文档库 最新最全的文档下载
当前位置:文档库 › 供热系统分布式变频循环水泵的设计

供热系统分布式变频循环水泵的设计

供热系统分布式变频循环水泵的设计
供热系统分布式变频循环水泵的设计

供热系统分布式变频循环水泵的设计

鞍山热力院 魏占武

摘 要:本文详细阐述了供热系统分布式变频循环水泵最优方案的确定过程,并

对其设计、运行的基本方法进行了介绍。

关键词:供热系统 循环水泵 分布式变频

作者在2004年的供热技术交流会议上曾作过“供热系统循环水泵传统设计

思想亟待更新”[1]的学术论文报告。文章对六种新的设计方案与传统的循环水泵

的设计方案进行了比较,并指出:新的设计方案比传统设计方案,其循环水泵的

装机电容量可节约1/3~2/3。但文章没有明确给出新的最优设计方案是什么?也

没有阐述新的设计方案如何进行具体设计与运行?经过近二年的进一步研究,作

者在这次论文中,即“供热系统分布式变频循环水泵的设计”中试图就上述问题

作出明确回答,以期在同行中进行讨论。

一、最优方案的确定

在“供热系统循环水泵传统设计思想亟待更新”(以下简称“更新”)一文中

指出:在传统的热源单循环水泵的设计中,存在过多的无效电耗。为防止无效电

耗的发生,本文在“更新”一文的六种方案的基础上,重新提出了三种设计方案

与传统方案进行比较。

为叙述方便,仍沿用“更新”一文中的供热系统:该系统共10个热用户(或

10个热力站),供回水设计温度85/70℃,各热用户设计流量均为30t/h ,热用户

资用压头为10m 水柱,供回水管道总长度7692.3m ,设计比摩阻60Pa/m ,局部

阻力系数30%。各热用户之间的外网供、回水干管长度各为384.6m 。热源内部

总压力损失为10m 水柱。循环水泵的效率按70%选取。根据上述参数,该供热

系统按照传统设计方法,设置在热源处的循环水泵的扬程为80m 水柱,流量为

300t/h ,理论功率为93.4kw 。

所选定的三种新的设计方案为:方案1,热源泵与热用户泵合一,承担热源

内部的水循环和各热用户资用压头的建立;热网泵由设在各热用户供回水干管上

的共20个加压泵承担。方案2,热源泵、热网泵和热用户泵各司其职,即热源

泵只承担热源内部的水循环,热网泵由供回水干管上的20个加压泵承担,热用

户泵由热用户各自的共10个加压泵承担资用压头的建立。方案3,热源泵单独

设置;热网泵与热用户泵合一,其功能由10个热用户泵承担。

上述三种设计方案的循环水泵的总功率(理论),根据特兰根定律,可按如

下公式计算:

N o =ΣG i ΔH i (1)

367

?=ηo N N kw (2)

式中,G i—供热系统各管段的流量,t/h;

ΔH i—供热系统各管段的压降损失,m水柱;

η—水泵效率,取70%;

N o—由特兰根定律计算的循环水泵总功率;

N—单位为kw的循环水泵总功率。

将计算结果绘制成相应的水压图。图0为传统方案,图1为方案1的水压图;图2为方案2的水压图;图3为方案3的水压图。表1给出了各方案的系统循环

注:0-30为供热系统各管段编号,0为热源,1-10为热用户

注:方案3+为方案3的变形,详述见后。

从图0-图3和表1,可以得出如下结论:

1.与传统方案(方案0)相比,方案1、方案2、方案3的循环水泵总功率皆由93.47kw下降为61.9kw,节电31.5kw,即节电33.8%。对比水压图,可以明显看出,方案1、2、3无论热源泵、热网泵和热用户泵,所提供的电功率全部在各自的行程内有效地被消耗掉,而没有无效电耗。亦即,方案1、2、3单从节电的角度考虑,都是优选方案。

2.观察方案1、方案2,可以发现:要想在热网干管上消除无效的输送电耗,必须在每个供回水干管上设置加压循环泵,此时,各干管上的加压泵扬程(3 mH2O)与该干管的压降相等;加压泵的流量与该干管输送流量也相等,从特兰根定律可知,各管段的电耗等于该管段压降与输送流量的乘积,因而干管加压泵提供的电功率正好全部用于该干管输送热媒时所需要的电耗,达到了在干管上输送热媒时没有无效电耗的目的。这同时也告诉我们,只要不是每个干管都加装加压泵,而只是在热网干线上设置有限数量的加压泵,必然产生无效电耗(虽然加压泵扬程与管线压降一致,但加压泵流量却大于管线实际输送流量)。从上述分析,可以明显看出:在实际工程中,要在热网供回水每个干管上都装加压泵,是很不现实的;不但从初投资考虑不经济,而且运行管理也很不方便,因此,方案1、方案2从全局考虑,不是最优方案。

3.从整体考虑,方案3是最优方案。该方案的特点是取消独立的热网循环泵。热源循环泵只承担热源内部的水循环,热用户循环泵既承担热网循环泵的热媒输送功能,又承担在热用户建立必要的资用压头的功能。在热用户(含热力站、热用户入口)设置热用户循环水泵,不但有节电的优越性,而且也比较经济,其初投资远比每个供回水干线上加装加压泵要少的多。从工程上考虑,其选址,占地等事项可与热力站、热入口一并解决,也比较方便。

与方案3还有类似的方案,如热用户的资用压头交由热源循环泵承担,热用户循环泵实际上只承担热网循环泵的功能;再如,完全取消热源泵,热源、热网和热用户循环泵的功能全由热用户循环泵承担,这些方案从技术、节能、投资等方面考虑都是可行的,但从运行管理角度考虑,由热用户操纵热源循环泵或是由热源管理热用户资用压头的建立,都不是很方便。因此,综合各种因素考虑,方案3分布式变频循环水泵系统是最佳方案,应加以大力推荐。

方案3,最大的特点是热用户循环泵承担了供热系统热媒的输送功能。该方案与传统方案比较,传统方案是将热媒在管道中“推着走”,最佳方案则是在管道中让热媒“抽着走“;反映在水压图上,最大的区别是,传统方案供水压力(供水压线)大于回水压力(回水压线);最佳方案则是回水压力(回水压线)大于供水压力(供水压线)。

4.当直连供热系统的供热规模较大时,在提高一次网供水温度同时,把方案3中的热用户循环水泵改为加压混水泵,既起加压泵的作用,又起混水作用,称为方案3+,其节电效果更好。参看表1可知,此时装机电容量为22.6kw,节电75.8%。这主要是因为在提高供水温度的同时,加大了一次网供、回水温差,进而降低了一次网循环流量,由于循环流量与电功率是三次方关系,所以节电效果更明显。方案3+的系统示意图和水压图见图4,其中一次网供水温度为95℃,回水温度70℃,二次网供水温度85℃,回水温度70℃,其混水比μ=2/3(即一次网流量18t/h,二次网混水量12t/h,热用户循环水量仍保持30t/h)。

注:一次供回水温度95/70,二次供回水温度85/70,混水比2/3。热源泵(0),扬程10 mH2O,流量180t/h;热用户加压混水泵(1-10)流量皆为30t/h;扬程依次为16m、22m、28m、34m、40m、46m、52m、58m、64m、70m。热用户回水混水量皆为12t/h,热用户供水量皆为18t/h。

二、系统的设计与运行

经过上述分析,方案3和方案3+为最优设计方案。在供热系统分布式变频循环水泵的设计与运行的讨论中,都以方案3和3+的系统形式为基础进行。

1.循环泵的选择

循环水泵的选择,主要是确定设计扬程和设计循环流量。对于热源循环泵,其设计扬程即热源内部水循环系统的总压力损失,包括锅炉、配套设备以及管路的压力损失之和。设计流量即为供热系统的总设计流量,取决于供热系统的总热负荷和供回水设计温度的取值。循环水泵扬程、流量一般不需要增加余量系数。

各热用户循环水泵设计流量,不论是加压泵还是混水加压泵,都按各热用户的设计流量选取。当一次网供回水设计温度与二次网供、回水设计温度不一致时,选用二次网供、回水设计温度进行计算。各热用户循环水泵扬程的确定,要在整个供热系统水力计算(计算方法全同传统设计方法)的基础上进行。具体步骤是:先确定各热用户的循环环路,如热用户1由管路1、11、21组成;热用户10则由管路10、11-20和21-30组成;……。在此基础上,分别计算各热用户所有组成管段的压力损失之和,其值即为该热用户循环水泵的扬程。

利用上述方法,对最佳方案3和3+的循环水泵进行了参数选择,计算结果由表2给出。其中方案3+的管段流量在表2中由括号内的数据显示。不难看出:方案3+比方案3更加节电,原因是各管段压降相同的情况下,其流量普遍减小所致。

2.最佳汇交点的确定

在供热系统分布式变频循环水泵的研究中,有人提出供热系统水压图最佳汇

7

从最佳方案3和3+的阐述过程,已经清楚地了解到:热源循环泵只承担热源内部的热媒循环,不再担任任何热网循环泵的热媒输送功能,此时循环泵才不再有多余的无效电耗,这是最佳方案。这说明:水压图最佳汇交点的位置是在热源出口处(见图2-4),其它任何方案都将产生无效电耗,因而是不经济的。可以看出:最佳汇交点的确定,与供热系统的供热规模、热负荷分布、系统形式都是无关的。

(图7中的d)装设均压管。均压管直径一般为相邻管段直径的三倍,目的是使其管内的压降接近为0,即均压管内为同一压力值,从而起到稳压的作用,借以减少管路间水力工况的相互干扰。

图7中的(a),适合于供热规模较大的系统,即外网管线较长,共用同一个供、回水干线。图中(b),适合于作用半径不大的公共建筑的供热、空调水系统。对于公共建筑,由于分系统较多,各自的供热、空调需求不同,特别期望系统工况稳定,尽量减少分系统之间的干扰。采用(b)图的连接方式,各分系统自成回路,由于均压管内的压力为同一数值,因此各分系统的共用点的压力相等,从而消除了各分系统由于工况变动引起的互相干扰。不难看出,这里的均压管,实际上起到了系统的解耦作用。这种连接方式,须敷设多条供、回水干线,虽然增加了初投资,但稳定了运行工况,对于作用半径不大的公共建筑,应是一种可行方案。图(c),适合于双泵系统,即将热源循环泵与热网循环泵分开设置的系统。这是传统循环水泵与最佳分布式变频循环水泵二者之间的一种过度方案。将热源循环泵与热网循环泵分开设置后,热网循环泵可以实现变频变流量调节,也有明显的节电效果。图(d),适合于热用户有混水加压作用的3+方案。在这种方案设计中,均压管上游端管段上安装有电动调节阀,借以调节混水加压循环泵的混合比。

一般在均压管上都安装有放气阀和泄水阀,有利于系统的维修。

5.变频补水定压的设计

图7中的(e)给出了带有均压管的热源处,进行变频补水定压的设计方法。在热源循环泵的出口处至均压管之间,安装定压旁通管(管经在DN25-DN40之间,视母管管经而定),其上装设压力传感器和手动平衡阀,压力传感器反映均压管的压力,手动平衡阀可调整均压管(即压力传感器)的压力值。该设计方案的指导思想是,将均压管的压力值调节控制为系统恒压点压力值,其目的,

在分布式变频循环水泵的最优方案中,由于基本上消除了无效电耗,没有多余的资用压头需要节流,其最大的特点是几乎很少选用流量调节阀。如果采用变流量调节,通常选用变频装置,依靠改变热用户循环水泵的转速来实现(包

括间接连接供热系统)从而可以免装大量电动调节阀,不但节电,而且节约投资。

在方案3、3+的最优方案中,为了提高热用户各室温的可调性,在每个散热器上必须安装的流量调节设备是恒温阀,除此之外,为了保证恒温阀的工作压差,可根据室内供暖系统的具体情况,在建筑物热入口可适当安装少量的手动平衡阀或自力式平衡阀亦或压差调节阀,借以节流10m水柱中的多余资用压头。

在方案3+中,混水加压泵不能调节混合比,因此,在均压管的上游管段上应安装电动调节阀,借以调节一次网的进水量,从而改变混合比,实现二次网供水温度的要求。

7.运行中的调节控制[3]

分布式变频循环水泵供热系统,为了充分节电,无论室内为双管系统还是单管系统(保证恒温阀在微调状况下运行,以降低节流损失)在运行中应该采用变流量(质量并调)调节方式。在整个供暖季,随着室外气温的变化,循环流量应在50-100%的设计流量下运行,经计算变流量运行可节电50%。这样,分布式变频循环水泵供热系统的总节电量(循环水泵装机节电量与运行节电量之和)为65-85%。

变频器的选择,采用通用型的,其功率应与循环水泵的电机功率相一致。控制器的选择,应根据相配套的循环水泵的不同功能而定:对于热源循环泵,选用只有变流量调节功能的控制器(也可与锅炉控制器合一);对于热用户(热力站)循环泵,则应选用具有质量并调功能的控制器。

变流量调节,采用变压差的调节方法:随着室外温度的变化,控制器根据设定压差的变化,改变电机频率,进而改变循环泵转速,达到变流量的目的;在室外温度不变的情况下,根据设定压差的偏离,进行变流量调节,适应热用户热负荷的变动需求。

热源循环泵进行变流量调节时,通常在定流量调节下用于调节锅炉循环水量的旁通管可以不用。当热源循环流量大于热网循环流量时,均压管内的流向与热源循环泵流向一致,否则,反向流动。各热用户循环泵工况不同,会有工况耦合影响,但有热源均压管的作用,可减小这种影响;这种影响将反映在各热力站设定压差的偏离上,通过各热用户循环泵的变流量控制而加以消除。

在热力站进行的质量并调中,首先改变二次网循环水泵转速,使循环流量与室外温度相一致;在此基础上,调节一次网的热用户循环水泵转速或电动调节阀的开度,使二次网供回水温度达到设定值,实现供热量的调节。

热源、热力站的系统定压,应优先采用变频补水定压方式。供热系统,应有关键参数的报警功能,特别应控制热网的供水压力不能过低,回水压力不能过高,否则系统发生倒空、压坏事故,影响正常运行。

参考文献:

[1]清华大学,石兆玉、李德英、王红霞“供热系统循环水泵传统设计思想亟待更新”《2004年全国供热技术研讨会论文集》

[2]北京建工学院,李锐“新型供热系统”《供热空调系统管理、节能、诊断技术指南》中国电力出版社,2004.1

[3] 清华大学,石兆玉“变频调速在供热空调中的应用”《供热制冷》2004.10

4.均压管的设计[2]

在供热系统的热源出口和方案3+的热用户混水加压泵前装设均压管,按图

威乐水泵变频使用说明书

威乐(中国)水泵系统有限公司 恒压供水变频控制柜恒压供水变频控制柜 操作使用操作使用说明说明 威乐威乐((中国中国))水泵系统有限公司

1.1.概述概述概述 安装及调试只能由有资质的人员进行。 1.1使用范围使用范围 WILO 变频恒压供水系统采用了交流变频调速技术及可编程序(PLC) 控制技术,采用结构化软件设计,构成了性能先进,合理可靠的电控产品。它可以取代水塔、高位水箱及传统的气压罐供水装置,适用于各种类型的水厂、加压站、饭店宾馆、居民小区等高层建筑的生活、生产供水。 1.2技术数据技术数据:: 电源要求:3相380V±10%,50HZ 控制电压:220VAC/24VDC 所控制水泵电机的最大额定功率:根据不同的水泵需要,选择不同的电机功率控制柜 保护等级: IP44(更高等级的需要注明) 环境温度: 0~40℃ 2. . 安全注意事项安全注意事项安全注意事项 安装和操作水泵时请严格遵守以下规定。在安装前请相关安装人员仔细阅读操作手册。请注意“安全提示”以及以下相关章节中危险符号所提示的内容,避免发生安全事故。 2.1危险符号危险符号 表示“小心触电” 注意注意!! 表示如果忽略有关安全规定,会造成水泵/部件损坏并影响其功能 2.2人员培训人员培训 人员必须经过培训合格后才能进行水泵安装。 2.3危险提示危险提示 不遵守操作规定会导致人员伤害和设备损坏;因违反操作规定致使设备人为损坏不在正常的保修范围内。 误操作可能引起很多问题,例如: —水泵及部件功能故障

2.4操作人员安全要求操作人员安全要求 请遵守现行的安全操作规定。 请检查电气方面的安全隐患。 请遵守当地电力公司发布的安全规定。 2.5安装和检修安装和检修 请用户确保安装和检修由专业人员完成,请专业人员仔细阅读操作手册。请勿对运行的水泵进行检修、安装等工作;而且需要有第二个人在场,确保发生事故时及时处理。。 2.6备品备件备品备件 为了确保安全性,建议使用原产备件,或经过WILO 生产商授权的其他厂家的备件。由于使用未经许可的生产商的备件造成设备损坏,本公司不承担维修责任和相关法律责任。 3.3. 运输与储存运输与储存 注意:系统必须防潮并严禁机械破坏与震动。 电气原件不能在0℃到40℃范围外工作。 接电装置避免与湿气接触,避免摇晃和碰撞,以免造成机械损坏。 4.4.控制系统基本工作原理控制系统基本工作原理控制系统基本工作原理 系统运行时,供水管网上压力变化,通过压力/压差传感器变成电信号,经PLC 自动调节变频器的输出频率,以达到改变泵速而稳定压力/压差的目的。同时,当压力/压差在调节过程中高于或低于一定界限时,通过PLC 控制器对电机进行循环开停,并具有工频与变频之间的自动切换,以保证大流量变化时压力恒定。 压力/压差 PLC 变频器 切换装置 电机水泵 供水 压力/压差变送 压力/压差检测 CC 变频控制柜结合各种类型的压力/压差或水位传感器来控制和监督多台泵的工作。将总的供水量分散在几台小容量的水泵上,控制器根据供水量的需求控制各台水泵的启动和关闭。这种供水方式的优点:更精确的满足变化的供水需求,并使各台水泵工作在其最佳的工作范围。从而使设备的运行即可靠又经济。

水泵及水泵站课程设计心得【模版】

水泵及水泵站课程设计 1基本设计资料 1.1 基本情况 本区地势较高,历年旱情比较严重,粮食产量低。根据规划,拟从附近河流扬水灌溉该区的10万亩农田,使之达到高产稳产的目的。 机电扬水灌区内主要作物有小麦、玉米、谷子和棉花等。灌区缺少灌溉制度,现参考附近老灌区的灌水经验,拟定出本灌区灌溉保证率为75%的灌溉制度。其设计灌水率如表1所示。 1.2地质及水文地质资料 根据可能选择的站址,布置6个钻孔。由地质柱状图明显的看出,3米以内表土主要是粘壤土,经土工试验,得到的有关物理指标为粘壤土的内摩擦角φ=35°,承载力为220kN/m2。 站址附近的地下水位多年平均在202.2m左右(系黄海高程)。 1.3气象资料 夏季多年平均旬最高气温34℃,春、秋季干旱少雨,年平均降雨量为524mm,降雨年内分配极不均匀,每年7、8、9月的降雨量占全年降雨量的80%以上。年平均无霜期为200天左右,多年平均最低气温为-8℃,最大冻土深度为o.44m。平均年地面温度为15℃,平均年日照时数为2600.4h。累积年平均辐射总量为527.4l kJ/cm,平均日照百分率为59 %。热量和积温都比较丰富,能满足一年两熟作物生长的需要。 1.4 水源 灌区南侧有一河流,是规划灌区的水源,其水量充沛。灌溉保证率为75 %时的河流月平均水位如表2所示。 达2l6.5m,夏季多年旬平均最高水温为20℃。 1.5其它 根据规划,为保证扬水后自流灌溉,出水池水位均不应低于234m。站址附近有8 kV高压电力线通过,已经有关部门批准,可供泵站使用。该地区劳动力充足,交通方便。除水泥、金属材料以及泵站建设中所需的特殊材料外,当地可提供砖、石、砂、瓦、木材等建筑用材。 根据机电设备的运行特性,每天按20h运行设计。

循环水泵操作规程(正式)

循环水泵操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、主题内容及适用范围 本规程规定了轻烃站冷却循环水泵的操作步骤及注意事项。 二、启动前准备工作 1、检查电路系统,电源电压是否正常。 2、检查泵机油盒内机油是否在机油看窗1/2处。 3、检查泵出口阀门及备用泵的出口阀门是否关闭,打开泵进口阀门。 4、排出泵内气体。

三、启泵及运行中的检查 1、合上泵电源开关,按启动按钮,使泵运转。 2、当泵出口起来泵压后,慢慢打开泵出口阀门。 3、正常运转后,定时检查泵的运转声音、机油油位、泵压。 四、倒泵 1、启动备用泵按照启动泵前的准备工作做好后,按备用泵启动按钮。 2、备用泵出口起来泵压后,慢慢打开泵出口阀门。 3、关闭已运行泵的出口阀门,按停止按钮,使运行泵停止运转。 4、切断备用泵电源。

五、停泵 1、关闭泵的出口阀门。 2、按停止按钮,切断泵电源。 请在这里输入公司或组织的名字Please enter the name of the company or organization here

ABB变频器选型

零部件2冷却循环水增容工程技术要求 1. 需满足如下最新版本的法规要求(以2015年04月2日前最新版本为准): 1.1《给水排水制图标准》GB/T50106-2001 1.2《建筑给水排水设计规范》GB50015-2003 1.3《通风与空调工程施工及验收规范》GB50234 -2002 1.4《工业金属管道工程施工及验收规范》GB50235 -97 1.5《工业设备及管道绝热工程施工及验收规范》GBJ126 -89 1.6《建筑给排水与及呆暖工程施工质量验收规范》GB50242-2002 1.7《制冷设备、空气分离与设备安装工程施工及验收规范》GB50274-98 1.8《机械设备安装工程施工及验收通用规范》GB50231-98 1.9《建筑内部装修设计防火规范》(GB50222-95) 1.10《民用建筑电气设计规范>(JGJ/T16-92) 1.11《供配电系统设计规范》(GB50052-95) 1.12《低压配电设计规范》(GB50054-95) 1.13《电气装置安装工程接地装置施工及验收规范》GB50169-2006 2. 零部件2冷却循环水增容工程范围试验室为上下两层, 一层面积:长:84m 宽:74m 二层面积:长:84m 宽:44m 主要工程包含:现有系统报废,提供全套全新的冷却水系统。 核算工程量、出具工程图(管道路线)、核算工程耗时(必须停产与不停产时长)、工程费用(包含主要部件选用品牌、选用型号、单项价格)、细节处理等信息。 工程目标:达到试验室120 方/小时冷却水的需求。 用水点位及用水量下文描述,主要施工部位:

2.1一层泵房位置图(白色圆形标示) 2.2一层用水点位置图(4 处,白色圆形标示)

《泵与泵站》课程设计—取水泵站的设计DOC

目录 一、设计说明书 (1) <一>工程概述 (1) 二、设计概要 (1) 三、设计计算 (2) <一> 设计流量的确定和设计扬程估算: (2) <二>、初选泵和电机 (3) <三>、吸水管路的设计 (7) <四>、压水管路的设计 (8) <五>、水泵间布置 (9) <六>水泵房安装高度 (11) <七>辅助设备设计 (13) 四、参考文献 (15)

泵与泵站课程设计 一、设计说明书 <一>工程概述 (一) 工程概括 市因发展需要,原有的第一水厂已不能满足居民的用水要求,因此,规划设计日产水能力为9.5万m3的第二水厂,给水管线设计已经完成,现需设计该水厂取水泵房。 (二) 设计资料 市新建第二水厂工程近期设计水量为85000m3/d,要求远期发展到95000m3/d,采用固定取水泵房用两条直径为800mm的自流管从江中取水。水源洪水位标高为38.00m,枯水位标高为24.60m。净水构筑物前配水井的水面标高为57.20m,自流取水管全长280m,泵站到净化场的输水干管全长1500m。自用水系数α=1.05~1.1,取水头部到泵房吸水间的全部水头损失为10kPa,泵房底板高度取1~1.5m。 二、设计概要 取水泵站在水厂中也称一级泵站.在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。本次课程设计仅以取水泵房为例进行设计,设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,所以用远期的容量及扬程计算。对于机组的配置,我们可以暂时只布置三台500S59A型水泵(一台备用,两台工作),远期需要扩建时,再增加一台同型号的水泵。

五二五循环泵说明书

LC系列高效烟气脱硫循环泵 安装使用说明书 注意 □请仔细阅读本说明书,理解各项内容,以便能正确安装、运行、操作和保养维护等。 □本说明书应保存在实际最终使用人的手中。 □开车前必须重新调试泵的安装状态,并由泵生产产家确认 □本产品技术规范可能发生变化,恕不另行通知。

襄樊五二五泵业有限公司 公司简介 襄樊五二五泵业有限公司原为中国兵器工业集团五二五厂所属企业,一九九九年九月改制为有限公司。公司注册于襄樊(国家级)高新技术产业开发区。 湖北省高新技术企业,ISO9001质量体系认证企业,中国通用机械泵行业协会会员,中国磷肥、硫酸工业协会会员,中国化工装备总公司供货定点企业。公司现有资产总额3000万元,员工200多名,专业技术人员50余人。 三十多年来我公司坚持自主开发和引进技术相结合,引进了法国公司的LC系列泵专有制造技术,并在引进技术的基础上,适应市场需求,自主开发了多种泵型。 公司生产的主要产品有:LC系列卧式离心泵、LC系列高效烟气脱硫循环泵、PLC系列立式离心泵、LC-T系列渣浆泵、PLC-T系列立式渣浆泵、LH系列重型渣浆泵、FYL系列悬臂立式离心泵、IHE系列化工流程泵、LB系列化工流程泵、IHZ系列化工自吸泵、HZ系列化工轴流泵、LHZ系列立式轴流泵、MECP系列混流泵、S型系列双吸泵、LSD系列高温浓硫酸泵以及截止阀、球阀等近两百种规格。生产的材料有1Cr18Ni9Ti、304、304L、316、316L、Mo2Ti、904(UB-6)、C4、Cr30A、2605N、CD4MCu、DF2、MM-4、K合金、SS920、20#合金、哈氏合金、蒙乃尔合金等二十多种。产品广泛用于化工、化肥、冶金、矿山、火电、医药、造纸、污水处理等行业。同时能根据用户的要求,提供大、中型不锈钢铸件和耐磨材料铸件,并承接来图加工制作。 主要技术装备:采用美国亚什兰工艺PEPSET树脂自硬砂造型生产线、采用中频炉熔炼,最大铸件重量可达吨、采用光谱分析仪和红外碳硫分析仪对钢水进行快速分析、热处理炉采用电子程序控制、泵的转子采用动平衡测试技术、符合 ISO2548要求的B级精度的泵性能测试系统、采用计算机辅助设计。 我们的宗旨是:专注用户需求,提升用户效益。

抽水泵的PLC控制系统设计

河北化工医药职业技术学院 毕业论文(设计) 题目抽水泵的PLC控制系统设计 姓名谢松海 系别机电工程系 专业机电一体化技术 年级机电1204班 指导教师胡玉才 2014年 12 月 3 日

目录 摘要 (2) 第一章煤矿井下排水泵自动控制系统的工作原理及组成 (3) 第一节概述 (4) 第二节工作原理 (4) 第三节系统组成 (5) 第二章控制系统结构设计 (7) 第一节系统总体结构 (8) 第二节控制系统网络设计 (8) 第三节控制系统功能设计 (8) 第四节控制系统可靠性设计 (10) 第五节控制系统程序设计 (10) 第三章 PLC井下排水自动控制系统 (13) 第一节 PLC井下排水自动控制系统技术 (13) 第二节 PLC井下排水自动控制系统分层 (14) 第三节影响PLC控制系统稳定的干扰因素 (16) 第四节 PLC控制系统的抗干扰措施 (16) 第四章结束语 (17) 参考文献 (18) 致谢 (19)

摘要 基于PLC的矿井排水监控系统现场控制部分是为了煤矿安全和正常生产而进行的各种有关参数或状态的集中监测,并对有关环节加以控制,是保护、采掘、运输、通风、排水等主要生产环节安全运行的重要设施。本文主要介绍了一种基于西门子S7-300 PLC的煤矿井下排水泵自动控制系统的设计方法和思路。西门子S7-300 型PLC 给出了煤矿井下排水系统的传感器及执行机构的配置方案、通信网络结构和系统功能设计,实现了对水泵进行自动控制,水位监测、自动启停水泵、故障自诊断等功能;同时也实现了水泵运行的合理调度,提高了设备利用率,达到了节能增效的效果,并能与上位机通讯,实现远程控制和在线监测,提高了煤矿自动化水平和安全性。 关键词水泵 PLC 自动控制利用率远程控制

变频水泵控制柜的选型说明

变频水泵控制柜的选型说明 变频水泵控制柜系统通过测到的管道压力,经变频器系统内置的PID调节器运算,调节输出频率,然后实现管网的恒压供水。变频器的频率超限信号(一般可作为管网压力极限信号)可适时通知PLC的进行变频泵切换。为防止水锤现象的产生,泵的开关将联动其出口阀门。 变频水泵控制柜工作原理如下: 各类直接从市政管网进水的水池(箱)。如:各类建筑的地面蓄水池的进水,地面锅炉的冷水补水,地面空调系统冷却水循环水池的补水,地面热水循环水池的补水,消防和喷淋专用地面蓄水池的进水.智能变频恒压供水节能控制柜,变频供水节能控制柜假设整个系统由四 台水泵,一台变频器,一台PLC的和的PID和一个压力变送器及若干辅助部件构成。各部分功能如下:安装于供水管道上的压力变送器将管网压力转换成1-5伏的电信号;变频调速器用于调节水泵转速以调节流量;PLC的用于逻辑切换。 此外,上述系统还配备了外围辅助电路,以保障自动控制系统出现故障时可通过人工调节方式维持系统运行,保证连续生产。 特点 根据水池(箱)内水位的高低自动控制电磁阀(或电动阀)的启闭,以控制水箱(池)的进水并使水池(箱)自动保持一定水量供用户使用。 选型说明 变频水泵控制柜主要由变频控制箱,压力传感器,水泵等组成。变频控制柜由断路器,变频器,接触器,中间继电器,PLC的等组成。 1、变频水泵控制柜系统选用原则 2、水泵扬程应大于实际供水高度。 3、水泵流量总和应大于实际最大供水量。

变频水泵控制柜选型:用户可根据供水量和供水高度确定水泵型号及台数,然后对控制柜进行选型。 结论 一个质量较高的变频控制箱,从设计,工艺,制作制造,运输,包装,是实际要求较高的产品,要求各个环节质量保障,才能作出较高质量和水平的控制柜。

循环水泵安全操作规程示范文本

循环水泵安全操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

循环水泵安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、严格执行安全操作规程,禁止违章操作。 2、开停机一定要经过本厂调度通知,方可执行操作。执 行完命令,后应向调度汇报情况,并做好记录。 3、开机前应作好各项准备工作,检查好各进出水阀们的 启闭情况是否在要求状态,水池水位是否正常,各备用机组是 否处于良好的备用状态。 4、运认真做每小时的设备巡检工作,并做好各项参数记 录。 5、员工进行设备巡检时,应按规定正确穿戴好个劳保用 品。 6、电机设备在运行中不得用水冲洗或带湿的抹布檫 洗,以避免漏电、触电等事故。

7、旋转设备运行中尽量避免靠近转动的裸露部分。 8、开停机要严格执行监护制度,保证有一人操作,一人监护。 9、认真做好各供水系统的运行监控,发现异常应及时汇报、处理。 10、如遇突然断电的情况,应严格按照紧急事故处理预案进行处理。 11、低压配电柜严禁带电清扫、除灰,非专业电器人员严禁拆卸。 12、夜间上水池点检、补水应带好照明设备,并注意安全。 13、高速过滤器反洗排污时,必须先联系好铁沉淀池值班人员,到位才能进行反洗排水。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

抽水泵的PLC控制系统设计方案

抽水泵的PLC控制系统设计 方案 1.1 概述 随着计算机控制技术的迅速发展,以微处理器为核心的可编程序控制器(PLC)控制已逐步取代继电器控制,普遍应用于各行各业的自动化控制领域。当然煤炭行业也不例外,但是目前许多矿井下主排水系统还采用人工控制,水泵的开停及选择切换均需人工完成,完全依赖于工人的技术、经验和责任心,也预测不了水位的增长速度,做不到根据水位和其他参数在用电的峰谷期自动开停水泵,这将严重影响煤矿自动化管理水平和经济效益,同时也容易由于人为因素造成各种安全隐患。 在煤矿矿井建设和生产过程中,随时都有各种来源的水涌入矿井,为保证煤矿的生产安全,必须及时将涌出的矿井水快速地排放到地面,矿井排水设备不仅要排除各时期涌入矿井的水,而且在遭到突然涌水的袭击有可能淹没矿井的情况下,还要抢险排水,因此煤矿主排水系统能否正常运行直接关系到矿井的安全生产。因此,矿井排水设备是煤矿建设和生产中不可缺少的,排水泵的安全可靠运行对保证矿井安全生产起着非常重要的作用。 目前,矿井排水系统普遍采用人工操作,存在着人员劳动强度大、电机启停时间长、水泵运行效率低等诸多问题,如何实现煤矿井下排水泵的自动控制和无人值守,并满足煤矿生产调度综合自动化的要求,便成为当前急需解决的问题。针对当前煤矿排水系统的实际情况,本文提出一种实现煤矿井下主排水系统的设计方案,并对其工作原理和结构做一扼要介绍。 1.2 工作原理 煤矿井下排水泵自动控制系统通过检测水仓水位和其它参数,控制水泵轮流工作与适时启动备用泵,合理调度水泵正常运行。系统通过触摸屏以图形、图像、数据、

文字等方式,直观、形象、实时地反映系统工作状态以及水仓水位、电机工作电流、电机温度、轴承温度、排水管流量等参数,并通过通讯模块与综合监测监控主机实现数据交换。该系统具有运行可靠、操作方便、自动化程度高等特点,并可节省水泵的运行费用。 1.3 系统组成 整个自动控制系统由数据自动采集、自动轮换工作、自动控制、动态显示及故障记录报警和通讯接口等5个部分组成。 (1)数据自动采集与检测 数据自动采集与检测主要分为两类:模拟量数据和数字量数据。 模拟量检测的数据主要有:水仓水位、电机工作电流、水泵轴温、电机温度、3趟排水管流量;数字量检测的数据主要有:水泵高压启动柜真空断路器和电抗器柜真空接触器的状态、电动阀的工作状态与启闭位置、真空泵工作状态、电磁阀状态、水泵吸水管真空度及水泵出水口压力。 数据自动采集主要由PLC实现,PLC模拟量输入模块通过传感器连续检测水仓水位,将水位变化信号进行转换处理,计算出单位时间不同水位段水位的上升速率,从而判断矿井的涌水量,控制排水泵的启停。电机电流、水泵轴温、电机温度、排水管流量等传感器与变送器,主要用于监测水泵、电机的运行状况,超限报警,以避免水泵和电机损坏。PLC的数字量输入模块将各种开关量信号采集到PLC中作为逻辑处理的条件和依据,控制排水泵的启停。 在数据采集过程中,模拟量信号的处理是将模拟信号变换成数字信号(A/D转换),其变换速度由采样定律确定。一般情况下,采样频率应为模拟信号中最高频率成分的2倍以上,这样经A/D变换的精度可完全恢复到原来的模拟信号精度。A/D变换的精度取决于A/D变换器的位数。如5V电压要求以5mV精度变换时,精度为5mV/5V=0.1%,即 1/1000十进制的1000用二进制表示时要求为10位,而本系统所采用的A/D模块分辨率为16bit,其精度在±0.05%以上,该精度等级足以满足控制系统要求。同时,PLC所采用的A/D模块均以积分方式变换,可使输入信号的尖峰噪音和感应噪声平均化,适用于噪音严重的工业场所。

《泵与泵站》课程设计—取水泵站的设计

一、设计说明书 <一>工程概述 (一) 工程概括 市因发展需要,原有的第一水厂已不能满足居民的用水要求,因此,规划设计日产水能力为9.5万m3的第二水厂,给水管线设计已经完成,现需设计该水厂取水泵房。 (二) 设计资料 市新建第二水厂工程近期设计水量为85000m3/d,要求远期发展到95000m3/d,采用固定取水泵房用两条直径为800mm的自流管从江中取水。水源洪水位标高为 38.00m,枯水位标高为24.60m。净水构筑物前配水井的水面标高为57.20m,自 流取水管全长280m,泵站到净化场的输水干管全长1500m。自用水系数α=1.05~1.1,取水头部到泵房吸水间的全部水头损失为10kPa,泵房底板高度取1~1.5m。 二、设计概要 取水泵站在水厂中也称一级泵站.在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。本次课程设计仅以取水泵房为例进行设计,设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,所以用远期的容量及扬程计算。对于机组的配置,我们可以暂时只布置三台500S59A型水泵(一台备用,两台工作),远期需要扩建时,再增加一台同型号的水泵。 三、设计计算 <一> 设计流量的确定和设计扬程估算: (1) 设计流量Q 为了减小取水构筑物、输水管道各净水构筑物的尺寸,节约基建投资,在这种情况下,

循环水泵操作说明

循环水泵操作规程 1、 性能参数: 水泵型号:KQSN450-N13/502(T) 扬程:60m 流量:2430 m 3/h 电机功率:560KW 转速:1480 r.p.m 电机电压:10000v 额定电流:39.91A 冷却塔:NBTL-3000型 冷却水量:2500 m 3/h 冷却水最大温差:10℃ 冷却塔风机:P=160KW U=380V 重力无阀过滤器流量:150 m 3/h 2、 启动水泵前的准备工作确认:确认水泵检修安装完毕,水泵与电机的 对中已经调教完毕,联轴器防护罩安装就位,地脚螺栓紧固,测量元件投入正常使用,各法兰连接处无漏水现象,水泵机体和电机周围杂物清理干净,积水坑无杂物,污水泵能够连续运行正常;循环水系统正常生产时三台水泵为两用一备,供两套制氧机的循环冷却水,如果只运行一套制氧机,启动一台水泵就可以满足生产需要,为了保证ASU 安全稳定运行,按以下规程去操作。 3、 水泵启动前的准备的工作: (1)、确认水池水位的高度满足循环水泵启动要求,确认水泵入口阀 V8461A/B/C 打开,对水泵壳体排放阀进行排气,直到有水流出、没有气泡为止。 (2)、对水泵进行盘车,应转动灵活,无卡阻现象 。 (3)、通知电工对水泵的出口电动阀门做空投试验,运行操作工到现场确 认,检验阀门的工作性能,包含手动和自动两种状态。将电动出口阀转换为手动状态,开度分别为15%、25%、50%、75%、90%,观察该阀是否灵敏好用,如有问题,找相关专业人员及时处理 ;并将该阀门处于手动状态 。 4、 水泵的启动 :

循环水泵操作规程 (1)、缓慢打开没有投入使用的玻璃钢冷却塔上水阀门,将水导入玻璃钢 冷却塔,这时水压会有一定的下降,根据压力下降情况 调节该阀门的开度,上水总管压力PI9001不能低于230 KPa. (2)、通知电工送电。 (3)、联系值班长,听从班长指令可以启动。 (4)、观察水泵的电流、检测电机和水泵轴承的温度、并听运转音是否 正常。 (5)、观察水压上升情况,及时调整水压,打开需要循环水设备 冷却器 上、回阀门,并与水泵的出口电动阀配合调节,保证水压PI9001不得高于450 KPa ,水压过高将导致冷却塔喷头损坏。 (6)、根据水温变化情况,当 上水温度高于30℃,启动轴流风机。 5、水泵停止操作:接到班长停止或倒换水泵通知后,确认运行水泵的流 量、压力能否满足现在运行设备循环冷却水的要求。 (1)、DCS 控制室中,由工艺工程师、仪电人员对运行设备的循环水流量 和压力解除停车联锁,目前空压机的水压停车联锁为80KPa 。 (2)、关小预停止水泵的出口电动阀,适当关小不需要循环水设备冷却器 上、回阀门,调节循环水压力,保证水压PI9001不得高于400 KPa 。 (3)、停止水泵运行,注意观察水压PI9001不能低于250 KPa 。 (4)、观察水压是否有变化,如果发现水泵倒转,立即关闭入口阀门。 (5)、关闭循环水去玻璃钢凉水塔上水阀门,保证水压PI9001在正常的工 作压力330 KPa 。 (6)、停止玻璃钢凉水塔的风机。 (7)、调节水压满足运行设备要求。 6、凉水塔风机的启动: 启动前的准备工作: 检查齿轮油箱油位满足启动要求,仪表测量轴温和轴振动已经投入,可以正常使用,确认风机的叶片没有异物缠绕,联轴杆周围无杂物,可以启动。 启动: (1)通知电工送电,现场运行工到凉水塔风机的操作柜旁进行就地启动。 (2)再次确认玻璃钢冷却塔风机罩内没有人员。 (3)将开关按扭旋转到运行状态,确认风机启动,检查声音和震动是否正常。

基于PLC抽水泵控制系统设计

摘要 单幢次高层和高层建筑的高压供水区较多采用该种方案。一般也需要设计有一座地下水池,通过两台水泵抽水送至高水箱,再由高位水箱向下供水至各用水点。现在比较常用的水箱供水方式。水泵控制柜采用最简单的电器元器件,如出现故障,普通的电工就能维修,而且元器件的费用也低。再加上有高位水箱,不会造成一停电就停水,供水保障率高。具有稳压作用,使冷热水系统水压保持平衡,方便洗浴。由于以上诸多原因,目前绝大多数高层建筑采用高位水箱给水方式,尽管高位水箱存在增加建筑荷载和防止生活用水受到二次污染的问题。 为了保障供水可靠性,生活水泵分为工作泵和备用泵,工作泵发生故障时,备用泵应能自动投入使用。为了防止一台泵长时间运行,需设定运行时间。当时间到时,自动切换到下一台泵,以防止泵长时间不用而锈死,要有完善的保护功能。 关键词:水泵、给水系统、PLC、自动控制

Abstract Life water supply system of modern architecture is an important part of the whole building is indispensable, for the one or two layer is the business groups housing, housing built group of various residential buildings, there are many with the water supply scheme. The general design of underground pool a, concentrated frequency constant pressure water supply, no roof water tank, the water is not the top residential. The main pump generally have three, two open a switch, the auxiliary pump is a small flow pump, water pump during the night hours automatically switch to pay the pump, to keep the system pressure basically unchanged). The main disadvantage of pressure tank is pressurized tank volume is small, can not meet the fire water storage problems, generally as a regular pressure equipment of fire water supply system, water supply is generally used for high-rise building pressure when the water pressure is insufficient, the minority floor. In order to guarantee the reliability of water supply, pump life into working pump and standby pump, when the pump failure, the standby pump should be able to automatically put into use. In order to prevent the pump long time operation, set the running time. When the time comes, automatic switching to a pump to prevent pump, long time and rust do not die, must have perfect protection function. Key words:Water pump、water-supply system 、PLC、Automatic control、

浅谈变频恒压供水系统中水泵选择

浅谈变频恒压供水系统中水泵选择 目前,供水行业中经常用到无负压给水设备和变频恒压给水设备,以上两种设备的基本原理都是根据供水系统的压力变化(对应流量变化)。利用变频器调节执行单元(水泵、电机)的转速,达到恒压供水目的(f1:f2=n1: n2= Q1: Q2=H12: H22。该系统中,执行单元是系统中主要工作消耗能源的设备及主要影响系统综合性能的设备之一。泵的选择合理与否则直接影响到系统的两个重要指标: 一、运行费用——耗电量及出水量。 二、使用维护成本——设备使用寿命,日常维护费用。 所以,在变频恒压供水系统中,水泵的选择至关重要。 变频恒压供水系统中水泵的选择必须考虑以下几方面: 1.流量、扬程,满足系统设计的供水要求,泵的基本参数合理与否是系统供水功能的基本保障。 2.水泵配电机的供电要求必须满足使用地供电情况。 3.尽量选择高效率水泵,由于变频恒压供水为不间断供水,运转时间长,水泵在该系统中又是主要耗能单元,高效率的水泵选择是系统节能理念的根本保证。 4.性能曲线(Q-H线)选择较陡峭的水泵。 变频恒压供水主要是通过水泵转速的变化来调节因用水量变化带来的压力变化,使压力恒定、平稳,性能曲线陡峭的泵相对于性能曲线平稳的泵在转速、流量发生变化压力恒定时频率的调节幅度大,选择性能曲线陡峭的水泵在变频恒压给水系统中满足不同用水量的变化更加节能。 5.选择使用寿命相对长的水泵。水泵作为能量转换工作单元,本身就是易损坏,高维修保养的部份。高品质的水泵关系到整个系统的使用寿命,直接影响使用成本。 6.选择维修维护简单的水泵 一般设备将交到物业公司管理,物业公司的维修技术力量不强,不方便维修或维修技术要求高的水泵会增加使用成本,特别是零部份互换性差的水泵更会增加日常的维护成本。 其它如:使用环境对防护等级及噪音要求等根据实际情况加以考虑。 以下为典型不能用于变频恒压供水系统中的水泵实例: 一、填料密封水泵 该类水泵启动转矩大,变频启动的启动转矩小,使用中经常会使变频器报故障,并且使用中密封耗能量大,也不节能。 二、屏蔽泵 1.该泵效率相对于单端面机械密封离心泵低,一般不会高于60%。 2.变频恒压供水系统流量是变化的,经常会出现长时间小流量供水,如夜间及其他供水各区,屏蔽泵在长时间小流量情况下运转,由于其效率低,会导致发热,使液体蒸发,而导致干转,从而损坏滑动轴承或过热后烧毁电机。 3.屏蔽泵为单级泵,性能曲线较为平坦,压力恒定,流量发生变化要求的转速变化不大,

单相、三相变频水泵(变频离心泵、变频增压泵)选型手册

变频水泵(变频离心泵、变频增压泵)选型数据手册概念及用途 变频水泵(又名变频离心泵、变频增压泵)表示用单相/三相交流变频器驱动并实时调节水泵转速以实现恒压供水一类水泵设备的统称。一般习惯性的称只有一台水泵的变频水泵机组为变频水泵;两台或两台以上水泵的变频水泵机组为变频供水设备。变频水泵是新一代全自动增压泵的典型代表产品,其具备全自动运行、恒压、清洁卫生、低噪音低震动、节能环保、使用寿命长、保护功能齐全、操作和维护简便等系列优点,被广泛用于各种城镇大中小规模建筑大厦、工农业生产制造、农业/园林灌溉等需要二次供水增压并且需要恒压自动给水的场合。以下分别介绍几种常规的卧式和立式变频水泵的特点及性能范围: 变频水泵分类 1、根据材质不同分为铸铁变频水泵和不锈钢变频水泵; 2、根据泵结构不同分为立式变频水泵和卧式变频水泵; 3、根据变频器的输入电源不同分为单相变频水泵和三相变频水泵; 4、根据水泵台数不同分为单控式变频水泵和变频供水设备(行业一般习惯性的称只有一台水泵的变频水泵机组为变频水泵;两台或两台以上水泵的变频水泵机组为变频供水设备)。 如图1,分别为卧式变频水泵、立式变频水泵和变频供水设备机组实拍图技术指标 水泵台数通常1-5台不等 必备功能全自动、恒压、压力可调 流量范围1-500m3/h 扬程范围10-250m 压力范围0.1-2.5Mpa 功率范围0.37-45Kw 进出口径DN25-DN300 主体材质铸铁或SUS304不锈钢 介质温度0-100℃

推荐产品一:JWS-BL卧式全自动恒压变频水泵(单控式) 整体介绍 JWS-BL卧式全自动变频水泵是新一代卧式结构的小型恒压供水系统,主要由卧式多级不锈钢离心泵、单相/三相交流变频器、传感器、阀门和稳压罐组成。具有全自动、恒压调速、压力可自由设定、304不锈钢清洁卫生、低震动低噪音、工作效率高、节能环保、操作简便、维护维修方便等系列优点。 功能特点 全自动。变频水泵全自动运行启停是必须具备的基本功能之一,并且是基于差量补偿的运行模式。 清洁卫生。主体材质为SUS304食品级不锈钢制造,确保了对水质的二次污染甚微。 恒压。基于闭环控制的PID控制系统,出水压力趋于恒定,管道出水口水压绝不会一大一小。 自由调节压力。无论你需要多少压力,只要在泵的性能范围内,压力都是可以随意调节。 低噪音。新一代轻型卧式多级离心泵增压,变频调速优化输出,设备无论是震动还是噪音都较小。 节能环保。基于差量补偿运行机制,差多少补多少,大大减少了无用功的输出,节能环保。 性能范围(详细数据查阅数据手册) 输入电压单相220V/50-60Hz、三相380V/50-60Hz 水泵台数1台 流量范围1-30m3/h 扬程范围10-55m 压力范围0.1-0.55Mpa 最大耐压 1.0MPa 功率范围0.37-3.0Kw 电机转速0-2900r/min 进出口径G1-G2 主体材质SUS304不锈钢 防护等级IP55 介质温度0-104℃

泵与泵站课程设计讲解

泵与泵站 课程设计 学院:土木工程与建筑学院 专业:给水排水工程 学号:100607134 姓名:蔡振刚 指导教师:覃晶晶 完成日期: 2013年1月7日

目录 1.用水量计算 (3) 2.泵站设计控制值出水量及扬程的确定 (3) 3.动力设备的配置 (8) 4.水泵机组的基础计算 (8) 5.泵站机组的布置 (11) 6.吸水管和压水管的设计 (12) 7.水泵安装高度的计算 (15) 8.泵站平面、高程布置及尺寸的决定 (17) 9.泵站内主要附属设备的选择 (18) 10.泵房建筑高度和平面尺寸 (20) 11.二级泵站平面图及剖面图 (20)

《给水泵站课程设计》任务书 一、设计题目 武汉市某净水厂给水泵站设计。 二、原始资料 该水泵站为武汉市开发区净水厂的二级泵站,用以满足武汉市开发区的生产、生活、消防用水需求。 1.用水量资料 用水部门 平均日 用水量(t/d) 用水 时间 (h) 时变化 系数 ( k h) 日变化 系数 (k d) 最高日最高时 用水量 (l/s) 工厂甲1900 2400 24 1.7 1.3 工厂乙4400 4000 24 1.6 1.2 居住区甲2000 1500 18 1.5 1.3 居住区乙4500 5500 18 1.4 1.2 2.扬程计算资料 供水区域内各处标高(m)为: 工厂甲44.2;工厂乙46.0(46.5);小区甲42;小区乙43.4;水泵房处设计地面标高42。 水厂内吸水池最高水位41;吸水池最低水位37(38); 最高日最高时管网水头损失为21(16)米,管网最不利点的自由水头为16米。 3.消防用水量 消防时,按两处同时着火计,q f=60l/s。城市给水系统采用低压消防,即城市管网最不利点的自由水头为10米。消防时管网水头损失为40米。 三、给水泵站设计内容及步骤 1.设计流量的确定和设计扬程估算; 2.初选水泵和电机; 3.机组基础尺寸的确定; 4.吸水管路与压水管路计算; 5.机组与管道布置; 6.吸水管路与压水管路中水头损失的计算; 7.水泵安装高度的确定和泵房筒体高度计算; 8.附属设备的选择; 9.泵房建筑高度的确定; 10.泵房平面尺寸的确定。

循环水泵安装使用说明书

88LKXA-17型泵 安装使用说明书 88LKXA-17 SM 长沙水泵厂有限公司 二○○四年九月

目录 致用户 (1) 泵资料单 (2) 主要零部件大约重量 (3) 第一章概述 (4) 1.一般说明 (4) 2.型号说明 (4) 第二章结构说明 (4) 1.泵的组成(参见泵结构图) (4) 2.泵主要零件说明 (4) 3.润滑与密封 (5) 3.1 泵轴承的润滑与冷却 (5) 3.2 密封 (6) 第三章安装 (6) 1. 安装前的准备 (6) 2. 安装过程 (6) 2.1 泵壳部分的安装 (6) 2.2 可抽部分的安装 (6) 2.3 泵盖板、导流片、填料部件的安装 (8) 2.4 泵联轴器的安装 (8) 2.5 电机支座和电机的安装 (8) 2.6 转子调整 (9) 2.7 填料的安装 (9) 2.8 完成其他安装工作 (10) 第四章运行 (11) 1.运行前的准备 (11)

2.启动与停车 (11) 3.启动与停车方法 (11) 4.运行注意事项 (11) 5.停车注意事项 (12) 6.事故停机 (12) 第五章运行、维护、检修 (12) 1.运行日誌 (12) 2.运行检查 (12) 3.拆卸 (12) 4.零件检查 (13) 5.运行间隙 (13) 6.泵的维修 (13) 7.泵停用期维护 (14) 8.常见故障、原因及措施 (14) 9.附图清单: (15)

致用户 衷心感谢贵单位使用长沙水泵厂有限公司生产的88LKXA-17型水泵,为了使贵单位在使用此泵时不出现意外事故,请在使用前仔细阅读此说明书。并请将此说明书收藏好,今后检修泵时还需要用上它。 通读说明书,您将会遇到警惕、小心、注意等词,其目的是为了操作者的安全及泵能令人满意地运行和保养而强调的某些应当注意的地方。 警惕:有关的操作程序、施工等部分,如果不正确的遵循这些规程,将有可能导致人身伤害或生命危险。 小心:有关的操作程序、施工等部分,如果不严格地遵守这些规程,将有可能导致设备损坏。 注意:有关的操作程序、条件等部分,就其重要性进一步强调一下,这对任何人都是有好处的。 警惕 为了操作者的安全起见,设备不能超出铭牌所示情况运行,否则将导致设备发生故障,从而有损泵及其辅助设备的正常运行和保养。 警惕 在任何情况下,不能用吸入喇叭管作为泵的支撑或利用它作类似的用途。

相关文档