文档库 最新最全的文档下载
当前位置:文档库 › 无线随钻测量泥浆脉冲信号传输浅析

无线随钻测量泥浆脉冲信号传输浅析

无线随钻测量泥浆脉冲信号传输浅析
无线随钻测量泥浆脉冲信号传输浅析

无线随钻测量泥浆脉冲信号传输浅析

【摘要】无线脉冲随钻测斜仪是以钻井液作为信号传输介质,使井下探管所测数据能够以压力脉冲形式在钻杆内部传输到地面。在脉冲信号传输的过程中,将会受到噪声的影响,噪声来源有钻井泵活塞运动、井下动力钻具、钻头切削等。本文将对这些噪声的来源及特性进行分析,从而提出避免脉冲信号被干扰的办法。

【关键词】泥浆脉冲;传输;噪声

无线脉冲随钻测斜仪是以钻井液作为信号传输介质,使井下探管所测数据能够以压力脉冲的形式在钻杆内部传输到地面,但泥浆脉冲信号传输过程容易受到钻井泵活塞运动、井下动力钻具、钻头切削等噪声的影响,其频率越接近于脉冲信号的频率,就越容易对地面信号的解码产生影响,因此对钻井液的性能、钻进参数及钻井设备的要求较高。

1.泥浆脉冲信号的产生及传输

钻井液压力脉冲传输是将被测参数转变成钻井液压力脉冲,由钻杆内部自井底传输到地面,国内基于泥浆脉冲传输信号的MWD有正、负脉冲等类型。以国产海蓝YST-48R为例,当井下定向探管的流量开关判断停泵后,定向探管开始测量停泵数据,当流量开关判断开泵后,定向探管将测量的数据变成电信号,发送到脉冲发生器,由它控制仪器脉冲发生器的伺服阀阀头。当伺服阀阀头不工作时,由于钻井液在循环套和限流环的斜坡处产生反冲,将驱动头总成最下端的主阀头顶起,阀筒内弹簧被压紧,这时钻井液可顺利通过限流环。当伺服阀阀头向上提起时,泥浆将流入驱动头总成的内孔,使驱动头总成内外压力平衡,阀筒内弹簧释放,使在主阀头与限流环处泥浆的过流面积减小,这样就产生一个正的钻井液压力脉冲,类似的还有负脉冲传输系统、连续波传输系统。

2.影响钻井液脉冲信号传输的因素

最影响钻井液脉冲无线随钻仪器信号传输的是传输介质不稳定,压力脉冲在钻井液中传输衰减严重,且易受到外界噪声干扰。若要在地面成功捕捉到脉冲信号,就要尽量提高压力脉冲的初始信号强度,降低外界噪声干扰,控制噪声频率,提高信号传输信噪比。

(1)井深对脉冲信号的影响:泥浆脉冲信号传输过程是自身压能与动能的转化,传输路径越长,丢失能量越多,最终被接收到的信号就越弱。对海蓝YST-48R仪器而言,传输的频率范围为0.5-1Hz,在井较深时可选择0.5Hz作为信号传输频率,以提高信噪比。

(2)钻井液中的杂物造成的衰减:钻井液中有杂物,当累积到一定程度时,会使泵压不稳定,干扰仪器脉冲信号传输,还会堵塞脉冲发生器阀筒内腔,使驱

准确测量脉冲信号的S参数(二)

准确测量脉冲信号的S参数(二) 频谱归零方法通常在脉冲宽度小于需要数字化和获取一个离散时间数据点的最小时间的时候使用。因此,必须对一个数据点获取捕获多个脉冲。在单独的输入脉冲和分析仪的时域抽样之间没有严格的同步。脉冲调制信号的频域描述具有离散PRF单音,这可以通过滤波滤出,剩下的是基调,它载有测量信息。在分析仪的下变频过程中,通过滤波去除不希望的噪声和信号分量。一旦信号被数字化,分析仪应用一个由用户指定中频带宽的数字滤波器。通常,这个数字滤波器用来减小测量噪声并增加动态范围。对非脉冲调制信号来说数字滤波算法工作得很好,但是当接收机接收到一个脉冲调制信号的时候会发生什么呢? ?利用窄带检测,利用一个数字矩形滤波器消弱接收信号中除了调制基调成分以外的所有成分是很有必要的。这需要一个最小阻带频率小于脉冲调制信号PRF的滤波器从而具有最优的阻碍。滤波器过渡斜度需要远离第一个PRF单音(图4,左),这样对不需要的单音具有最大的阻碍。这个滤波器会很难设计因为PRF单音会和基频很近。严格的矩形滤波器在频域有一些折衷,例如在时域具有额外的抖动。对此,滤波器设计者在频域和时域采用不同的技术获得最佳的性能,同时提供有效的滤波性能。 ?图4的左面给出用于分析仪中的一个可能的中频数字滤波器的响应。它在形状上不是矩形,因此如果不加改变地使用,会在频域引入不需要的成分,从而导致测量误差。另外,这个数字滤波器在频域具有周期排列的零点。这些零点的周期与接收机的采样速率和数字滤波器的结构成正比。使用一个微波PNA,通过调整数字滤波器的零点对准不需要的脉冲调制谱成分有可能滤除不需要的信号分量,只留下基频(图5)。这种滤波技术的一个优点是滤波器的零点

脉冲调制信号分析与测量方法

脉冲调制信号分析与测量方法 【摘要】本文主要介绍用频谱分析仪对脉冲调制信号脉冲频谱载波功率进行直接测量后转换成峰值功率的方法,并系统地分析了窄带和宽带状态下脉冲调制信号频谱及功率测量的差别。这对雷达信号应用时的脉冲功率测量具有实用性。 【关键词】线状谱;脉冲谱;脉冲退敏因子 1.概述 脉冲波形是雷达和数字通信系统中的一类重要信号。脉冲调制信号的测量较之连续波形可能会遇到更多的困难。当频谱仪采用窄的分辨率带宽(RBW)时,显示频谱呈现出离散的谱线,当采用宽的分辨率带宽(RBW)时,这些谱线便融合到一起,频谱呈现出连续状。在这样的测量条件下,频谱分析仪的调节对被测结果会产生严重影响。 2.脉冲波形的频谱 脉冲重复频率为PRF=fmod调制频率,脉冲周期为T,脉冲宽度为τ,脉冲幅度为1单位。依据单脉冲的傅氏变换理论得脉冲的频域表示为: 频谱的零点发生在当f=±1/τ的整数倍处,脉冲波形的频谱形状与图2相同,横轴为频率f,中心为频率零点,纵轴为幅度。频谱的幅度与脉宽τ成正比,这意味着脉冲越宽,脉冲的能量越大。绝大部分脉冲能量都处在频率低于f=|±1/τ|的主瓣内。在频域中,随着时域脉宽τ的减小,第一个零点移向较高的频率。因此,脉冲越窄,它在频域中的带宽就越宽。因为较窄的脉冲要求瞬时电压变化得更快,电压的变化较快意味着有更多的高频成分,即时域中的电压变化越快,频域中的带宽越宽。 脉冲串是由周期性地复制所形成的。由于其波形是周期波形,依据脉冲周期波形的傅氏级数的时域表示为: 该波形具有τ/T的直流分量,这恰好是脉冲波形的平均值。信号的谐波将处在该波形的基频即f=1/T的整数倍处。谐波的总体形状或包络呈现(sinx)/x特性,频谱形状的大部分能量集中在主瓣和邻近旁瓣,这是与单脉冲的傅氏变换相同的形状。在1/τ的整数倍处出现频谱包络的零点。 脉冲串频谱的幅度取决于波形的占空比。占空比是脉冲宽度与周期之比,即占空比=τ/T。脉冲串频谱的总体形状由脉冲宽度决定,脉冲频谱包络零点间隔=1/τ,而脉冲重复频率PRF=谱线间隔如图1所示。 3.线状谱

单片机脉冲信号测量

郑州工业应用技术学院 课程设计说明书 题单片机脉冲信号测量 姓名: 院(系):信息工程学院专业班级:计算 机科学与技术学号: 指导教师: 成绩: 时间:年月日至年月日

摘要 脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,频率等参数,并用十进制数字显示出来。利用定时器的门控信号GATE进行控制可以 实现脉冲宽度的测量。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。本文介绍了基于单片机AT89C51的脉冲信号参数测量仪的设计。该设计可以对脉冲信号的宽度,频率等参数进行测量。 关键词:脉冲信号;频率;宽度;单片机AT89C51

目录 摘要............................................................... I 目录............................................................... II 第一章技术背景及意义 (1) 第二章设计方案及原理 (2) 第三章硬件设计任务 (3) 第四章软件结论 (12) 第五章参考文献 (13) 第六章附录 (14)

第一章技术背景及意义 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O 接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。由于单片机稳定可靠、物美价廉、功耗低,所以单片机的应用日益广泛深入,涉及到各行各业,如工业自动化、智能仪表与集成智能传感器、家用电器等领域。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。因此,本课程设计旨在巩固所学的关于单片机的软件及硬件方面的知识,激发广大学生对单片机的兴趣,提高学生的创造能力,动手能力和将所学知识运用于实践的能力。 中断功能是一种应用比较广泛的功能,它指的是当CPU正在处理某件事情的时候,外部发生了某一件事(如一个电平的变化,一个脉冲沿的发生或定时器计数溢出等)请求CPU迅速去处理,于是,CPU暂时终止当前的工作,转去处理所发生的事件。中断服务处理完该事件以后,再回到原来被中止的地方继续原来的工作,这样的过程称为中断。本文中用到了定时器T0溢出中断,以实现软件延时。脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,脉冲频率等参数。

E题-脉冲信号参数测量仪报告

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA 与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA 的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA 内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波 窗口比较器 脉冲参数测试仪 标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。 门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图 方案三:图3所示为FPGA 与单片机相结合的方案。此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V 信号输入到FPGA 中。单

片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA 中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法 本设计中的频率测量采用等精度测频法。该方法是将标准频率信号与待测信号输入到两个计数器进行同步计数。如图4所示,测量时单片机先预置闸门时间T,当闸门开启时,等待被测信号触发沿到来,计数器开始计数;预置闸门时间结束时,计数器并不立即停止而是等被测信号下一个同相位触发沿到来才关闭同步门并停止计数。可见实际闸门时间是被测信号周期的整数倍,即与被测信号同步。 若被测信号与标准信号的计数值分别为N x 和N ,则被测频率为: f x =N x /N ×f (1) 若忽略标频f 的误差,则等精度测频可能产生的相对误差为: η=(|f xe-f x|/f xe) ×100% (2) 式(2)中f xe 为被测信号频率的准确值。 在测量过程中,由于f x 计数的起止时间都是由该信号的上升测触发的,在 闸门时间T内对f x 的计数N x 无误差;对f 的计数N s 最多相差一个数的误差,即 |N s |≤1。则理论误差:η≤1/(T×f ) (3)由(3)式可以看出,测量频率的相对误差与被测信号频率的大小无关,仅 与闸门时间和标准信号频率有关,从而实现被测频带内的等精度测量。由于周期和频率互为倒数,因此可根据频率求出对应周期。该方法使测量精度大幅度提高,测量原理框图如图4 所示。

脉冲信号参数测量仪

2016年TI杯江苏省大学生电子设计竞赛题目: 脉冲信号参数测量仪 题目编号: E题 参赛队编号: 参赛队学校: 参赛队学生: 二○一六年七月

目录 摘要 (1) 1.设计方案工作原理 (1) 1.1方案选择 (1) 1.2总体方案设计 (2) 2.核心部件电路设计 (3) 2.1高速缓冲电路 (3) 2.2自动增益电路 (3) 2.3高速比较器电路 (4) 2.4放大电路 (5) 3.系统软件设计分析 (5) 3.1 CPLD数据处理 (5) 4.竞赛工作环境条件 (6) 4.1设计分析软件环境 (6) 4.2仪器设备硬件平台 (6) 5.作品成效总结分析 (6) 5.1脉冲信号频率测量 (6) 5.2脉冲信号占空比测量 (7) 5.3脉冲信号幅值测量 (7) 5.4脉冲信号上升时间测量 (8) 6.参考文献 (8) 附录.................................................................................................. 错误!未定义书签。

脉冲信号参数测量仪 摘要:本作品以美国德州仪器(TI)生产的16位超低功耗单片机MSP430F169作为主控芯片,利用CPLD技术实现矩形脉冲信号的频率、占空比、上升时间的测量,并且利用CPLD产生一个标准矩形脉冲信号。本设计外围硬件电路主要由高速缓冲降压模块、AGC自动增益模块、幅度测量模块组成,通过对上述模块的合理整合,设计并制作了一个性能较好的脉冲信号参数测量仪。由于采用了AGC模块,系统实现了全程自动增益控制,稳定输出电压。 针对矩形脉冲信号的特点,本设计采用多种抗干扰措施,对电路布线进行优化,并合理运用低噪声芯片OP07、OPA690、VCA810、THS3001、TLV3501。后期,利用ADS1115及Matlab,对测试数据进行合理的分析,以优化算法系统,进一步提高了精度。 该脉冲信号参数测量仪结构简单,性能稳定,功能完善,达到了各项设计指标。关键词:脉冲信号参数测量仪;CPLD ;AGC ;TLV3501 ;Matlab; 1.设计方案工作原理 1.1方案选择 本方案主要由THS3001缓冲模块、AGC自动增益模块、TLV3501高速比较模块、ADS1115模块组成,实现脉冲信号频率、占空比、幅度、上升时间测量。 1、主控部件选择 方案一:采用CPLD作为参数测量仪的主控芯片,完成参数测量及实时显示等全部功能。CPLD具有可编程和大规模集成的特点,此方案可以使电路大为简化,但此设计仅使用PLD不能充分发挥其特点及优势,导致系统性能降低。因此不采用此方案。 方案二:采用FPGA作为主控芯片,FPGA外围拓展功能更多,但在运行速度、编程灵活性以及使用方便性上CPLD优于FPGA,即在电路结构上FPGA更复杂,因此不采用此方案。 方案三:采用CPLD和单片机相结合的方案。分别利用CPLD在信号处理高速稳定方面以及单片机在逻辑运算、智能控制方面的优越性,使得电路不仅能够简化,而且能够达到设计要求,因此选择方案三。 2、频率测量 方案一:采用周期法。需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生±1个脉冲误差,并且测试精度与计数器中的记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

E题脉冲信参数测量仪报告精编版

E题脉冲信参数测量仪 报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波窗口比较器脉冲参数测试仪标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限

制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图 方案三:图3所示为FPGA与单片机相结合的方案。此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V信号输入到FPGA中。单片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法

准确测量脉冲信号的S参数

准确测量脉冲信号的S参数 传统上,矢量网络分析仪被用来测量元件的连续波形(CW)S参数性能。 在这些操作环境下,分析仪常常作为窄带测量仪器工作。它向元件传输已知的CW频率并测量CW频率响应。如果我们想查看单个CW频率的响应,我们可 以在频率看到单个的频谱。分析仪具有一个内置的源和接收器,它们被设计成 工作在同步模式下,利用窄带检测来测量元件的频率相应。大多数的分析仪可 以配置用来对许多频率进行频率扫描。在某些情况下,加到元件上的信号必须以一定的速度和持续时间进行脉冲调制(开关)。如果我们要查看一个单音脉 冲调制的频率响应,它将包含无数的频率成分从而使标准窄带VNA的使用变 得很困难。本文讲述了如何使用Agilent科技公司的PNA矢量网络分析仪进行 配置并获得准确测量脉冲信号的S参数。 ?为了查看一个脉冲调制信号的频率响应的频谱是什么样子,我们首先从数 学上分析时域响应。公式1给出了一个脉冲调制信号的时域关系。它的产生步 骤是首先建立一个用脉宽为PW的矩形窗加窗的信号。然后产生一个shah函数,这个函数包含一个间隔为1/PRF的周期脉冲序列,其中PRF是脉冲重复频率。这也同可以看作是间隔和脉冲周期相等的脉冲。而后加窗信号和shah函数卷积,产生一个和脉冲调制信号相应的周期脉冲串: ?为了查看这个信号在频域的样子,对脉冲调制信号y(t)进行傅立叶变换: ?式2表明脉冲调制信号的频谱是一个抽样的sinc函数,抽样点(信号呈现)和脉冲重复频率(PRF)相等。 ?图1的左面给出在PRF为1.69kHz和脉冲宽度7μs情况下脉冲调制谱的样子。图1的右面给出在放大脉冲基调条件下同样的脉冲调制谱。频谱具有距 离基调nPRF的成分,其中n是谐波数。基音包含测量信息。PRF音是基音的

基于PNA矢量网络分析仪的脉冲信号的S参数测量解决方案(精)

基于PNA矢量网络分析仪的脉冲信号的S参数测量 解决方案 传统上,矢量网络分析仪被用来测量组件的连续波形(CW)S参数性能。在这些操作环境下,分析仪常常作为窄带测量仪器工作。它向组件传输已知的CW频率并测量CW频率响应。如果我们想查看单个CW频率的响应,我们可以在频率看到单个的频谱。分析仪具有一个内置的源和接收器,它们被设计成工作在同步模式下,利用窄带检测来测量组件的频率相应。大多数的分析仪可以配置用来对许多频率进行频率扫描。 在某些情况下,加到组件上的信号必须以一定的速度和持续时间进行脉冲调制(开关)。如果我们要查看一个单音脉冲调制的频率响应,它将包含无数的频率成分从而使标准窄带VNA的使用变得很困难。本文讲述了如何使用 Agilent科技公司的PNA矢量网络分析仪进行配置并获得准确测量脉冲信号的S 参数。 为了查看一个脉冲调制信号的频率响应的频谱是什么样子,我们首先从数学上分析时域响应。公式1给出了一个脉冲调制信号的时域关系。它的产生步骤是首先建立一个用脉宽为PW的矩形窗加窗的信号。然后产生一个shah函数,这个函数包含一个间隔为1/PRF的周期脉冲序列,其中PRF是脉冲重复频率。这也同可以看作是间隔和脉冲周期相等的脉冲。而后加窗信号和shah函数卷积,产生一个和脉冲调制信号相应的周期脉冲串: 为了查看这个信号在频域的样子,对脉冲调制信号y(t)进行傅立叶变换: 式2表明脉冲调制信号的频谱是一个抽样的sinc函数,抽样点(信号呈现)和脉冲重复频率(PRF)相等。 图1的左面给出在PRF为1.69kHz和脉冲宽度7μs情况下脉冲调制谱的样子。图1的右面给出在放大脉冲基调条件下同样的脉冲调制谱。频谱具有距离基调nPRF的成分,其中n是谐波数。基音包含测量信息。PRF音是基音的制造物,靠近基音的频谱成分具有相对高的幅度。 PNA矢量网络分析仪通过对微波能量进行窄带检测来工作。它把接收信号下变频到中频(IF),然后数字化(在离散间隔上抽样)并进行数字滤波,从而进行显示和分析。有两种不同的方法利用微波PNA来测量一个脉冲调制信号的S 参数:“同步脉冲获取”和“频谱消零”。同步脉冲获取和在8510矢量网络分析仪上的“全脉冲表征”工作方式类似。频谱清零和8510系列内的“高PRF”工作方式相似,例外的是,尽管内指脉冲和脉冲成型可行,但是它们不能工作在8510上的“高PRF”方式下。 同步脉冲获取方法在进来的单独脉冲和分析仪离散抽样之间提供同步定时。如果脉宽超过最小同步时间从而获取了一个或更多的数据点,那么测量就落入同步脉冲获取工作方式(图2)并且接收机工作在无脉冲减敏现象得全CW敏

准确测量脉冲信号的S参数(一)

准确测量脉冲信号的S参数(一) 传统上,矢量网络分析仪被用来测量元件的连续波形(CW)S参数性能。 在这些操作环境下,分析仪常常作为窄带测量仪器工作。它向元件传输已知的CW频率并测量CW频率响应。如果我们想查看单个CW频率的响应,我们可 以在频率看到单个的频谱。分析仪具有一个内置的源和接收器,它们被设计成 工作在同步模式下,利用窄带检测来测量元件的频率相应。大多数的分析仪可 以配置用来对许多频率进行频率扫描。在某些情况下,加到元件上的信号必须以一定的速度和持续时间进行脉冲调制(开关)。如果我们要查看一个单音脉 冲调制的频率响应,它将包含无数的频率成分从而使标准窄带VNA的使用变 得很困难。本文讲述了如何使用Agilent科技公司的PNA矢量网络分析仪进行 配置并获得准确测量脉冲信号的S参数。 ?为了查看一个脉冲调制信号的频率响应的频谱是什么样子,我们首先从数 学上分析时域响应。公式1给出了一个脉冲调制信号的时域关系。它的产生步 骤是首先建立一个用脉宽为PW的矩形窗加窗的信号。然后产生一个shah函数,这个函数包含一个间隔为1/PRF的周期脉冲序列,其中PRF是脉冲重复频率。这也同可以看作是间隔和脉冲周期相等的脉冲。而后加窗信号和shah函数卷积,产生一个和脉冲调制信号相应的周期脉冲串: ?为了查看这个信号在频域的样子,对脉冲调制信号y(t)进行傅立叶变换: ?式2表明脉冲调制信号的频谱是一个抽样的sinc函数,抽样点(信号呈现)和 脉冲重复频率(PRF)相等。 ?图1的左面给出在PRF为1.69kHz和脉冲宽度7μs情况下脉冲调制谱的样子。图1的右面给出在放大脉冲基调条件下同样的脉冲调制谱。频谱具有距 离基调nPRF的成分,其中n是谐波数。基音包含测量信息。PRF音是基音的

单片机脉冲信号测量

南京理工大学泰州科技学院 机电一体化技术与系统 课程设计 指导者: 王荣林 评阅者: 2011.10 姓 名: 赵旻晟 学 号: 0801010450 学院(系): 机械工程学院 专 业: 机械工程及自动化 题 目: 基于单片机的脉冲信号测试仪设计

摘要:脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,频率等参数,并用十进制数字显示出来。利用定时器的门控信号GATE进行控制可以实现脉冲宽度的测量。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。本文介绍了基于单片机AT89C51的脉冲信号参数测量仪的设计。该设计可以对脉冲信号的宽度,频率等参数进行测量。 关键词:脉冲信号,频率,宽度,单片机AT89C51

目录 一、引言 (4) 二、设计方案及原理 (5) 三、硬件设计任务 (5) 3.1基于AT89C51脉冲信号测量系统硬件设计详细分析 (6) 3.1.1 AT89C51单片机工作电路 (6) 3.1.2基于AT89C51脉冲信号测量系统复位电路 (7) 3.1.3基于AT89C51脉冲信号测量系统时钟电路 (8) 3.1.4基于AT89C51脉冲信号测量系统按键电路 (9) 3.1.5基于AT89C51脉冲信号测量系统显示电路 (10) 四、收获与感谢 (15) 五、参考文献 (15) 六、附录 (16) 6.1脉冲信号宽度测量设计程序 (16) 6.2脉冲信号频率测量设计程序 (18)

1、引言 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。由于单片机稳定可靠、物美价廉、功耗低,所以单片机的应用日益广泛深入,涉及到各行各业,如工业自动化、智能仪表与集成智能传感器、家用电器等领域。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。因此,本课程设计旨在巩固所学的关于单片机的软件及硬件方面的知识,激发广大学生对单片机的兴趣,提高学生的创造能力,动手能力和将所学知识运用于实践的能力。 中断功能是一种应用比较广泛的功能,它指的是当CPU正在处理某件事情的时候,外部发生了某一件事(如一个电平的变化,一个脉冲沿的发生或定时器计数溢出等)请求CPU迅速去处理,于是,CPU暂时终止当前的工作,转去处理所发生的事件。中断服务处理完该事件以后,再回到原来被中止的地方继续原来的工作,这样的过程称为中断。本文中用到了定时器T0溢出中断,以实现软件延时。脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,脉冲频率等参数。

《脉冲波形变换》试题

《脉冲波形的产生与变换》试题 一、填空题(46分): 1、施密特触发器具有____________特性,回差电压为______________。 2、单稳态触发器只有_________状态,在触发脉冲的作用下,从________态转换到______态;经过一段时间后,电路又自动返回到 ___ ____态。 3、单稳态触发器的暂稳态持续时间t w 取决于_______,即t w =_______。 4、单稳态触发器在数字电路中,常用于脉冲的___________和_________、_____________。 5、施密特触发器属于_______稳态电路,需要高低不同的两个触发电平,这一特性称为_________现象。它的应用主要有____________、____________和______________等。 6、多谐振荡器是一种能输出_________波的触发器,电路能在_________之间 自行变换,没有_________状态,所以又称为_________________________。 7、本章介绍由门电路组成的___________、_____________和_______________ 及相应的集成电路产品。 二、选择题(20分): 1、单稳态触发器的暂稳态维持时间取决于() A、电路本身的参数 B、触发脉冲的宽度 C、触发脉冲的幅度 2、单稳态触发器一般不适用于()电路。 A、定时 B、延时 C、脉冲波形整形 D、自激振荡 3、施密特触发器一般不适用于()电路。 A、延时 B、波形变换 C、波形整形 D、幅度鉴定 4、施密特触发器的特点是() A、没有稳态 B、有两个稳态 C、有一个稳态和一个暂稳态 5、多谐振荡器是一种自激振荡,能产生() A、矩形波 B、三角波 C、正弦波 D、尖脉冲 6、石英晶体多谐振荡器的主要优点是() A、电路简单 B、频率稳定度高 C、振荡频率高 D、振荡频率低 7、回差是()电路的主要特性参数。 A、时序逻辑电路 B、多谐振荡器 C、施密特触发器 D、单稳态触发器

单片机脉冲信号测量

郑州工业应用技术学院课程设计说明书 题目:单片机脉冲信号测量姓名: 院(系):信息工程学院 专业班级:计算机科学与技术 学号: 指导教师: 成绩: 时间:年月日至年月日

摘要 脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,频率等参数,并用十进制数字显示出来。利用定时器的门控信号GATE进行控制可以实现脉冲宽度的测量。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。本文介绍了基于单片机AT89C51的脉冲信号参数测量仪的设计。该设计可以对脉冲信号的宽度,频率等参数进行测量。 关键词:脉冲信号;频率;宽度;单片机AT89C51

目录 摘要 ........................................................................................................................................... I 目录 ......................................................................................................................................... II 第一章技术背景及意义 . (1) 第二章设计方案及原理 (2) 第三章硬件设计任务 (3) 第四章软件结论 (12) 第五章参考文献 (13) 第六章附录 (14)

第一章技术背景及意义 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。由于单片机稳定可靠、物美价廉、功耗低,所以单片机的应用日益广泛深入,涉及到各行各业,如工业自动化、智能仪表与集成智能传感器、家用电器等领域。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。因此,本课程设计旨在巩固所学的关于单片机的软件及硬件方面的知识,激发广大学生对单片机的兴趣,提高学生的创造能力,动手能力和将所学知识运用于实践的能力。 中断功能是一种应用比较广泛的功能,它指的是当CPU正在处理某件事情的时候,外部发生了某一件事(如一个电平的变化,一个脉冲沿的发生或定时器计数溢出等)请求CPU迅速去处理,于是,CPU暂时终止当前的工作,转去处理所发生的事件。中断服务处理完该事件以后,再回到原来被中止的地方继续原来的工作,这样的过程称为中断。本文中用到了定时器T0溢出中断,以实现软件延时。脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,脉冲频率等参数。

E题-脉冲信号参数测量仪报告

E题-脉冲信号参数测量仪报告

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA 与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA 的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA 内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波 窗口比较器 脉冲参数测试仪 标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图

方案三:图3所示为FPGA与单片机相结合的方案。此方案中,FPGA构成主要测量模块,输入信号经过前端处理电路,得到5V信号输入到FPGA中。单片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法 本设计中的频率测量采用等精度测频法。该方法是将标准频率信号与待测信号输入到两个计数器进行同步计数。如图4所示,测量时单片机先预置闸门时间T,当闸门开启时,等待被测信号触发沿到来,计数器开始计数;预置闸门时间结束时,计数器并不立即停止而是等被测信号下一个同相位触发沿到来才关闭同步门并停止计数。可见实际闸门时间是被测信号周期的整数倍,即与被 测信号同步。若被测信号与标准信号的计数值分别为N x 和N ,则被测频率为: f x =N x /N ×f (1) 若忽略标频f 的误差,则等精度测频可能产生的相对误差为: η=(|f xe -f x |/f xe ) ×100% (2) 式(2)中f xe 为被测信号频率的准确值。 在测量过程中,由于f x 计数的起止时间都是由该信号的上升测触发的,在 闸门时间T内对f x 的计数N x 无误差;对f 的计数N s 最多相差一个数的误差,即 |N s |≤1。则理论误差:η≤1/(T×f ) (3)由(3)式可以看出,测量频率的相对误差与被测信号频率的大小无关,仅 与闸门时间和标准信号频率有关,从而实现被测频带内的等精度测量。由于周期和频率互为倒数,因此可根据频率求出对应周期。该方法使测量精度大幅度提高,测量原理框图如图4 所示。

相关文档
相关文档 最新文档