-90%。 4.音频响应 发信机音频响应是指调制音频在300-3000Hz范围内变化时,射频频偏与予加重特性的要求(通常认为每倍频程6dB提升)之间的一致程度。 5.音频非线性失真系数 音频非线性失真系数是指音频输入端加入标准测试音(调频频率为1KHz,失真系数小于1%,幅值使已调信号频偏达到额定频偏)调制时,发信机输出调频信号经解调后测得的音频各谐波成分的总有效值对整个信号的有效值之比。可用非线性失真仪测量。按技术要求通常基地台的非线性失真系数小于7%,移动台不大于10%。 6.寄生调幅 寄生调幅,是指调频发信机已调射频信号呈现的寄生调幅。它是发信机用标准音调制下测得的。通常用输出调频信号幅度变化对载波幅度的百分数表示,一般不应大于3%。 7.邻道辐射功率 邻道辐射功率是指发信机在额定调制状态下,总输出功率中落在邻道频率接收带宽内的那部分功率。邻道辐射功率是调频频谱的边带扩展。噪声和哼声所产生

综测仪测试NBIoT射频指标手册

1文档综述1.1前言 本文适用于使用综测仪对NB-iot 进行与模拟小区的连接及射频测试,当前版本3.5.20.17。 1.2版本更新信息 3.5.20.17 Signaling中添加DAU链接以及用户自定义调度。 3.5.20.12 Measurement添加RX测试功能。 3.5.20.10 可以建立NB-iot小区,并在Measurement中进行TX测试。 2 NB-iot Signaling 2.1信令界面NB-iot Signaling NB-iot Signaling小区模拟界面需要License KS300才能打开,打开后界面如下图所示。 (打开方式,仪表面板上的SIGNAL GEN按键,选择NB-iot Signaling1) 2.1.1连接状态Connection Status 小区指示Cell,小区打开后会亮起 数据包开关Packet Switched,小区打开后显示Cell on,终端进行小区搜索的时候显示Signaling in Progress,终端注册成功后显示Attached。 无线资源管理状态RRC state,终端未注册时显示Idle,终端注册成功后显示Connected。

2.1.2日志显示Event Log 终端与仪表的信令交互情况,会显示在这个区域,如图中所示。蓝色信息都是正常的提示,黄色信息为失败消息,红色信息为仪表出现错误。 终端信息UE Info及其他,暂未添加。 2.1.3小区设置Cell 频带和双工方式选择,目前只支持FDD,后续版本将会支持TDD 信道及频率选择Channel/Frequency,信道和频点有对应关系,设置一个参数的数值会相应变化。 窄带参考符号每资源元素功率NRS EPRE(Narrow Reference Symbol Energy per Resource Element),通过这个参数,可以设置仪表发射给终端的信号强度。 上行功率Uplink nominal power,设置终端上行的目标功率。 2.1.4连接Connection 在Configuration中详解。 2.2配置Configuration 2.2.1测试场景Scenario 目前仅支持标准小区Standard Cell的建立。 2.2.2基带单元Base Band Unit 如果仪表配置了两个SUA(B500)硬件,可以在这里选择由其中的哪个来产生模拟小区信号。 2.2.3操作模式Operation 设置NB-iot的操作模式,目前只支持Standalone模式。 TS36.802,5.3节规定的带内模式In-band以及保护带宽模式Guard-band模式将在

相关文档