文档库 最新最全的文档下载
当前位置:文档库 › 移动通信基站的故障排查

移动通信基站的故障排查

移动通信基站的故障排查
移动通信基站的故障排查

移动通信基站的故障排查规程

移动通信系统中的基站主要负责与无线有关的各种功能,为MS(移动台)提供接入系统的UM接口,直接和MS通过无线相连接,系统中基站发生故障对整个移动网的影响是很大的。引起基站故障的原因很多,但大多可归为以下四类:

一.因传输问题引起的故障

移动通信虽属于无线通信,但其实际为无线与有线的结合体。移动业务交换中心(MSC)与基站控制器(BSC)之间的A接口以及基站控制器(BSC)与基站收发信台(BTS)之间的ABIS接口其物理连接均为采用标准的2.048MB/S的PCM 数字传输来实现。另外基站的各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口,这些基站设备是基于采用传统的PDH组网方试而设计的。

目前传输设备正从PDH向SDH逐步过度,而按照SDH的传输体制,由于指针调整的原因,其传送时钟是通过线路码传输,由分插复用器(ADM)专门的时钟端口输出。如果采用从SDH的随路码流中提取时钟的方法,将会带来诸如失步,滑码,死站的问题。如新桥站原采用爱立信RBS200设备,传输采用SDH系统,此站自开通以来一直不稳定,后经爱立信工程师到现场检查发现为基站同步不好,建议采用PDH传输系统,或基站采用RBS2000设备,(RBS2000对同步要求较RBS200低),后用RBS2000设备替换原RBS200设备,基站工作正常至今。

日常维护中经常有基站所有或部分载频不稳定,时而退服时而工作的现象,BSC 侧对CF测试结果为BTS COMMUNICATION NOT POSSIBLE 或CF LOAD FAILED。此类故障大都为传输不稳定有误码,滑码而引起的。当传输误码积累到一定时,BSC无法对基站进行控制,数据装载,此时可在本地模式下通过OMT 对IDB数据从新装载,复位后可恢复正常。

二,因基站软件问题引起的故障

基站系统中的软件是指挥和管理基站各部件有序,正常工作的。若基站IDB数据与基站情况不匹配,则基站一定无法正常工作。如在对北码头基站进行传输压缩(两条压缩为一条)后发现A,B小区工作正常而C小区工作不正常,说明BSC无法与C小区进行通信,于是怀疑与之想邻的B小区的软件设臵有误,经查看发现B小区的传输方式被误设为STANDALONE(单独方式),一条传输时ABC 各扇区的传输方式应分别设为CASCADE,CASCADE,STANDALONE,将B 的传输方式改为CASCADE后基站恢复正常。

三,因基站硬件引起的故障

此类故障较常见,现象也较明显,一般有故障的硬件其红色FOULT灯会点亮,但有时不能被表面假象所迷惑。

例如唐闸基站B扇区一载频(TRU)退服,到站后发现此载频的红色FOULT灯和TX NOT ENABLE 灯都亮,于是判断为TRU硬件损坏,更换后故障现象依旧,此时更换TRU就犯了"头痛医头,脚痛医脚"的错误,TRU退服可能为其本身硬件故障也可能为与之相连的其他硬件或连线的故障。用OMT软件诊断后提示为CU到TRU间的连线故障,检查发现连线松动,重新连接后故障消失。对此类故障建议先用OMT软件进行故障定位,根据OMT的建议替换单元进行操作,而不能只看表面。

四,因各种干扰引起的故障

移动通信系统中的干扰也会影响基站的正常工作,有同频干扰,邻频干扰,互调干扰等。现在陆地蜂窝移动通信系统采用同频复用技术来提高频率利用率,增加系统容量,但同时也引入了各种干扰。

日常维护中新建站以及扩容站新加载频的频点选取不合理基站将无法正常工作,对此类故障应与网优配合,综合考虑各种因素,选取合理频点,消除以上干扰。

对移动通信系统中基站的各类故障应认真分析,找到其真正原因,才能以最快的速度排除故障,提高网络质量。

五、移动通信基站维修实例

1 爱立信模拟基站系统RBS883障碍处理一例

江苏南通易家桥站的模拟基站系统为RBS883,原经安装调测后,基站能正常工作。运行一段时间后,交换侧测试发现系统中B小区第十个载频没有发射功率,经到现场观察发现其对应的COMB不能调谐。

江苏南通易家桥站的模拟基站系统为S883一般均使用自动调谐的形式,即功率合成器采用自动调谐合成器。其调谐过程主要是由功率监测单元接受从功率合成器中耦合出的-32dB的射频信号和从方向耦合器中耦合出的-40dB的射频信号,通过对这两个射频信号进行比较处理后,功率监测单元启动并控制相应的自动调谐合成器上的电动步进马达转动,从而实现自动调谐功能。

下面我们对RBS883的具体结构作一说明。

在RBS883系统中,自动调谐功能主要由以下结构共同协调完成:功率监测单元(PMU-AT)、信道收发信机(TRM)、自动调谐合成器(COMB)、方向耦合器。其工作原理如下:当某一信道收发信机的发信机打开后,其输出功率信号经射频线输入到功率合成器中的环形隔离器并最后进入合成器腔体中,同时从环形隔离器中(功率合成器上的Pi口)耦合出-32dB的射频信号,经功率监测单元面板上的参考信号输入端口(COMB端口,共有八个,分别与位于无线机架A中的八个合成器腔体相连),输入到功率监测单元中;另外,输入到合成器腔体中的射频信号最后进入方向耦合器并经天馈线系统发射,同时也从方向

耦合器的前向功率(PFWD)口耦合-40dB的射频信号,经功率监测单元面板上的Pout FWD口输入到功率监测单元中。

功率监测单元对以上两种射频信号进行比较处理,当两信号相差7-9dB以上时,功率监测单元就会通过步进马达控制线(从功率监测单元面板上的

M01-M08端口至功率合成器上的步进马达信号连接头)向相应的功率合成器送步进马达控制电源信号,启动步进马达转动,并控制其转动量使其准确调谐到相应的频率上。

首先更换COMB,问题依旧,证明COMB正常;将功率计接到TRM的TX口,用LCTRL1软件将TRM的功率打开,发现功率计有功率显示,证明信道盘TRM正常;一般说来,如果功率监测单元或方向耦合器坏,会导致该小区所有载频出现问题,而不应是某一载频退服,因此我们可断定功率监测单元及方向耦合器没有问题。

于是我们将目光转移到连线上:与相邻载频(第八个或第十二个载频)同时对换COMB端的Pi输出头与马达连接后发现,该载频能正常工作,而相邻载频却不能工作,从而将障碍定位在Pi输出线和马达连接线上;更换从功率合成器上Pi口至功率监测单元上COMB口间的连线后,载频正常工作,问题解决。

这些问题都因功率合成器上Pi口至功率监测单元上COMB口间的连线损坏,功率监测单元无法接收从功率合成器中耦合出的-32dB的射频信号,进而无

法控制COMB调谐。

2 爱立信数字基站系统RBS200障碍处理一例

江苏南通的海北站(RBS200系统)曾发生过某个载频不能工作的情况:交换侧测试反应为该套载频接收正常但不能有效发射;到基站观察发现,该套载频在推服过程中,RRX、TRXC及SPU一切正常,而RTX不能有效锁定,导致整套载频无法正常工作。

我们知道,爱立信数字基站系统RBS200一般均采用自动调谐合成器的形式。自动调成器实质是一个窄带合路器,其输入被机械地调谐到指定的GSM频点。在每一个合路器的输入端都有一个步进马达,它受控于它所连接的RTX。两个输入被合路成一路输出,若干个合成器的输出可以被连接成一条链。在调谐期间,发射机将其合路器的输入设臵到可以给出最大前向功率的位臵,而且还检验反射回的功率,如果反射功率超过最大允许值,那么发射机将其自身禁用并发出一个错误代码。

下面我们联系RBS200的具体结构作一说明。

RBS200系统的自动调谐功能主要由以下结构共同协调完成:无线发射顶(RTX)、自动调谐合成器(COMB)、发射机带通滤波器(TXBP)、监测耦合器单元(MCU)及发射机分路器(TXD)。

其工作原理如下:语音信息经过编码、交织、加密等一系列处理过程后,由TRXC通过TX总线传送到无线发射机(RTX),无线发射机对其进行调制和放大,并经自动调谐合成器(COMB)调谐和发射机带通滤波器(TXBP)滤波后,最后传送到监测耦合器单元(MCU)并经天馈线系统发射出去;与此同时,监测耦合器单元的一个输出被连接到发射机分路器(TXD)单元的输入端,经发射机分路器分路后,由其输出端连接到相应的一个RTX的"PT"口,RTX将该信号与其自身发射信号进行分析比较后,进而控制自动调谐合成器使其准确调谐到相应的频点上。

我们检查并更换硬件设备COMB、RTX及TXD,结果在检查RTX时,发现该RTX的"PT"端口中的针头歪掉了,导致该RTX与从TXD过来的射频线不能有效接触,RTX收不到从TXD反馈加来的参考信号,无法将该信号与其自身发射信号进行分析比较,进而无法控制自动调谐合成器使其准确调谐到相应的频点上,因此该载频不能正常工作。将该RTX的"PT"端口中的针头拨正后,该套载频工作正常。

3 爱立信数字基站系统RBS2000障碍处理两例

(1)因缺少环路终端而导致基站退服

启东土管局基站为RBS2000站,原为5/5/5配臵,后因信令压缩的需要,经网

络规划人员现场测试分析后,决定将其改型为4/4/4配臵,并经信令压缩成一条传输线。压缩传输后基站能正常工作。后因某种原因基站迁址,由原少年宫迁至启安宾馆,在重新开通时,基站的A小区能正常工作,而B、C小区却不能工作,从交换机侧反应为CF数据灌不进去。

经到现场用OMT软件观察发现,TEI值、PCM等设臵一切无误,而用Monitor菜单也不能发现任何告警信息;对B、C小区重新灌入原IDB后,障碍依旧,断定IDB数据无误。在C机架的DXU中灌入A小区的IDB数据并改变架顶的PCM连接方式,使原C、B机架分别对应A、B小区,则C机架(对应A小区)能正常工作,而B机架(对应B小区)却不能工作;对B机架进行同样的操作后,情况与C一致,由此判断B、C机架设备无障碍。

在判断基站软、硬件一切正常的情况下,我们将目光转移到传输上。该站现为4/4/4配臵,一条传输线,从DF架连到A机架的C3口,并从A机架的C7口出来连到B机架的C3口,然后再从B机架的C7口连到C机架的C3口。

在检查连线及IDB中传输设臵无误后,对传输通道进行环路测试并用万用表检查通路,没有发现任何问题。最后在C架的C7口加上一环路终端,重新推站,基站恢复正常。在基站工作正常的情况下,我们曾做过如下试验:将整个基站断电一段时间后再供电、起站。共断过三次电,其中有两次在不加环路终端的情况下基站能正常工作,而另一次却必须加上一环路终端基站才能工作。由此可见,因掉电而退服的基站,这种障碍现象并不是必然的,而是具有一定的偶

然性,即可能会出现这种障碍。

在我们日常操作维护中,对于只有一条传输线的RBS2000基站(其它站型的基站尚未出现如此现象),当出现故障时,我们首先应该按照正常的步骤进行操作维护,包括用OMT观察告警信息、复位、拔插硬件板、检查软件设臵及硬件故障等。在一切努力均告失败的情况下,试着在C架架顶的C7端口加上一个环路终端,可能会帮助我们解决问题。

(2)因硬件原因引起基站告警

南通北码头基站为RBS2000站型,经工程局安装并调测后,基站能正常工作。但经过一段时间的话务统计分析发现,该基站的A、B小区有较高的拥塞和掉话。通过BSC观察发现,该站的A、B小区均有分集接收告警,同时A小区还有驻波比方面的告警。到基站用OMT观察,发现有分集接收丢失告警及

VSWR/POWER检测丢失告警。由于告警均与天馈线系统有关,我们先用驻波比测试仪分别对A、B小区的四根天馈线进行了测试,结果发现测量值均在标准范围内,证明天馈线本身没有问题。我们知道,分集接受是解决信号衰落、提高信号接收强度的重要措施之一。小区通过两根接收天线接受信号,可以产生3dB左右的增益,同时通过对两路信号的对比来判断接受系统是否正常。如果TRU检测两路信号的强度差别很大,基站就会产生分集接收丢失告警。分集接收丢失告警可能是TRU、CDU、至TRU的射频连线或天馈线故障引起的。

由于在本例中,我们注意到A、B小区均有分集接收告警且拥塞和掉话均较高,于是怀疑A、B小区的天馈线相互错位。后经高空作业人员对天馈线逐一检查,发现A、B小区的接受天线相互错位。因此A、B小区的两根接收天线接受方向不一致,方向不对的天线就接收不到该小区手机发出的信号或接受信号很弱,从而使小区产生分集接收丢失告警且伴随着较高的拥塞和掉话。经更改后,分集接收丢失告警消失,且拥塞和掉话降到了指标范围内。

对于VSWR/POWER检测丢失告警,我们也从原理上对其进行了分析处理。我们知道,在RBS2000中,每个TRU都通过Pfwd和Prefl两根射频线分别与CDU的Pf与Pr相连,从而检测CDU的前向功率和反向功率。如果反向功率过大,则说明天馈线驻波比太大或CDU有问题,这时TRU会自动关闭发射机产生ANT VSWR告警。同时TRU还对Pfwd和Prefl这两根射频线进行环路测试,如环路不通,则产生一个VSWR/POWER告警。在本例中,由于出现了

VSWR/POWER告警,于是我们对其环路进行了检查。在RBS2000中,Pfwd和Prefl这两根射频线的接口处在FU上,其一端分别连到CDU前面板的Pf和Pr 口,另一端则通过背板连线连到TRU的后背板,并与TRU通过射频头相连,从而形成Pfwd和Prefl的整个环路。我们对CU、FU上的接头进行认真检查,确定一切正常后,对TRU的后备板进行了检查,结果发现后备板的射频头接口处凹了进去,导致TRU与后备板接触不好所致。经更改后,VSWR/POWER检测丢失告警消失。

六、移动通信基站的防雷

防雷是一项综合工程,它包括防直击雷、防感应雷以及接地系统的设计。根据信息产业部批准的中国通信行业标准:"移动通信基站防雷与接地设计规范"以及产品的特点和工程设计的经验,提出以下解决方案。

1.接地系统

防雷工程设计中无论是防直击雷还是感应雷,接地系统是最重要的部分

1.1对接地电阻的要求:

从理论上讲接地电阻愈小愈好。据我们的经验,地阻决不能大于4欧姆,应力争小于1欧姆。

1.2应采用联合接地:

接地的"流派" 很多,近年来联合接地的观点占了上风。因为,现代化的城市不可能以足够的距离作几个地网来满足使用要求。采用联合接地时只要保证各种接地作到共地网而不共线的原则,机房设备做到用汇流排或均压环实现设备的等电位联接即可。

2.直击雷的防护:

移动通信基站天线通常放在铁塔上,防直击雷避雷针应架设在铁塔顶部,其高度按滚球法计算,以保护天线和机房顶部不受直击雷击,避雷针应设有专门的引下线直接接入地网(引下线用40mm?4mm的镀锌扁钢)。铁塔接地分两种情况:若铁塔在楼顶上,则铁塔地应接入楼顶的钢筋网或用三根以上的镀锌扁钢焊接在避雷带上。若铁塔在机房侧面,则建议单独作铁塔地网,地网距机房地网应大于十米。否则两地网间应加隔离避雷器。

3.感应雷的防护:

感应雷是指由于闪电过程中产生的电磁场与各种电子设备的信号线、电源线以及天馈线之间的耦合而产生的脉冲电流。也指带电雷云对地面物体产生的静电感应电流。若能将电子设备上电源线、信号线或天馈线上感应的雷电流通过相应的防感应雷避雷器引导入地,则达到了防感应雷的目的。

3.1天馈线糸统的防雷与接地

基站至天线的同轴电缆不采用金属外护层上、中、下部接在铁塔上的方案。我们建议天线同轴电缆从铁塔中心引下,这样可以减少由于避雷针接闪后的雷电流沿铁塔泄放时对同轴电缆的感应电流。因为铁塔四支柱同时泄放雷电流入地时铁塔中心的感应场最弱。若天线塔高度超过30m,天馈线电缆在塔的下部电缆外护层可接地一次(可直接接铁塔或直接接地皆可)。

电缆进入机房走线架接在六个天馈避雷器(组件)上,型号为CT1000H-DIN和CT2100H-DIN,前者工作频率范围为850-960MHZ; 后者为1700-1900MHZ。天馈避雷器组件由紫铜构成,紫铜构件的接地应采用截面积大于25平方毫米的多股铜线接在机房内的汇流排上。本防雷设计用的天馈避雷器采用∏型网络高通滤波器方案,它不同于国内外惯用的气体放电管方案。这种避雷器扦入损耗低(小于0.2dB),驻波小(小于1.15),雷电通流量大(最大可作到50KA/在8/20μs下),残压低(小于18v)。

对室外基站,天馈避雷器和机柜接地都应分别接入接地排

3.2 供电糸统的防雷与接地

移动通信基站外供电源可能是架空线进入,也可能是穿金属管埋地进入基站。无论是什么情况,都应在出入基站的电源线出口处加装大通流量的电源避雷器,因为电源线架线长,走线也较复杂,易应感应较强的雷电流。设计了

CY380-100GJ(10/350us) 电源避雷器。雷电通流量在10/350us波型下雷电通流量大于50KA,后面应再配臵两级并联型避雷器。三级防雷器之间的间距应在10m以上。若基站较小,三级防雷不能保证上述距离,则应当设计为串联型电源避雷器它是由二级或三级并联式避雷器加隔离电感后的组合。雷电通流量仍为10/350us波型下大于50KA,工作电流可达60A。若基站用电超过60A,则只能作并联方案。

对室外基站由于供电线路很长。应设计具有三级防雷功能的大雷电通流量的串联型电源避雷器。雷电通流量为60KA,工作电流35A。电源避雷器接地线也接在机柜的接地排上。

基站三相电源供电应采用三相五线制。外线进入基站的第一级电源避雷器接地线可以就近接电源保护地(PE)。第二级电源避雷器接地可接供电设备的保护地。第三级电源避雷器接机房汇流排。

3.3 信号线路的防雷与接地

由基站外进出的信号线都应穿金属管埋地,避免感应过大的雷电流。信号线的进站处都应加相应接口和相应信号电平的信号避雷器。信号线超过5m长度的,在其线两端设备的端口,加装相应的信号避雷器移动通信系统中的基站主要负责与无线有关的各种功能,为MS(移动台)提供接入系统的UM接口,直接和MS 通过无线相连接,系统中基站发生故障对整个移动网的影响是很大的。

实验五 网络系统故障分析和排除(1)

实验五:网络系统故障分析和排除(1) ━━━━PING命令的操作 一、实验目的 1、了解和熟悉网络中的常见故障 2、熟悉用于网络测试的常用工具和命令 3、掌握基本网络分析和排除方法 二、实验设备和环境 1、10/100M以太网 2、装有Windows9X/2000操作系统的PC机,要求安装好NetBEUI协议和TCP/IP协议 3、PC机能通过以太网接入Internet 三、实验内容和步骤 1、网络系统故障 现实使用过程中,计算机网络系统出现问题的情况并不少见,这些问题有的是用户使用不当造成的,也有的是网络系统出现了各种故障,为此我们必须掌握网络系统故障分析和排除的基本方法。 计算机网络系统出现的故障主要分以下几类: (1)网卡故障; (2)计算机网络软件和协议配置问题; (3)LAN网络连线故障; (4)网关故障; (5)DNS故障; (6)骨干网故障; (7)网络服务器故障 (8)网络病毒等。 2、网络测试的常用工具和命令之一 2.1 ping 测试网络的格式和功能 使用格式:ping [x] [-t] [-a] [-n count] [-l size] 参数介绍:

-t 让用户所在的主机不断向目标主机发送数据 -a 以IP地址格式来显示目标主机的网络地址 -n count 指定要Ping多少次,具体次数由后面的count来指定 -l size 指定发送到目标主机的数据包的大小 主要功能:用来测试一帧数据从一台主机传输到另一台主机所需的时间,从而判断主响应时间。 详细介绍:该命令主要是用来检查路由是否能够到达某站点。由于该命令的包长常小,所以在网上传递的速度非常快,可以快速检测您要去的站点是否可达。如果执行Ping不成功,则可以预测故障出现在以下几个方面:网线是否连通,网络适配器配置是否正确,IP地址是否可用等。如果执行Ping 成功而网络仍无法使用,那么问题很可能出在网络系统的软件配置方面,Ping 成功只能保证当前主机与目的主机间存在一条连通的物理路径。它的使用格式是在命令提示符下键入:Ping IP地址或主机名,执行结果显示响应时间。 重复执行这个命令,你可以发现Ping报告的响应时间是不同的。具体的ping 命令后还可跟好多参数,你可以键入ping后回车,以得到详细说明。 举例说明:当我们ping一个站点时,得到的回答是Request time out信息,意味着网址没有在1秒内响应,这表明服务器没有对Ping做出响应的配置或者网址反应极慢。如果你看到4个“请求暂停”信息,说明网址拒绝Ping 请求。因为过多的Ping测试本身会产生瓶颈,因此,许多Web管理员不让服务器接受此测试。如果网址很忙或者出于其他原因运行速度很慢,如硬件动力不足,数据信道比较狭窄,可以过一段时间再试一次,以确定网址是不是真的有故障。如果多次测试都存在问题,则可以认为是用户的主机和该站点没有联接上,用户应该及时与因特网服务商或网络管理员联系。 2.2 ping [x] [-t]使用 -t——有这个参数时,当你ping一个主机时系统就不停的运行ping这个命令,直到结束或按下Control-C。 例如:点击“开始”菜单,再点击“运行”在其窗口中, 1)输入IP地址X=202.103.24.68 ping 202.103.24.68 -t 打入以后会在接下来弹出的窗口中显示如下信息: Pinging 202.103.24.68 with 32 bytes of data: Reply from 202.103.24.68 :bytes=32 tim e=10ms TTL=50 Reply from 202.103 24.68 : bytes=32 time=10ms TTL=50 Reply from 202.103.24.68 : bytes=32 time=12ms TTL=50 Reply from 202.103.24.68 : bytes=32 time=12ms TTL=50 Reply from 202.103.24.68 : bytes=32 time=12ms TTL=50 Reply from 202.103.24.68 : bytes=32 time=13ms TTL=50

网络故障分析报告

网络故障分析报告 网络故障分析报告 网络故障分析报告 一、1XXXX转5故障现象描述 该网络有9台计算机,采用一台S3XXX通过迎宾苑S8XXX接入DCN网络,在今天出现个别机器断网的现象,具体现象为隔一段时间就有一台或几台机器DCN网络中断,重启或者拔掉网线再接上恢复正常。 二、网络故障分析及定位 从上面描述的故障现象来看,问题似乎与S3XXX下9台计算机有关(在此前联系马晓伟从高科技机房测试无丢包、断线等现象,网络正常)。 为了首先恢复业务的正常使用,对S3XXX做了如下操作。 1、因为昨天刚从此S3XXX上21口开LAN业务供9XXXX做互联星空测试使用,所以怀疑是否21口上网有病毒感染到局域网。首先对S3XXX各个端口做了端口隔离,做完之后故障现象依旧。 2、由于做端口隔离故障依旧,而计算机都是上一会就断,重启后又可以上网,和马晓伟联系后怀疑为ARP地址欺骗攻击,建议做端口绑定操作。随后对4号机1号机做端口绑定(做完这两个笔记本没电了,在给笔记本充电过程中对网络进行观察)。

3、从19:00-20:00计算机网络使用正常没有发生过断线情况,同时对4号机进行病毒查杀,通过卡巴斯基查到两个病毒,一个是木马程序Trojan_Downloader.JSIstBar.aj,另一个是蠕虫病毒。 三、对故障现象的解释 S3XXX下计算机刚开机上网正常,一段时间后发生断线情况,重启或重新拔插网线后正常。 现象解释:“ARP欺骗”类病毒在局域网中屡有发现,具体表现为,当局域网中一台计算机感染了这类ARP病毒或木马后,会不定期的发送伪造的ARP响应数据报文和广播报文。受感染的电脑发出的'这种报文会欺骗所在网段的其他电脑,对其他电脑宣称自己的mac就是网关的mac,对实际的网关说其他电脑ip的mac 就是自己的mac,这样网关(交换机或路由器)无法学习到上网主机的mac,更新不了网关arp表,就无法转发数据帧。电脑中毒后会向同网段内所有计算机发送ARP欺骗包,导致网络内其他电脑因网关物理地址被更改而无法上网,被欺骗电脑的典型症状就是刚开机能上网,几分钟后断网,过一会又能上,或者重启一遍电脑就可以上网,一会又不好了,如此重复不断,影响正常使用。

制冷系统的故障及分析..

制冷系统的故障,概述 本小册子谈及的是在小的,相对来说简单的制冷系统。所述及的故障,故障原因,处理方法以及对系统运行的影响也适用于更加复杂的,大型系统。但是在这种系统中会发生其他故障。这些故障以及在电子调节器中的故障在这里并不叙述。 不使用仪表的故障查找 在获得了一点小经验之后,在制冷系统中的许多普通故障能够用目视,听觉,感觉,有时用嗅觉来确定位置。 分类 故障查找可分为两部分。第一部分专门叙述能够用感官直接观察到故障。这里给出了症象,可能的原因和对运行的影响。第二部分叙述能够用感官直接观察到的故障,以及那些只能用仪表检测的故障。这里给出了症象和可能的原因以及处理方法的说明。 需要系统的知识 在故障检测方法中一个重要要素是熟悉系统是如何构成,它的功能和控制,属机械的和电气的。对系统不熟悉时应该藉仔细看管路布置和其他关键图并设法知道系统的形式(管路,元件布置以及各个连接系统)来补救。 理论知识是必需的 如果要发现并纠正故障和不正确的运行,一定数量的理论知识是需要的。在即使相对来说简单的制冷系统上检测所有形式的故障取决于这些因素的全面知识:——所有元件的构成,他们运行的模式以及特性。 ——必需的测量设备和测量技术。 ——环境对制冷系统运行的影响。控制器和安全装置的功能和设定。 ——制冷系统和它们检查方面的安全立法。 在检查制冷系统的故障之前,应注意采用故障探测的最重要仪表是有益的。 故障探测用的仪表 在制冷系统中最常用于故障探测的工具如下: 1.压力表 2.温度计 3.湿度计 4.检漏仪 5.真空表 6.钳形电流表 7.兆欧计 8.极性检查器 仪表分类 制冷系统上的故障探测和修理用仪表应当具有某些可靠性要求,这些要求中的某些可分类如下: a.精确度 b.分解度 c. 重复性 d. 长期稳定性 e. 温度稳定性 最重要的是a,b,e。 a.精确度 一个仪表的精确度是它能够给出的测得变数数值的准确程度。精确度通常以%(±)表示,满刻度(FS)或者测量值。一个特别仪表的精确度例子是如果精确度是FS的±2%,则测量值的误差是±2%。 b. 分解度 一个仪表的分解度是可以从它上面读到 的最小测量单位。例如,一个数字温度计显示0.1℃,因为读数的最末数字有一个0.1℃分解度。 分解度并不表示精确度。即使分解度是0.1℃,误差到±2℃的精确度是常见的。因此在两者之间区别是非常重要的。 c.重复性 系统维修 制冷系统的故障及分析

台式电脑常见故障维修大全

常见故障检修 01:主板故障 02:显卡故障 03:声卡故障 04:硬盘故障 05:内存故障 06:光驱故障 07:鼠标故障 08:键盘故障 09:MODEM故障 10:打印机故障 11:显示器故障 12:刻录机故障 13:扫描仪故障 14:显示器抖动的原因 15:疑难BIOS设置 16:电脑重启故障 17:解决CPU占用率过高问题 18:硬盘坏道的发现与修复 19:网页恶意代码的手工处理 20:集成声卡常见故障及解决 21:USB存储设备无法识别 22:黑屏故障 23:WINDOWS蓝屏代码速查表 24:WINDOWS错误代码大全 25:BIOS自检与开机故障问题 下面是相关的故障速查与解决问题 电脑出现的故障原因扑朔迷离,让人难以捉摸。并且由于Windows操作系统的组件相对复杂,电脑一旦出现故障,对于普通用户来说,想要准确地找出其故障的原因几乎是不可能的。那么是否是说我们如果遇到电脑故障的时候,就完全束手无策了呢?其实并非如此,使电脑产生故障的原因虽然有很多,但是,只要我们细心观察,认真总结,我们还是可以掌握一些电脑故障的规律和处理办法的。在本期的小册子中,我们就将一些最为常见也是最为典型的电脑故障的诊断、维护方法展示给你,通过它,你就会发现——解决电脑故障方法就在你的身边,简单,但有效! 一、主板 主板是整个电脑的关键部件,在电脑起着至关重要的作用。如果主板产生故障将会影响到整个PC机系统的工作。下面,我们就一起来看看主板在使用过程中最常见的故障有哪些。

常见故障一:开机无显示 电脑开机无显示,首先我们要检查的就是是BIOS。主板的BIOS中储存着重要的硬件数据,同时BIOS也是主板中比较脆弱的部分,极易受到破坏,一旦受损就会导致系统无法运行,出现此类故障一般是因为主板BIOS被CIH病毒破坏造成(当然也不排除主板本身故障导致系统无法运行。)。一般BIOS被病毒破坏后硬盘里的数据将全部丢失,所以我们可以通过检测硬盘数据是否完好来判断BIOS是否被破坏,如果硬盘数据完好无损,那么还有三种原因会造成开机无显示的现象: 1. 因为主板扩展槽或扩展卡有问题,导致插上诸如声卡等扩展卡后主板没有响应而无显示。 2. 免跳线主板在CMOS里设置的CPU频率不对,也可能会引发不显示故障,对此,只要清除CMOS即可予以解决。清除CMOS的跳线一般在主板的锂电池附近,其默认位置一般为1、2短路,只要将其改跳为2、3短路几秒种即可解决问题,对于以前的老主板如若用户找不到该跳线,只要将电池取下,待开机显示进入CMOS设置后再关机,将电池上上去亦达到CMOS放电之目的。 3. 主板无法识别内存、内存损坏或者内存不匹配也会导致开机无显示的故障。某些老的主板比较挑剔内存,一旦插上主板无法识别的内存,主板就无法启动,甚至某些主板不给你任何故障提示(鸣叫)。当然也有的时候为了扩充内存以提高系统性能,结果插上不同品牌、类型的内存同样会导致此类故障的出现,因此在检修时,应多加注意。 对于主板BIOS被破坏的故障,我们可以插上ISA显卡看有无显示(如有提示,可按提示步骤操作即可。),倘若没有开机画面,你可以自己做一张自动更新BIOS的软盘,重新刷新BIOS,但有的主板BIOS被破坏后,软驱根本就不工作,此时,可尝试用热插拔法加以解决(我曾经尝试过,只要BIOS相同,在同级别的主板中都可以成功烧录。)。但采用热插拔除需要相同的BIOS外还可能会导致主板部分元件损坏,所以可靠的方法是用写码器将BIOS 更新文件写入BIOS里面(可找有此服务的电脑商解决比较安全)。 常见故障二:CMOS设置不能保存 此类故障一般是由于主板电池电压不足造成,对此予以更换即可,但有的主板电池更换后同样不能解决问题,此时有两种可能: 1. 主板电路问题,对此要找专业人员维修; 2. 主板CMOS跳线问题,有时候因为错误的将主板上的CMOS跳线设为清除选项,或者设置成外接电池,使得CMOS数据无法保存。 常见故障三:在Windows下安装主板驱动程序后出现死机或光驱读盘速度变慢的现象 在一些杂牌主板上有时会出现此类现象,将主板驱动程序装完后,重新启动计算机不能以正常模式进入Windows 98桌面,而且该驱动程序在Windows 98下不能被卸载。如果出现这

常见网络故障的分析及排除方法

常见网络故障的分析及排除方法 【摘要】计算机网络是一个复杂的综合系统,网络故障十分普遍,故障种类也极其繁杂。本文在对具体的网络故障分析基础上,给出了相应的排除方法。 【关键词】网络故障;常见故障;分类诊断;物理故障;逻辑故障 一、网络故障的分类 网络故障的成因无非是硬件和软件两个方面。按照网络故障的性质,网络故障可划分为物理故障与逻辑故障两类。物理故障也叫硬件故障,是指由硬件设备所引发的网络故障。在硬件故障中线路故障、端口故障、集线器或路由器故障及主机物理故障是较为常见的几种故障。 逻辑故障又称为软故障,表现特征为网络不通,或者同一个链路中有的网络服务通,有的网络服务不通。究其根源,是由于设备配置错误或者软件安装错误所致。路由器逻辑故障、主机逻辑故障、病毒故障是几种常见的逻辑故障。 二、排除故障的具体方法 排除故障的方法是不外乎从软件设置和硬件损坏两个方面来考虑: ㈠物理故障及排除方法 1、线路故障最普遍的情况是线路不通,是网络中常见的故障。线路损坏或线路受到严重电磁干扰时最容易引发该故障。诊断此故障时,若线路很短,最直接的方法是将该网络线一端插入一台能够正常连入局域网的主机的RJ45插空内,另一端插入正常的集线器端口中,然后在DOS环境下,使用PING命令在本主机上检测线路另一端主机(或路由器)的端口能否响应,用TRACEROUTE命令检查路由器配置是否正确,根据检测结果进行判断;若线路稍长,不方便移动,可使用网线测试仪器进行线路检测;若线路太长,或线路由电信供应商提供,则需要与提供商协同检查线路,确认是否线路中间出现了故障。 对于存在严重电磁干扰的检测,可以使用屏蔽性能很强的屏蔽线在该线路上进行通信测试,若通信正常,表明存在电磁干扰。若问题依旧,可排除电磁干扰故障。 2、端口故障分为插头松动及端口本身的物理故障。此类故障一般会直接影响到与其相连的其他设备的信号灯状态。信号灯较直观,通过信号灯大体上可以判断出故障的发生范围及有可能存在的因素。检测时,首先应检查RJ45插头是否松动或检查RJ45接口是否制作完好,然后查看集线器或交换机的接口,如果某个接口存在问题,可以更换接口后再进行验证是否真的存在端口故障。 3、路由器或集线器故障会直接导致网络不通。这类故障也是网络上一种常见的故障,故障的现象与线路故障很相近,在诊断此种故障时,必须用专门的诊断工具来收集路由器的端口流量、路由表、路由器CPU温度、负载及路由器的内存余量、计费数据等数据。检测时,可采用替换排除法,用通信正常的网线和主机来连接路由器或集线器,若通信正常,表明路由器或集线器没有故障;反之则应调换路由器(或集线器)的端口来确认故障;很多情况下,路由器(或集线器)的指示灯表明了其本身是否存在故障,正常的情况下对应端口的指示灯为绿色指示灯。通过以上测试后,若问题依旧,可断定路由器或集线器上存在故障。 4、主机物理故障包括网卡物理故障,网卡插槽故障,网卡松动及主机本身故障。对于网卡插槽故障和网卡松动的诊断可通过更换网卡插槽来进行。如果更换插槽仍不能解决故障,可将网卡放到其他正常工作的主机上测试,若正常通信,是主机本身故障,若无法工作,是网卡物理物理故障,更换网卡故障可排除。

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法 在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其他电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其他电源和逻辑控制回路。直流系统是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路和供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂

保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外

公司网络故障处理报告

公司网络故障处理报告 报告人:区兴源 时间2013年3月31号下午4点05分 内容公司内网故障导致公司所有员工不能使用远古系统与内网共享资源 值班人区兴源 故障设备 事件回放 1.当天下午4点05分,练习场内网出现故障,练习场员工打来电话报告远古不能使用,经检测,暂时不能发现原因所在。 2.当天下午4点30分,接到经理电话说前台跟餐厅也不能使用远古系统,先放下练习场的故障处理赶到前台,情况跟练习场的一样。 3.同时赶到机房,检查发现所有的设备均没发出报错信号,重启路由器交换机均没取得有效的效果。 4.下午5点,故障还没排除,经过经理的意见马上采取应急措施,把服务器机房的远古主机搬到前台,用8口交换机把服务器与前台的4台电脑连接在一起组建临时的办公系统,让餐厅出发台等一线部门先在这4台电脑上处理办公问题。 5.下午5点40分,部门同事刘仰恺赶到支持。 6.晚上9点,问题暂时解决,能在前台、出发台和餐厅的电脑ping同内网路由器和登录远古系统。 7.4月1号早上6点,前台再次发来保障,公司局部的电脑不能使用远古系统,经检测,交换机直连内网路由器的8口模块能使用,别的模块全都不能正常工作。马上把主要的部门接线连到能使用的那个8口模块 8.9点,部门经理和同事上班,一同到弱电室机房检测问题所在,经商讨发现练习场交换机的布线出现错误。 9.9点30分,问题解决,公司所有的电脑均能连接远古系统和使用内网共享资源。

原因分析: 如图为公司内网网络拓扑简略图,当事故发生时,由于远古内网路由器的DHCP池(即自动分配IP功能)分发失败,导致所有连接在交换机上的电脑均不能获取到IP地址导致不能连接远古服务器。 经过信息部内部的分析,初步估计出是公司内部线路出现交换机环路现象(即网络堵塞),不排除是中了局域网病毒。 用备用交换机逐个检查交换机上的接线检测是哪个区域的电脑出现异常,最后经理锁定是练习场与弱电室之间的线路出现问题。 用排除法,一段一段地测试线路,发现练习场与厨房之间的接线发现了异

汽车空调不制冷故障诊断与排除

汽车空调不制冷故障诊断与排除 摘要:现在轿车都基本上都装有空调,在不同季节都能给驾驶员提供一个车内舒适的环境。但当空调在长时间的工作之后也会出现各种各样的故障,汽车空调系统常见的故障有高压管被油污,继电器电阻值过大,空调压缩机不工作,温控开关失效,尤其是不制冷的这种现象也较为多见。 汽车空调产生不制冷的故障现象,大多是制冷系统所引起的,我们在维修过程中除了要求维修工要有一个好的诊断思维和方法以外,对故障进行全面的分析,分析储故障可能的原因,先从外围找故障,然后有里及外的进行检查,在维修时要做到认真,细致方可彻底完全地排除故障。 汽车空调系统中出现的故障,不能片面的下结论故障的原因,本文通过收集大量的资料和参考书,通过平常实习中的实例进行总结,最后得出结论。 关键词:制冷原理不制冷检修维修注意事项维护保养

一、汽车空调制冷系统概述 (一) 汽车空调制冷系统基本的组成 汽车空调制冷系统主要由压缩机、冷凝器、储液器、膨胀阀、蒸发器、风机及管路与控制部件等组成。 (二)制冷系统工作原理 工作原理是压缩机将气体的制冷剂提高压力(同时温度也提高),目的是使制冷剂比较容易液化放热。高压的气体制冷剂进入冷凝器,冷凝器风扇使空气通过冷凝器的缝隙,带走制冷剂放出的热量并使其液化。液化后的制冷剂进入储液干燥罐,滤掉其中的杂质、水分,同时存储适量的液态的制冷剂以备制冷负荷发生变化时制冷剂不会断流,从储液干燥罐出来的制冷剂流至膨胀阀,从膨胀阀中的节流孔喷出形成雾状制冷剂,雾状的制冷剂进入蒸发器,由于制冷剂的压力急剧下降,便很快蒸发气化,吸收热量,蒸发器外部的风扇使空气不断通过蒸发器的缝隙,其温度下降,使车内温度降低,蒸发器出来的气态制冷剂再进入压缩机重复上述过程。这种循环系统中的膨胀阀可以根据制冷负荷的大小调节制冷剂的流量。 二、汽车空调系统不制冷的检查方法 (一)感观检查法 1、压缩机运转状态的检查 (1)传动带是否断裂或松弛 (2)压缩机内部是否有噪声 (3)压缩机离合器是否打滑

最常见的电脑故障以及解决方法500例

电脑出现的故障原因扑朔迷离,让人难以捉摸。并且由于Windows操作系统的组件相对复杂,电脑一旦出现故障,对于普通用户来说,想要准确地找出其故障的原因几乎是不可能的。那么是否是说我们如果遇到电脑故障的时候,就完全束手无策了呢?其实并非如此,使电脑产生故障的原因虽然有很多,但是,只要我们细心观察,认真总结,我们还是可以掌握一些电脑故障的规律和处理办法的。在本期的小册子中,我们就将一些最为常见也是最为典型的电脑故障的诊断、维护方法展示给你,通过它,你就会发现——解决电脑故障方法就在你的身边,简单,但有效! 一、主板 主板是整个电脑的关键部件,在电脑起着至关重要的作用。如果主板产生故障将会影响到整个PC机系统的工作。下面,我们就一起来看看主板在使用过程中最常见的故障有哪些。 常见故障一:开机无显示 电脑开机无显示,首先我们要检查的就是是BIOS。主板的BIOS中储存着重要的硬件数据,同时BIOS也是主板中比较脆弱的部分,极易受到破坏,一旦受损就会导致系统无法运行,出现此类故障一般是因为主板BIOS被CIH病毒破坏造成(当然也不排除主板本身故障导致系统无法运行。)。一般BIOS被病毒破坏后硬盘里的数据将全部丢失,所以我们可以通过检测硬盘数据是否完好来判断BIOS是否被破坏,如果硬盘数据完好无损,那么还有三种原因会造成开机无显示的现象: 1. 因为主板扩展槽或扩展卡有问题,导致插上诸如声卡等扩展卡后主板没有响应而无显示。 2. 免跳线主板在CMOS里设置的CPU频率不对,也可能会引发不显示故障,对此,只要清除CMOS即可予以解决。清除CMOS的跳线一般在主板的锂电池附近,其默认位置一般为1、2短路,只要将其改跳为2、3短路几秒种即可解决问题,对于以前的老主板如若用户找不到该跳线,只要将电池取下,待开机显示进入CMOS设置后再关机,将电池上上去亦达到CMOS放电之目的。 3. 主板无法识别内存、内存损坏或者内存不匹配也会导致开机无显示的故障。某些老的主板比较挑剔内存,一旦插上主板无法识别的内存,主板就无法启动,甚至某些主板不给你任何故障提示(鸣叫)。当然也有的时候为了扩充内存以提高系统性能,结果插上不同品牌、类型的内存同样会导致此类故障的出现,因此在检修时,应多加注意。 对于主板BIOS被破坏的故障,我们可以插上ISA显卡看有无显示(如有提示,可按提示步骤操作即可。),倘若没有开机画面,你可以自己做一张自动更新BIOS的软盘,重新刷新BIOS,但有的主板BIOS被破坏后,软驱根本就不工作,此时,可尝试用热插拔法加以解决(我曾经尝试过,只要BIOS相同,在同级别的主板中都可以成功烧录。)。但采用热插拔除需要相同的BIOS外还可能会导致主板部分元件损坏,所以可靠的方法是用写码器将BIOS更新文件写入BIOS里面(可找有此服务的电脑商解决比较安全)。 常见故障二:CMOS设置不能保存 此类故障一般是由于主板电池电压不足造成,对此予以更换即可,但有的主板电池更换后同样不能解决问题,此时有两种可能: 1. 主板电路问题,对此要找专业人员维修; 2. 主板CMOS跳线问题,有时候因为错误的将主板上的CMOS跳线设为清除选项,或者设置成外接电池,使得CMOS数据无法保存。 常见故障三:在Windows下安装主板驱动程序后出现死机或光驱读盘速度变慢的现象 在一些杂牌主板上有时会出现此类现象,将主板驱动程序装完后,重新启动计算机不能以正常模式进入Windows 98桌面,而且该驱动程序在Windows 98下不能被卸载。如果出现这种情况,建议找到最新的驱动重新安装,问题一般都能够解决,如果实在不行,就只能重新安装系统。 常见故障四:安装Windows或启动Windows时鼠标不可用 出现此类故障的软件原因一般是由于CMOS设置错误引起的。在CMOS设置的电源管理栏有一项modem use IRQ项目,他的选项分别为3、4、5......、NA,一般它的默认选项为3,将其设置为3以外的中断项即可。 常见故障五:电脑频繁死机,在进行CMOS设置时也会出现死机现象 在CMOS里发生死机现象,一般为主板或CPU有问题,如若按下法不能解决故障,那就只有更换主板或CPU了。

采集终端典型离线故障排查分析

采集终端典型离线故障排查分析 摘要:本文介绍了采集终端常见的三起典型离线故障案例,对引起故障的终端 参数设置、通讯故障、系统主站故障等问题进行了详细分析,总结出终端离线故 障的处理方法和排查原则,达到快速、准确处理各类采集终端离线故障,提高采 集负控管理系统运维水平的目的。 关键词:终端;离线故障;排查分析 0 引言 采集负控管理系统(以下简称采集系统)主要由主站、上行通信信道(常用GPRS公网)、采集终端、下行通信信道(常用电力线载波、小无线)及智能表构成。实现数据采集、存储和传输、并对智能表和采集终端运行情况实时监控、电 量统计,采集终端在采集系统中起着上传下达的作用。 采集终端的采集模块通过RS485或无线网络读取电能表数据,通信模块通过GPRS信号传输电能表数据,登录采集系统,可以实现电能表数据的采集、数据管理、数据双向传输以及执行控制命令的设备。用电信息采集终端按应用场所分为 专变采集终端、集中抄表终端(包括集中器、采集器)、分布式能源监控终端等,本文以常用的专变采集终端和集中器为例,分析排查处理各类离线故障的流程。 华州区供电分公司于2016年完成了采集终端的安装,实现了用电信息采集的全覆盖、全采集,在远程抄表、电能数据采集、用电异常信息报警、电能质量检测、配变监测和防窃电等方面发挥了积极作用。目前正在进行高、低压负控试点 应用工作,采集系统的应用提高了企业的智能化管理水平。然而采集终端一旦离 线(是指终端无法正常登录采集系统主站的现象),采集系统便失去其对终端的 监测功能,所以保存采集终端长期在线至关重要。 本文以典型终端离线故障的案例分析,详细阐述了故障甄别处置方法,旨在 帮助采集系统运维人员提高故障诊断处置能力,提高采集系统运维水平。 1 三起离线故障分析 1.1高温天气致SIM卡变形引起终端离线 案例1,华州区供电分公司梁堡新村集中器(型号DJGJ23-TLY2210,逻辑地 址044105321),2017年7月20日16:42分离线。 离线原因分析采用以下步骤: 1)首先与运维单位联系确认该配变未停电,拨打SIM卡无欠费; 2)利用采集系统随抄功能召测终端时钟,提示“终端返回错误或否认”判断为 真离线; 3)判断系统档案该集中器16进制逻辑地址“044114c9”是否正确,现场逻辑 地址为044105321,后五位需转换成16进制,05321转换16进制为14c9,所以 16进制逻辑地址应为044114c9。 4)进行现场检查,先检查终端接线是否正确,天线是否完好、放置位置是否合适、螺丝是否拧紧,然后查看终端上行参数设置是否准确,参数设置对终端上 线的影响如表1所示。包括:主站地址及端口、APN、信号强度、公网IP/无线 IP/SIM卡IP、是否注册成功等;如果该集中器无公网IP,判断SIM卡故障可能性 较大。查看主用IP是192.168.199.171(渭南),端口号:7001,APN为spgcj.sn (移动公网)。拆下SIM卡后发现该卡外观明显变形,更换SIM卡后集中器登陆 主站成功,故障排除。 故障原因:根据终端技术规范,终端能正常工作的温度范围是-40℃~70℃,

制冷机故障判断与排除方法

制冷机故障判断与排除方法 制冷系统正常运行标志 1、冷凝水及冷却水的水温不能太高,水压应不低于0.12MPa 2、制冷机运行中应无杂声和异常响动 3、油泵压力应满足要求 4、氟机吸气温度比蒸发温度高5-15℃ 5、汽缸壁不应有局部发热和结霜情况,表面温差不大于15-20 ℃ 6、曲轴箱油温在任何情况下氟机不超过70 ℃,最低不低于10 ℃ 7、制冷机排气温度R22不超过135 ℃,R13不超过125 ℃,排气温度进一步上升,就会与冷冻油的闪点160 ℃接近,容易引起冷冻油变质 8、冷凝压力高低主要根据循环水情况、冷凝器结构形式及使用制冷剂所确定。压力太高对制冷效率的提高是有害的,应尽可能降低冷凝压力 9、曲轴箱油面不低于视镜的水平中心线 10、氟机油分离器自动回油管应时冷时热为正常;液体管路的过滤器前后不应有明显的温差,更不能出现结霜的情况,否则就是堵塞;氟机汽缸盖应半边冷半边热;氟系统各接头不应渗油,渗油说明漏氟 11、运行中用手摸卧式冷凝器时,应上部热下部凉,冷热交界处为制冷剂液面 12、在一定的水流量下,冷却水进出应有温差,如没有温差或温差极小,说明热交换设备传热面有污垢,需停车清洗 13、制冷机本身应有密封,不得渗漏制冷剂和润滑油, 14、膨胀阀阀体结霜或结露均匀,但进口处不能出现浓厚结霜,流体经过膨胀阀时,能听到沉闷的微小声。 15、系统中各压力表指针相对稳定,温度计指示正确 一、排气压力过高 原因排除方法 ?系统内有空气等不凝性气体?放出空气等不凝性气体 ?冷却水量不足或太热?调节冷却水量,降低水温 ?水冷凝器脏,影响换热?清洗冷凝器水程 ?系统中制冷剂太多?回收多余制冷剂 ?排气阀门未开足或排气管不畅通?开足排气阀门,疏通排气管 不凝性气体的危害 导致冷凝压力升高。 根据道尔顿定律:一个容器内气体总压力等于各气体分压力之和。在冷凝器中,总压力为空气和制冷剂压力之和。 ?形成气阻 由于不凝性气体存在,冷凝器传热面上形成气体层,起到了热阻的作用,从而降低冷凝器传热效率。同时,空气进入系统使含水量增加,腐蚀管道和设备。 ?导致制冷量下降、耗电量增加 ?安全隐患 如有空气存在,在排气温度较高的情况下,遇到油类蒸汽,容易发生意外事故 系统中有不凝性气体的判断方法 ?制冷机排气压力表指针出现摆动 ?排气压力与排气温度都大于正常的压力与温度 ?对于氟系统,空气比氟气轻,因而空气存在于卧式冷凝器上部。放空时,空气不凉。 系统进空气的可能性 ?抽真空不彻底 ?维护时未排净空气,例如加氟时加氟管未排净空气

电脑开机无显示故障的排除方法

电脑开机无显示故障的排除方法(查看有没有起鼓的电容)。 第1步:首先检查电脑的外部接线是否接好,把各个连线重新插一遍,看故障是否排除。 第2步:如果故障依旧,接着打开主机箱查看机箱内有无多余金属物,或主板变形造成的短路,闻一下机箱内有无烧焦的糊味,主板上有无烧毁的芯片,CPU 周围的电容有无损坏等。 第3步:如果没有,接着清理主板上的灰尘,然后检查电脑是否正常。 第4步:如果故障依旧,接下来拔掉主板上的Reset线及其他开关、指示灯连线,然后用改锥短路开关,看能否能开机。 第5步:如果不能开机,接着使用最小系统法,将硬盘、软驱、光驱的数据线拔掉,然后检查电脑是否能开机,如果电脑显示器出现开机画面,则说明问题在这几个设备中。接着再逐一把以上几个设备接入电脑,当接入某一个设备时,故障重现,说明故障是由此设备造成的,最后再重点检查此设备。 第6步:如果故障依旧,则故障可能由内存、显卡、CPU、主板等设备引起。接着使用插拔法、交换法等方法分别检查内存、显卡、CPU等设备是否正常,如果有损坏的设备,更换损坏的设备。 第7步:如果内存、显卡、CPU等设备正常,接着将BIOS放电,采用隔离法,将主板安置在机箱外面,接上内存、显卡、CPU等进行测试,如果电脑能显示了,接着再将主板安装到机箱内测试,直到找到故障原因。如果故障依旧则需要将主板返回厂家修理。 第8步:电脑开机无显示但有报警声,当电脑开机启动时,系统BIOS开始进行POST(加电自检),当检测到电脑中某一设备有致命错误时,便控制扬声器发出声音报告错误。因此可能出现开机无显示有报警声的故障。对于电脑开机无显示有报警声故障可以根据BIOS报警声的含义,来检查出现故障的设备,以排除故障。 将BIOS电池放电(恢复BIOS出厂默认值)建议插拔一下显卡、内存,清理一下卫生,并且擦亮显卡、内存的金手指。

网络故障排查报告

网络故障排查报告 XXX局: 局领导您好,最近多个部门反映单位网络非常不稳定,经县信息中心及华晨电脑设备技术有限公司两天的排查,基本上查清故障发生的原因,说明如下: 1、所有的nbc和存储用的是同一个网段和同一个vlan,大概有100多台机器及多台无设 备,广播流量太大,之前更换的TP-link网络交换机经咨询不能满足单位使用要求,每天超负荷工作造成设备主板的芯片元器件加速损坏,网络数据处理不稳定造成了网络塞车现象。 2、公司有部分windowsxp系统防御措施不够,导致工作机中了病毒,造成病毒网络广播, 加重机房交换机负担,这也是原因之一。 综上所述,特提出如下整改方案: 1、购置4台带有网管功能的48口千兆企业交换机,置于路由器之外,保证网络分流稳 定。公司出台严格的网络管理制度 所有的办公电脑必须安装杀毒软件,对于没有安装杀毒软件和防火墙的办公软件必须立刻断网。 所只要涉及到和网络地址的添加必须事先咨询局办公室及办公室相关工作人员,然后由办公室再为他们划分相应的和ip地址。 2、XX局的网络制度一经确定,必须严格遵守。重新划分每层办公室的IP地址,以及将所 有办公电脑作一次深入系统安全检查,保证办公局域网系统安全。 3、尽快将各股室办公电脑的网络IP进行登记,方便日后网络管理。 以上便是本公司对贵局网络不稳定的原因分析及建议解决决方案,妥否,请批示。 维保单位:xx公司 2015年2月12日 以下是建议购置的网络交换机的详细参数配置: 品牌:H3C 型号:H3C LS-S5120-52P-SI-H3 48 价格:5600.00元 产品特点 灵活的千兆接入和集群管理 H3C S5120-SI系列全千兆以太网交换机提供灵活的16/24/48个10/100/1000M自适应电口接入;并且支持非复用的SFP插槽,充分考虑用户的带宽升级的实际情况,既可以支持千兆光模块,也可以支持百兆光模块,保护用户投资。H3C S5120-SI系列硬件支持最大104Gbps交换容量,保证所有端口二层线速交换。 H3C S5120-SI系列交换机采用专利技术允许交换机利用专用互联电缆实现多达16台设备的堆叠,支持不同端口设备的混合堆叠。具有即插即用、单一IP管理。同时大大降低系统扩展的成本,保护了用户投资。

冷藏车制冷机组压缩机常见故障分析

冷藏车制冷机组压缩机常见故障分析 1、高压、低压均低。原因:雪种不足。辅助诊断:只要开空调,玻璃眼中就一直有气泡;摸三个地方的温度,高温、中温偏低,低温偏高。只要补充雪种就可排除故障了。 2、高压、低压均高。原因:(1)有空气;(2)雪种过多;(3)冷凝器冷却效果差;(4)膨胀阀开度太大。 诊断方法:先看一下,低压管上是不是结了霜,如果结了霜,是膨胀阀开度太大。再用水冲一下冷凝器,如果效果明显变好的话,是冷凝器冷效果差。如果没有什么变化,是系统中有空气。剩下的是雪种太多了。如果在开空调或关空调时,玻璃眼中也没有气泡,可以肯定是雪种太多。只要放掉一些雪种,故障就可排除了。 3、运行时,低压有时呈真空,有时正常。可以确诊是系统中有水份。那只有重新抽真空,一般还需要更换储液干燥器,再重新加注雪种就可。 4、低压一直指示真空。原因:系统有堵塞之处,雪种不循环。最容易堵塞的地方不外呼是膨胀阀和储液干燥器。只要摸一下储液干燥器的进出口管子,如果温度相差很大,可以肯定是储液干燥器中的过滤器堵塞了。那只有更换它了。否则就是膨胀阀堵塞了。一般也是换新处理。 5、低压高、高压低。原因:压缩机本身不良。由于压缩机是空调系统中的主要的部件,价格也较高,因此不能随便换新。可进一步确诊,方法如下:将压缩机的低压管拆开,将高压管在压力表之后设法堵住。起动发动机,并在电磁离合器上接上12V电源。如果压力低于15公斤每平方厘米的话,可以肯定是压缩机坏了。一般只有换压缩机总成了。请注意,试验时,只要发动机运行不到半分钟就可确诊了,千万不要运行时间太长。

二、泄漏 雪种泄漏,一般可以用卤素灯、电子检漏仪等设备来进行检查。但在实际工作中,大多数修理厂都采用肥皂水进行检漏的方法。 三、风量小 就是吹出来的风太小。先查看产生的风是不是太小呢产生的风小的原因有:风机供电电压太低风机本身故障另一个是蒸发器太脏等原因,造成风的阻力太大。还一个就是风道漏掉了风,这是一个较常见的故障。 在实际工作中,可能还会遇到其他故障。但我认为,只要认真想想前面介绍的空调的基本原理,都一定可以排除的。 空调的使用注意事项与维护 一、注意事项 1、使用空调时,鼓风机尽量开高档,温度尽量设置高一点。这样做,车厢的空气循环快,又易停机,就是效果好,又节省。 2、在炎热的夏天停车时,应避免在阳光下直接曝晒。且在使用空调前,应先开窗放走车内高温空气。 二、维护 1、经常从玻璃眼中查看雪种状况。如缺少,要及时排除泄漏处,并尽快补充。

电脑常见故障排除实用技巧1000例

电脑常见故障排除实用技巧1000例(三) 九、电源故障排除: 1、要重启电脑才能进入系统:故障现象:一台电脑开机不能进入系统,但按Resert按钮重新启动一次后又能进入系统。故障分析与处理:首先怀疑是电源坏了,因为电脑在按Power按钮接通电源时,首先会向主板发送一个PG信号,接着CPU会产生一个复位信号开始自检,自检通过后再引导硬盘中的操作系统完成电脑启动过程。而PG信号相对于+5V供电电压有大约4ms的延时,待电压稳定以后再启动电脑。如果PG信号延时过短,会造成供电不稳,CPU不能产生复位信号,导致电脑无法启动。随后重启时提供电压已经稳定,于是电脑启动正常。看来故障源于电源,换一个电源后重新开机测试,故障排除。 2、电源故障导致硬盘电路板被烧毁:故障现象:一台电脑,在更换硬盘后只使用了三四个月,硬盘电路板就被烧毁了,再换一块新硬盘,不到两个月,硬盘电路板又被烧毁了。故障分析与处理:因为连换两个硬盘,电路板都被烧毁了,因此不可能是硬盘问题,首先怀疑是主板的问题,打开机箱,仔细观察主板,没发现异常现象,再找来一块使用正常的硬盘。重新启动系统,系统无法识别硬盘。而不接硬盘时启动电源,用万用表测试,发现电源电压输出正常。于是将一块新硬盘接入电脑,开始安装操作系统,安装到一半时,显示器突然黑屏。用万用表检测,发现+5V电源输出仅为+4.6V,而+12V电源输出高达+14.8V。立即关机,打开电源外壳,发现上面积满灰尘,扫除干净后仔细检查,发现在+5V电源输出部分的电路中,有一只二极管的一只管脚有虚焊现象,重新补焊之后,换上新硬盘,启动电脑,故障排除。 3、电源供电不足导致系统不稳定:故障现象:一台电脑配置为PⅢ 1.2GHzCPU,128MB内存,技嘉主板,最近将旧硬盘更换为80GB的新硬盘后就出现系统不稳定,无故自动重启的故障,而且使用时可明显感觉到风扇的风很热,转动很吃力。故障分析与处理:这个故障很明显地表明电源已经不堪重负,供电不足了,在更换新电源换后,故障排除。 4、升级后电脑经常重启:一台电脑在使用了三年,最近将主板升级后,电脑就经常莫明其妙地重新启动。故障分析与处理:由于升级后才出现电脑故障,很明显是升级导致了硬件之间不配匹。最大的嫌疑就是电源,因为配置较老的电源一般实际功率都很低,而现在的各主板都是耗电大户,电源的实际功率过低就无法提供足够的能源给主板,只需要换一个功率较大的电源即可。 5、机箱带电:故障现象:一台电脑机箱带电,一触碰机箱就有被电的麻刺感。故障分析与处理:这种故障大多是由电源造成的。仔细检查电源插座,发现中线与相线位置接反,而且三孔插座中间的地线没有接地,只需将插座正确对接后即可排除故障。 6、硬盘出现“啪、啪”声:故障现象:为一台电脑安装了双硬盘后,硬盘就经常出现“啪、啪”的声响。故障分析与处理:出现这种故障是因为电源功率不足引起的硬盘磁头连续复位,如果长时间这样运行,硬盘可能出现错误甚至损坏,

监控系统的常见故障与排查

监控系统的常见故障与排查 在一个监控系统进入调试阶段、试运行阶段以及交付使用后,有可能出现这样那样的故障现象,如:不能正常运行、系统达不到设计要求的技术指标、整体性能和质量不理想,亦即一些“软毛病”。这些问题对于一个监控工程项目来说,特别是对于一个复杂的、大型的监控工程来说,是在所难免的。 1、电源不正确引发的设备故障,电源不正确大致有如下几种可能。 ·供电线路或供电电压不正确。 ·功率不够(或某一路供电线路的线径不够,降压过大等)。 ·供电系统的传输线路出现短路、断路、瞬间过压等。 ·特别是因供电错误或瞬间过压导致设备损坏的情况时有发生,因此,在系统调试以前,供电以前,一定要认真严格的进行核对与检查,绝不应掉以轻心。 2、三可变镜头的摄像机及云台不旋转/镜头不动作 ·这些设备的连结有很多条,常会出现断路、短路、线间绝缘不良、误接线等导致设备的损坏、性能下降的问题。 ·特别值得指出的是,带云台的摄像机由于全方位的运动,时间长了,导致连线的脱落、挣断是常见的。因此,要特别注意这种情况的设备与各种线路的连接应符合长时间运转的要求。 3、设备或部件本身的质量问题。 ·从理论上说,各种设备和部件都有可能发生质量问题。但从经验上看,纯属产品本身的质量问题,多发生在解码器、电动云台、传输部件等设备上。值得指出的是,某些设备从整体上讲质量上可能没有出现不能使用的问题,但从某些技术指标上却达不到产品说明书上给出的指标。因此必须对所选的产品进行必要的抽样检测。如确属产品质量问题,最好的办法是更换该产品,而不应自行拆卸修理。 4、由于对设备调整不当产生的问题。 ·比如摄像机后截距的调整是非常细致和精确的工作,如不认真调整,就会出现聚焦不好或在三可变镜头的各种操作时发生散焦等问题。 ·摄像机上一些开关和调整旋钮的位置是否正确、是否符合系统的技术要求、解码器编码开关或其它可调部位设置的正确与否都会直接影响设备本身的正常使用或影响整个系统的正常性能。 5、设备(或部件)与设备(或部件)之间的连接不正确产生的问题大致会发生在以下几个方面: ·阻抗不匹配。 ·通信接口或通信方式不对应。 ·驱动能力不够或超出规定的设备连接数量。 1、监视器的画面上出现一条黑杠或白杠,并且或向上或向下慢慢滚动。故障的可能两种不同原因。 ·要分清是电源的问题还是地环路的问题,一种简易的方法是,在控制主机上,就近只接入一只电源没有问题的摄像机输出信号,如果在监视器上没有出现上述的干扰现象,则说明控制主机无问题。接下来可用一台便携式监视器就近接在前端摄像机的视频输出端,并逐个检查每台摄像机。 ·如有,则进行处理,如无,则干扰是由地环路等其它原因造成的。 2、监视器上出现木纹的干扰。 这种干扰的出现,轻微时不会淹没正常图像,而严重时图象就无法观看了(甚至是破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因:

相关文档
相关文档 最新文档