文档库 最新最全的文档下载
当前位置:文档库 › 高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究
高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

目录

1、基本情况及背景介绍 (2)

2、高效永磁同步电动机关键技术的研究 (3)

2.1优化转子磁路结构,提高电机的可靠性 (3)

2.2永磁电机防退磁技术研究 (5)

2.3漏磁系数准确计算的研究 (7)

2.4稀土永磁材料的高温退磁特性及应用技术的研究 (10)

2.5稀土永磁材料的剩磁测试技术的研究 (14)

2.6电机的起动性能 (16)

2.7失步转矩倍数 (17)

2.8其它性能指标 (18)

1、基本情况及背景介绍

稀土永磁是一种高性能的功能材料,它的高剩磁密度、高矫顽力、高磁能积等优异磁性能特别适合于制造电机。用它制成的永磁同步电机,不需要用以产生磁场的无功励磁电流,可显著提高功率因数,减少定子电流和定子电阻损耗。在稳定运行时没有转子电阻损耗,使电机温升有较大裕度,从而可将风扇减小甚至不安装风扇,以减少风摩损耗提高电机效率。与普通的电励磁同步电动机相比,不需要用以产生磁场的励磁绕组和直流励磁电源,取消了容易出问题的集电环和电刷装置,成为无刷电机,运行可靠,又效率提高。因此,国内外都投入大量人力物力从事高效钕铁硼永磁电机的研制开发。

相对于异步电机,永磁同步电动机(PMSM)具有体积小、功率密度高等优点,效率比同规格的感应异步电机高2~8%。我国稀土永磁资源储量占世界储量的80%,发展永磁电机具有得天独厚的优势。

早在1980年,我国有关高校及科研院所就开始从事高效永磁电动机的研制开发,先后研制开发出多种类型电动机的样机,技术水平参差不齐,还存在着转子磁路单一、永磁材料可能退磁、测试和制造工艺复杂等问题,性能价格比不够理想,价格偏高。

为了充分发挥钕铁硼永磁材料的优异磁性能,针对钕铁硼永磁电动机在磁、电、机、热等方面的特点,进行技术集成和创新,特别对转子磁路结构、钕铁硼永磁材料的热稳定性做了深入研究,并应用于产品开发过程,提高其效率、性价比,可靠性(主要指不退磁),扩大应用领域,为把稀土资源优势转化为经济优势作贡献。

2、高效永磁同步电动机关键技术的研究

2.1优化转子磁路结构,提高电机的可靠性

对于永磁同步电动机的失步转矩,在一定程度上比效率和功率因数还重要得多。失步转矩代表电动机过载能力的大小,也反映电动机运行稳定性的高低。如果这个指标过低,则电动机的过载能力小,运行稳定性差,在运行中如因某种异常情况导致负载增加,就有失步的危险。如果这个指标过高,运行稳定性高,过载能力强,即使在冲击性负荷下,也不会发生失步,但它可能引起牵入同步转矩降低,牵入同步困难,使电动机能拖动的负载大幅度降低,电机运行可靠性较低。

永磁电机的电磁转矩

T mpE U X mpU X X em d q d =+-022112ωθωθsin ()sin

式中: em T ——电磁转矩

m ——电动机相数

p ——电动机的极对数

0E ——反电动势

U ——外加电压

ω——电动机的电角频率

d X ——直轴同步电抗

θ——功率角

q X ——交轴同步电抗

可以看出,0E 与d X 决定着电动机电磁转矩中永磁转矩的幅值,从而也决

定着失步转矩倍数。为提高电机的失步转矩,应使0E 增大,d X 减小。但是

采取增加电动机绕组匝数来提高0E 的方法是不可取的,因为绕组匝数的增

大,虽使0E 成正比提高,但d X 却随着平方关系增大的更多,使d X E /0反而减

小,永磁转矩幅值反而下降,同时也会使电机的效率降低。这就需要在磁路结构上进行创新,使得永磁电机的漏磁通减少,而主磁通增多,使得0E 增大,从而达到提高失步转矩的目的。

对于永磁电机的磁路而言,径向结构电机的制造工艺相对简单,但永磁体提供磁通的能力相对弱一些,而且电枢反应d 轴去磁磁动势对永磁体的去磁作用较强;切向结构提供磁通能力强,但结构和电机制造工艺相对复杂,漏磁较大,其空载磁场分布如图1所示。可以看出,永磁电机转子如果使用切向结构,有相当的磁力线通过转子轭部进入电机轴,永磁材料的利用率较低,因此,必须在电机转轴处相应地增加隔磁措施,通常的方法是在轴外圆加上隔磁套,材料多是铜或铝合金等不导磁材料,用来进行隔磁,图2是在轴上加上隔磁套后,电机铁心内部磁场分布示意图。可以看出,在电机加了隔磁套之后,漏磁大为减少。但是,由于电机轴加了隔磁装置,电机的成本增长较多,不利于永磁电机的推广和应用。本次设计中,某些规格采用的是新型防漏磁磁路结构,利用磁力线容易通过磁导较小路径的原理,在不增加成本的前提下,有效地减少了漏磁,增加了反电动势0E ,从而提高了电机的

失步转矩,增加了永磁电机运行的可靠性。磁路的结构如图3所示。

图1 电机采用切向结构(不带隔磁套)磁场分布图

图2 电机采用切向结构(带隔磁套)的磁场分布图

图3 电机采用混合式(V型)磁路的磁场分布图

2.2永磁电机防退磁技术研究

永磁同步电动机在起动、反向、突然短路等情况下,电流值是额定电流

高效永磁电动机的现状与发展

高效永磁电动机的现状与发展 唐任远安忠良赫荣富 (沈阳工业大学国家稀土水磁电机工程技术硏丸中心.沈ISH11017S) 摘要能源紧张是影响我国国民经济发展的一个重要问题,也是全世界共同关心的问题。而工业用电动机消耗了大部分的能源,因此提高工业用电动机的效率可以获得显著的节能效果。根据IEC制定的超高效和超超高效电机效率标准,永磁电动机山于采用永磁体励磁,在提高效率方面具有很大的空间和优势。针对永磁电动机自身特点,经过优化设计可以达到IEC规定的IE3和IE4的效率限值。考虑到我国稀土资源率富和稀土永磁产量已列世界前茅的优势,研发起高效和超超高效永磁同步电动机是我国发展高效电机的重要速径。 关键词:电动机;效率;瘩磁;节能 ]弓I言 能源曜张是影响我国国民经济发展的一个重要问题,也是全世界共同关心的阔题。节能是我国经济和社会发展的一项长远战略方针,也是当前一项极为紧迫的任务。据国际电工委员会(IEC)统计,工业用电动机消耗全世界发电量的30% — 40%,改善整个驱动系统(电动机和调速传动)和应用技术(或工艺技术)的效率对节能关系重大,系统优化总的节能潜力可达到30%?60%。据国际能源机构(IEA)2006年7月的工作报告,通过改善电动机效率结合变频调速可以节约大约7%的电能,其中大致有1/4?1/3是靠提高电动机效率来获得的,其余部分则来自系统的改进。I」前,美、欧、日.澳大利亚、巴西等国都纷纷制订电动机效率限值,并强制执行。 为协调各国能效分级标准,2006年IEC制定一项新的能效标准IEC60034 —30。该标准将一般用途电动机效率水平分为IE1 (International Efficiency,简称IE)、IE2、IE3和IE4四级,其中IE1为标准效率,相当于我国LI前生产的普通系列感应电动枫的效率水平;IE2为高效率,比普通电机的效率平均提高2?75个百分点,损耗平均下降20%左右;IE3为超高效率,即效率再提高1. 5--一2个百分点,损耗平均再降低15%左右,訂前只有美国预计2010年达到IE3能耗水平,強制执行; IE4为超超高效率,损耗预计再下降20%左右,需要进行全新的电机设计,建也新的体系结构(新的电机极数、速度范围),采用更高性能的材料。山于IE4的技术目前尚不成熟,该标准仅在附录中给出供参考的指标。 IEC规定的各级效率指标如表I?表4所示。

永磁同步电机在高速电主轴系统中的应用

永磁同步电主轴技术与应用 摘要: 伴随着高速高效高精加工技术的飞速发展,高端数控机床针对电主轴的技术需求深度和广度都不断拓展。特别是近几年来,基于永磁同步电机的电主轴技术与产品得到了快速的发展和广泛的应用。本文结合笔者在电主轴技术研究和产品开发过程中所涉及的关键技术问题,尤其是永磁同步电机在高速电主轴系统中的应用问题进行了广泛深入的探讨,希望以此对国内永磁同步电主轴产品技术开发与推广应用有所促进。 一、引言 高速高精高效加工,是数控机床永恒的追求目标和发展趋势。高效率需要高速度,在航空零件加工中尤为突出。飞机机身结构件的典型零件有梁、筋、肋板、框、壁板、接头、滑轨等类零件。且以扁平件、细长件、多腔件和超薄壁隔框结构件为主。毛坯为板材、锻件和铝合金挤压型材,90%以上为铝合金件。材料利用率仅为5%-10%左右,原材料去除量非常大大(1)。材料去除量大,在粗加工阶段,需要主轴具备足够的转矩输出能力,满足大吃刀切削。整理结构,多腔超博,又需要用小刀具清根,修光。小刀具则需要主轴有足够高的转速,以满足刀具的切削速度需求。因此,航空铝合金零件的加工就需要机床主轴不但具备低速大转矩输出,同时又能在小刀具加工时具备足够高(20000rpm以上)的工作转速。 在磨具加工行业,近年来大量使用的高速雕铣机,在高速电主轴的助推下,利用小刀具的微刀痕特点,大大提高了各种材质模具制造的精度和速度。随着雕铣机床的进一步发展,雕铣机也逐渐进入零件加工领域,因此对主轴的低速输出转矩也提出较高的要求。 平板电脑、苹果手机等高端电子消费品的快速发展,是当今时代最大的亮点之一。这类日用电子消费品,更新速度之快,不但让人眼花缭乱,而且使数控钻攻中心机得以急速发展。这类机床除了具备现代数控机床的基本特征外,必须具备在6000rpm以上高速刚性攻丝的能力。 综合上述三个典型的行业需求,需要数控机床电主轴同时具备三种特点,低速大转矩输出、20000rpm以上的工作转速、可以高速刚性攻丝。永磁同步电主轴则是同时具备这三个特征的最佳电主轴产品。本文就是通过对永磁同步电主轴基本结构,关键技术,以及在不同机床领域里的应用介绍,希望大家对永磁同步电主轴能有比较全面的认识和借鉴。 二、永磁同步电主轴的基本结构及其特点 永磁同步电主轴与传统电主轴的最大区别是采用了稀土永磁同步电机作为主轴的驱动动力源,除此之外,基本结构与异步电机驱动的电主轴结构基本相同。图1为典型的雕铣机用异步电主轴结构,图2为典型的雕铣机用永磁同步电主轴结构。两者结构上最大的区别是图1中的9为感应式鼠笼转子,图2中的16为稀土永磁转子。另外,图2中的20为编码器,是为了较高的速度控制精度而增加的速度和位置反馈元件。

高效自启动永磁同步电动机核心技术研究

高效自启动永磁同步电动机核心技 术研究 1、永磁同步电动机关键制造工艺的研究 永磁同步电动机关键工艺的研究主要包括永磁体装配以及永磁电机总装配工艺的研究。 1)永磁体装配工艺的研究 由于高性能钕铁硼稀土材料的应用,永磁电机的转子加工精度要求较高,永磁电机转子上的永磁体槽与永磁体之间留有的间隙较小,一般在0.2~0.4mm范围,而目前永磁电机铁心叠压工艺大多采用铁心冲片的轴孔键槽定位方式已不能满足加工要求。

利用轴孔键槽定位,其定位方式精度低,转子铁心永磁体槽的整齐度得不到保证,叠压质量不能满足精度要求。通常的解决措施是,利用人工对永磁体槽进行磨挫,增加永磁体槽的周边气隙,使永磁体能够顺利装入永磁电机转子内,这种工艺浪费了大量的时间和人力,延长了电机的生产周期和增加了电机的加工成本,而且容易造成由于电机永磁体槽在磁化方向气隙的增大而引起永磁电机运行性能恶化的结果。 1 假轴2大头螺母3转子挡板4转子铁心5双头螺栓6螺母7转子槽8永磁体槽 图27.转子铁心叠压示意图 而采用假永磁体定位的叠压工艺,在转子铁心完成铸铝后拆卸假永磁体的时机不易掌握,铸铝转子的一次合格率较低,加工效率低下。 新的加工工艺是综合了两种加工工艺的优点而形成的、创新的叠压工艺(如图27),采用冲片键槽及固定转子端板的双头螺栓进行定位,有效地解决了转子铁心叠压不齐的问题,而且在永磁体装配前,增加了清槽工艺过程,使转子上的永磁体槽的尺寸公差完全能能够满

足永磁体装配的要求。 2)永磁电机总装配工艺的研究 由于装入磁性较强的钕铁硼永磁材料,给永磁电机的装配工艺带来了很大的困难。在转子刚接近定子时,由于永磁体的磁(极)性作用,定、转子就会紧紧地吸在一起,造成转子不能顺利装入定子,电机的功率越大,两者作用力就越大。在无专用设备的过程中,如果装配时处理不当,不但两者会被强烈地吸引在一起而无法分开,影响了装配工作;甚至在强行分开的过程中损坏定、转子,更有甚者在实际装配过程中出现碰伤手指而致残的人身伤亡事故。因此,研究永磁电机装配专用装备是十分必要的。 对于小功率的永磁电机,可不借助于专用装备,将永磁转子装入定子中,但对于较大功率的永磁电机,则必须借助于专用装备将转子推入到定子,以完成永磁电机的装配过程。 永磁电机总装配工艺的研究则是发明了一种永磁电机装配专用装备(如图28),此装备应用后能够克服操作困难,人体易受伤害等问题,工艺装备代替人工装配永磁电机,实现了机械化,效率高、安全可靠,为永磁电机制造开辟了一条高效装配之路,具有一定的经济效益。

永磁同步电动机的应用前景

一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有:1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改

永磁同步电动机结构原理3D

永磁同步电动机 这些年永磁同步电动机得到较快发展,其特点是功率因数高、效率高,在许多场合开始逐步取代最常用的交流异步电机,其中异步起动永磁同步电动机的性能优越,是一种很有前途的节能电机。 永磁同步电动机的定子结构与工作原理与交流异步电动机一样,多为4极形式,三相绕组按3相4极布置,通电产生4极旋转磁场。下图是有线圈绕组的定子.如下示意图1。 图1定子铁芯与绕组 如下图2是电机机座与定子。 图2机座与定子

永磁同步电动机与普通异步电动机的不同是转子结构,转子上安装有永磁体磁极,图3左就是一个安装有永磁体磁极的转子,永磁体磁极安装在转子铁芯圆周表面上,称为凸装式永磁转子。磁极的极性与磁通走向图3右,这是一个4极转子。 图3凸装式永磁转子 根据磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用磁引力拉动转子旋转,于是永磁转子就会跟随定子产生的旋转磁场同步旋转。 图4左是另一种安装有永磁体磁极的转子,永磁体磁极嵌装在转子铁芯表面,称为嵌入式永磁转子。磁极的极性与磁通走向见图右,这也是一个4极转子。 图4嵌入式永磁转子铁芯1

图5右是一种嵌入式永磁转子,永磁体嵌装在转子铁芯内部,为防止永磁体磁通短路,在转子铁芯开有空槽或在槽内填充隔磁材料。磁极的极性与磁通走向见下右图,这也是一个4极转子。 图5嵌入式永磁转子铁芯2 下图6为装上转轴的嵌入式永磁转子 图6嵌入式永磁转 转子铁芯两侧装上风扇然后与定子机座组装成整机,见下图7。

图7永磁同步电动机剖面图 这种永磁同步电动机不能直接通三相交流的起动,因转子惯量大,磁场旋转太快,静止的转子根本无法跟随磁场旋转。这种永磁同步电动机多用在变频调速场合,启动时变频器输出频率从0开始上升到工作频率,电机则跟随变频器输出频率同步旋转,是一种很好的变频调速电动机。 通过在永磁转子上加装笼型绕组,接通电源旋转磁场一建立,就会在笼型绕组感生电流,转子就会像交流异步电动机一样起动旋转。这就是异步起动永磁同步电动机,是近些年开始普及的节能电机。如下图8为永磁转子铁芯 图8笼型绕组永磁转子铁芯 笼型转子有焊接式与铸铝式:在转子每个槽内插入铜条,铜条与转子铁芯两侧的铜端环焊接形成笼型转子;与普通交流异步电动机一样采用铸铝式转子,将熔化的铝液直接注入转子槽内,并同时铸出端环与风扇叶片,是较廉价的做法,下图9是一个铸铝式笼型转子。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势 2012年1月30日 电动汽车用永磁同步电机的发展分析 彭海涛,何志伟,余海阔 (华南理工夫学电力学院,广州510640) 摘要:简要的比较了几种常用电动汽车的驱动系统,并指出了永磁同步电动机的优势。在各类驱动电机中,永磁同步电机能量密度高,效率高、体积小、惯性低、响应快,有很好的应用前景,介绍了电动车驱动用永磁同步电机的目前研究状况以及目前的研究热点和发展趋势。关键词:电动汽车;永磁同步电机;弱磁控制;控制策略;应用 中圈分类号:TM351, TM341 文献标志码:A 文章编号:1001—6848[2010)06-0078-04 O引言 电动汽车具有低噪声、零排放、高效、节能及能源多样他和综合利用等显著优点,成为各国开发的主流。电动汽车的发展有赖于技术的进步,尤其是需要进一步提高其驱动系统的性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[2]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1电动汽车用电动机及驱动系统比较 电气驱动系统作为现代电动汽车的核心,主要包括:电动机、功率电子元器件及控制部分。评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁电动机(PM)、开关磁阻电动机(SRM)网类。下面分别对几种电气驱动系统进行简要分析和说明,其总体比较见表l。 1.1直流电动机驱动系统 在电动汽车领域最早使用的就是直流电动机。直流电动机结构简单,易于控制,具有良好的电磁转矩控制特性,但是由于采用机械换向结构,维护困难,并产生火花,容易对无线电产

旋转变压器在高速永磁同步电动机中的应用 看完

摘要:介绍一种用于高速永磁同步电动机控制的转子位置检测方法,该方法采用旋转变压器/数字转换器AU6802N1,将旋转变压器输出的模拟信号转化为数字位置信号。设计了AU6802N1与旋转变压器和TMS320F2812之间的接口电路,并提出了一种具有较强容错性的位置信号数字处理方法,试验表明,该方案能够准确地实现电机位置和速度的检测。 关键词:旋转变压器,AU6802N1,接口电路,数字信号处理器 在采用磁场定向控制的永磁同步电动机调速系统中,需要实时地检测电机转子位置及转速,以实现转矩、速度的闭环控制。通常的检测方法是使用光电编码器,而常用的正交光电编码器起动时需要一段时间进行转轴定位,而且抗冲击震动性差,因此在需要快速响应的高速运行且对抗震要求较高的场合,往往使用旋转变压器。旋转变压器的输出是含位置信息的模拟信号,需要将其转换为数字信号才可输入到单片机或DSP等控制芯片。本文采用多摩川公司的旋转变压器数字转换器AU6802N1将模拟位置信号转换成12位数字位置信号, 同时采用TMS320F2812作主控CPU,可满足系统对转子位置与速度信号实时快速检测和处理的要求。实验表明该方案确实可行,并具有较高的控制精度。 1 旋转变压器的原理 本系统选用的无刷旋转变压器如图1所示。经过无刷化设计,旋转变压器初级励磁绕组(R1-R2)和二相正交的次级感应绕组(S1-S3,S2-S4)同在定子侧,转子侧是与初级绕组和次级绕组磁通耦合的特殊结构的线圈绕组。 图1旋转变压器原理图

当旋转变压器转子随电机同步旋转、初级励磁绕组外加交流励磁电压后,次级两输出绕组中便会产生感应电势,大小为励磁与转子旋转角的正、余弦值的乘积。旋转变压器输入输出关系如下: ER1-R2=E0sinωt ES1-S3=KER1-R2sinθ ES2-S4=KER1-R2cosθ 式中: E0——励磁最大幅值; ω——励磁角频率; K——旋转变压器变比; θ——转子旋转角度。 2 基于AU6802N1的接口电路 2.1 旋转变压器与AU6802N1的接口电路 AU6802N1提供给旋转变压器的交流励磁电压由RSO-COM口输出,频率由引脚FSEL1和FSEL2设置,在图2的电路中励磁电压信号的频率设置为10kHz。励磁电压的有效值通过双电源Booster放大电路进行调节。该励磁电压信号又反馈回R1E -R2E端口,用于实现内部相位同步检测和断相检测。旋转变压器产生的cos和sin 信号经过调理后分别由S3-S1和S4-S2端口进入解码芯片。参数选择:V=15V, Ri=22kΩ, Rf=100kΩ, R1=R2=313kΩ, R3 =R4=4.7Ω, Rext=12Ω, RR1=RR2=313k Ω, RI1=20kΩ, RI2=200kΩ, RBH=68kΩ, RBL=20kΩ,Ci=0.1μF, Cf=200pF, Cn=100pF, Cc=1000pF。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

永磁同步电机

高强度永磁同步电机 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。 5、永磁同步电梯电机在额定转速内保持恒转矩,对于提高电梯的运行稳定性至关重要。可以做到给定曲线与运行曲线重合,特别是电动机在低频、低压、低速时可提供足够的转矩,避免电梯在启动缓速过程抖动,改善电梯启制动过程的舒

高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

目录 1、基本情况及背景介绍 (2) 2、高效永磁同步电动机关键技术的研究 (3) 2.1优化转子磁路结构,提高电机的可靠性 (3) 2.2永磁电机防退磁技术研究 (5) 2.3漏磁系数准确计算的研究 (7) 2.4稀土永磁材料的高温退磁特性及应用技术的研究 (10) 2.5稀土永磁材料的剩磁测试技术的研究 (14) 2.6电机的起动性能 (16) 2.7失步转矩倍数 (17) 2.8其它性能指标 (18)

1、基本情况及背景介绍 稀土永磁是一种高性能的功能材料,它的高剩磁密度、高矫顽力、高磁能积等优异磁性能特别适合于制造电机。用它制成的永磁同步电机,不需要用以产生磁场的无功励磁电流,可显著提高功率因数,减少定子电流和定子电阻损耗。在稳定运行时没有转子电阻损耗,使电机温升有较大裕度,从而可将风扇减小甚至不安装风扇,以减少风摩损耗提高电机效率。与普通的电励磁同步电动机相比,不需要用以产生磁场的励磁绕组和直流励磁电源,取消了容易出问题的集电环和电刷装置,成为无刷电机,运行可靠,又效率提高。因此,国内外都投入大量人力物力从事高效钕铁硼永磁电机的研制开发。 相对于异步电机,永磁同步电动机(PMSM)具有体积小、功率密度高等优点,效率比同规格的感应异步电机高2~8%。我国稀土永磁资源储量占世界储量的80%,发展永磁电机具有得天独厚的优势。 早在1980年,我国有关高校及科研院所就开始从事高效永磁电动机的研制开发,先后研制开发出多种类型电动机的样机,技术水平参差不齐,还存在着转子磁路单一、永磁材料可能退磁、测试和制造工艺复杂等问题,性能价格比不够理想,价格偏高。 为了充分发挥钕铁硼永磁材料的优异磁性能,针对钕铁硼永磁电动机在磁、电、机、热等方面的特点,进行技术集成和创新,特别对转子磁路结构、钕铁硼永磁材料的热稳定性做了深入研究,并应用于产品开发过程,提高其效率、性价比,可靠性(主要指不退磁),扩大应用领域,为把稀土资源优势转化为经济优势作贡献。

高速永磁同步电机智能控制技术的仿真

万方数据

万方数据

万方数据

万方数据

高速永磁同步电机智能控制技术的仿真 作者:史延东, 刘海清, 宁飞, 李靖, SHI Yan-dong, LIU Hai-qing, NING Fei, LI Jing 作者单位:西北工业大学自动化学院,陕西西安,710129 刊名: 计算机仿真 英文刊名:Computer Simulation 年,卷(期):2011,28(8) 被引用次数:2次 参考文献(7条) 1.王凤翔高述电机的设计特点及相关技术研究 2006 2.贾东耀;曾智刚基于模糊控制的直流电机调速系统MATLAB仿真[期刊论文]-电机电器技术 2002(5) 3.李志明;张遇杰同步电机调速系统 1998 4.李辰;李颖晖;王磊基于滑模观测器的永磁同步电机矢量控制[期刊论文]-微计算机信息 2008(11-1) 5.汪海波;周波;方斯琛水磁同步电机调速系统的滑模控制 2009 6.徐永向;胡建辉;邹继斌;姚郁高速永磁同步电动机全数字化矢量控制研究[期刊论文]-微电机 2007(40-7) 7.曹先庆;朱建光;唐任远基于模糊神经网络的永磁同步电机矢量控制系统[期刊论文]-中国电机工程学报 2006(1) 引证文献(2条) 1.龚贤武.徐淑芬.张丽君.汪贵平永磁同步电机模糊自适应补偿速度控制系统[期刊论文]-计算机仿真 2014(1) 2.邹宇.向凤红.王剑平.张果.王刚交流电机控制策略研究进展[期刊论文]-电机与控制应用 2013(3) 引用本文格式:史延东.刘海清.宁飞.李靖.SHI Yan-dong.LIU Hai-qing.NING Fei.LI Jing高速永磁同步电机智能控制技术的仿真[期刊论文]-计算机仿真 2011(8)

永磁式同步电机的特点及其分类

永磁式同步电机的特点及其分类 永磁式同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 近年来,随着永磁材料性能的不断提高和完善,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等方面获得越来越广泛的应用。正向大功率化(高转速、高转矩)、高功能化和微型化方面发展。目前,稀土永磁电机的单台容量已超过1000KW,最高转速已超过300000r/min,最低转速低于0.01r/min,最小电机的外径只有 0.8mm,长1.2mm。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对实现我国社会主义现代化具有重要的理论意义和实用价值。 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)

永磁同步电动机原理

同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的几种方式 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 3、无励磁机的励磁方式: 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种 励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。 二、发电机与励磁电流的有关特性 1、电压的调节 自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端电压将随无功电流的增大而降低。但是为了满足用户对电能质量的要求,发电机的端电压应基本保持不变,实现这一要求的办法是随无功电流的变化调节发电机的励磁电流。 2、无功功率的调节: 发电机与系统并联运行时,可以认为是与无限大容量电源的母线运行,要改变发电机励磁电流,感应电势和定子电流也跟着变化,此时发电机的无功电流也跟着变化。当发电机与无限大容量系统并联运行时,为了改变发电机的无功功率,必须调节发电机的励磁电流。此时改变的发电机励磁电流并不是通常所说的“调压”,而是只是改变了送入系统的无功功率。 3、无功负荷的分配: 并联运行的发电机根据各自的额定容量,按比例进行无功电流的分配。大容量发电机应负担较多无功负荷,而容量较小的则负提供较少的无功负荷。为了实现无功负荷能自动分配,可以通过自动高压调节的励磁装置,改变发电机励磁电流维持其端电压不变,还可对发电机电压调节特性的倾斜度进行调整,以实现并联运行发电机无功负荷的合理分配。 三、自动调节励磁电流的方法 在改变发电机的励磁电流中,一般不直接在其转子回路中进行,因为该回路中电流很大,不

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

表贴式永磁同步电机磁极优化建模与分析

Modeling and Analyzing of Surface-Mounted Permanent-Magnet Synchronous Machines With Optimized Magnetic Pole Shape Zhenfei Chen1,Changliang Xia1,2,Qiang Geng2,and Yan Yan1 1School of Electrical Engineering and Automation,Tianjin University,Tianjin300072,China 2Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy,Tianjin Polytechnic University, Tianjin300387,China Two types of eccentric magnetic pole shapes for optimizing conventional surface-mounted permanent-magnet(PM)synchronous machines with radial magnetization are presented in this paper.An analytical method based on an exact subdomain model and discrete idea is proposed for obtaining the air-gap?ux density distribution in the improved motor.Cogging torque and back EMF analytical models are further built with the?eld solution,which provide useful tools for investigating motor performances with unequal thickness magnetic poles.The accuracy and feasibility of the models have been validated by a?nite element method.Based on the analytical models,the effects of pole shape parameters on motor performance are investigated.Results show that both pole shapes can perfect magnetic?eld distribution,decrease harmonic content of back EMF,reduce torque ripples,and improve the utilization of PMs. Index Terms—Exact subdomain model,?ux density distribution,magnetic pole shape optimization,surface-mounted permanent-magnet(PM)synchronous machine. I.I NTRODUCTION T HE surface-mounted permanent-magnet(PM) synchronous machine has been widely used in elevator,wind turbine,and hybrid electric vehicle applications due to its high ef?ciency,power factor,and torque density [1],[2].The PM pole,as a pivotal part of the PM motor, directly affects motor cost and behavior,such as magnetic ?eld,back EMF,torques,and so on.As a result,magnetic pole design is particularly important in PM motor design and has attracted lots of attention.Studies in[3]–[6]point out that the contributions of different PM parts are not uniform and magnetic pole optimization can not only improve PM material utilization,reduce magnet material cost,but also achieve more sinusoidal magnetic?eld distribution and lower cogging torque performance. The magnetic?eld calculation is an important prerequisite for the analysis of PM machines.Many methods have been proposed for magnetic?eld prediction in past few decades. In[7],the drawbacks and stability of numerical implementa-tion are discussed and a semianalytical framework is presented for solving2-D PM machine models in three different coordi-nates.Nevertheless,analytical modeling is usually much more complex for improved PM motors with optimized magnetic pole con?gurations,since the radial thickness of magnetic pole changes with the circumferential position,which makes its mathematical modeling more dif?cult than that of conven-tional magnetic poles.Several analytical methods are given in[8]–[10],which provide valuable theoretical references for magnetic pole design and analysis.Stator slotting is usually neglected or complicated pole boundary is simpli?ed to reduce the dif?culty of modeling,which also results in a low accuracy of the models. Manuscript received March3,2014;revised May11,2014;accepted May24,2014.Date of current version November18,2014.Corresponding author:C.Xia(e-mail:motor@https://www.wendangku.net/doc/5510055108.html,). Color versions of one or more of the?gures in this paper are available online at https://www.wendangku.net/doc/5510055108.html,. Digital Object Identi?er 10.1109/TMAG.2014.2327138Fig.1.PM pole shapes.(a)Conventional pole shape S0.(b)Outer arc eccentric pole shape SA.(c)Inner arc eccentric pole shape SB. In this paper,two types of eccentric magnetic pole designs are chosen for pole shape optimization of surface-mounted PM machines with radial magnetization.To solve the problem of unequal thickness magnetic pole modeling,a modi?ed subdomain model method based on discrete idea is proposed to predict magnetic?eld distribution in the air-gap.With the ?eld solution,cogging torque and back EMF models are built. The effects of magnetic pole dimensions on motor behavior are further investigated to draw some conclusions. II.A NALYTICAL M ODELING A.Eccentric Magnetic Pole Shapes Compared with the conventional magnetic pole,two kinds of eccentric magnetic pole shapes for improving the?eld distribution of surface-mounted PM motors are shown in Fig. 1.Fig.1(a)is the conventional magnetic pole shape designated as S0,Fig.1(b)is the outer arc eccentric magnetic pole shape designated as SA,and Fig.1(c)is the inner surface arc magnetic pole shape designated as SB. As shown in Fig.1,O is the center of motor and h m is the magnet thickness at the pole centerline.For conventional pole shape S0,its inner and outer arcs have the same centre O and the radial thickness does not change with position. R r and R m are the radii of magnet inner and outer surfaces,and h m=R m?R r.For the shape SA,the center of its outer arc moves to O and the radius changes to be R o.For the shape SB,the center of its inner arc moves to O ,and the radius 0018-9464?2014IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission. See https://www.wendangku.net/doc/5510055108.html,/publications_standards/publications/rights/index.html for more information.

相关文档