文档库 最新最全的文档下载
当前位置:文档库 › 绝对值不等式练习题

绝对值不等式练习题

绝对值不等式练习题
绝对值不等式练习题

绝对值的不等式练习

班级 学号 姓名

1.不等式243<-x 的整数解的个数为( )

A 0

B 1

C 2

D 大于2

2.若两实数y x ,满足0+ C y x y x -<-D x y y x -<+

3.已知0,<+>b a b a ,那么( ) A b a > B b a 11> C b a < D b

a 11< 4.不等式13-<-x x 的解是( )

A 52<

B 36≥x

C 2>x

D 32≤

5.已知,b c a <-且,0≠abc 则( )

A c b a +<

B b c a ->

C c b a +<

D c b a ->

6.不等式652>-x x 的解集为( ) A 1{-x B }32{<x

7.若1lg lg ≤-b a ,那么( )

A b a 100≤<

B a b 100≤<

C b a 100≤<或a b 100≤< D

b a b 1010≤≤ 8.函数22--=x x y 的定义域是( )

A ]2,2[-

B ),2[]2,(+∞--∞

C ),1[]1,(+∞--∞

D ),2[+∞

9.不等式b a b a +≤+取等号的条件是 ,b a b a +≤-取等号的条件 .

10.不等式x x ->+512的解集是

11.如果不等式21

1>x 同时成立,则x 的取值范围是 12.不等式x

x x x ->-11的解是 13.函数x

x x y -+=0

)21(的定义域是 14.不等式331≤-

x 1<

(2)321>++-x x

16.解不等式:x x +<-1log 2log 4141

17.已知

,11<++b

a a

b ,求证:}{a 和}{b 中必有一个大于1,而另一个小于1.

18.使不等式a x x <-+-34有解的条件是( ) A 1>a B 1101<

10< D 3

b a ≥ 20.不等式组?????+-<+-

x x x x 22330的解集是( ) A }02{<<-x x B }025{<<-x x C }06{<<-x x D }03{<<-x x

21.当10<a a

一元一次不等式练习题(经典版)

一元一次不等式 1、下列不等式中,是一元一次不等式的是 ( ) A 012>-x ; B 21<-; C 123-≤-y x ; D 532 >+y ; 2.下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5 D. 1 x -3x ≥0 3. 下列各式中,是一元一次不等式的是( ) (1)2x”或“<”号填空. 若a>b,且 c ,则: (1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b; (4)c-a_____c-b (5); (6) 5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、填空题(每题4分,共20分) 1、不等式 122x >的解集是: ;不等式1 33 x ->的解集是: ; 2、不等式组?? ?-+0 501>>x x 的解集为 . 不等式组30 50x x -?的解集为 . 三. 解下列不等式,并在数轴上表示出它们的解集. (1) 8223-<+x x 2. x x 4923+≥- (3). )1(5)32(2+<+x x (4). 0)7(319≤+-x (5) 31222+≥+x x (6) 2 2 3125+<-+x x (7) 7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x (9) 1215312≤+--x x (10) 2 1 5329323+≤---x x x

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

不等式练习题(带答案)

不等式基本性质练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)( (b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+ b a B .111≥+b a C . 211<+ b a D . 211≥+b a 4.已知a 、b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37- ,26- = c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

基本不等式练习题及答案

双基自测 1.(人教A版教材习题改编)函数y=x+1 x (x>0)的值域为( ). A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞) 2.下列不等式:①a2+1>2a;②a+b ab ≤2;③x2+ 1 x2+1 ≥1,其中正确的个 数是 ( ).A.0 B.1 C.2 D.3 3.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ). B.1 C.2 D.4 4.(2011·重庆)若函数f(x)=x+ 1 x-2 (x>2)在x=a处取最小值,则a= ( ). A.1+ 2 B.1+ 3 C.3 D.4 5.已知t>0,则函数y=t2-4t+1 t 的最小值为________. 考向一利用基本不等式求最值 【例1】?(1)已知x>0,y>0,且2x+y=1,则1 x + 1 y 的最小值为________; (2)当x>0时,则f(x)= 2x x2+1 的最大值为________. 【训练1】 (1)已知x>1,则f(x)=x+ 1 x-1 的最小值为________. (2)已知0<x<2 5 ,则y=2x-5x2的最大值为________. (3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________. 考向二利用基本不等式证明不等式

【例2】?已知a>0,b>0,c>0,求证:bc a + ca b + ab c ≥a+b+c. . 【训练2】已知a>0,b>0,c>0,且a+b+c=1. 求证:1 a + 1 b + 1 c ≥9. 考向三利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x>0, x x2+3x+1 ≤a恒成立,则a的取值 范围是________. 【训练3】(2011·宿州模拟)已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________. 考向三利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低【训练3】(2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n 的关系是g(n)=80 n+1 .若水晶产品的销售价格不变,第n次投入后的年利润为 f(n)万元. (1)求出f(n)的表达式; (2)求从今年算起第几年利润最高最高利润为多少万元 【试一试】(2010·四川)设a>b>0,则a2+ 1 ab + 1 a a-b 的最小值是 ( ). A.1 B.2 C.3 D.4 双基自测

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

第10课--绝对值不等式(经典例题练习、附答案)word版本

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a -

例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。 5.(2008佛山二模)关于x 的不等式2121x x a a -+-≤++的解集为空集,则实数a 的取值范围是 ____. 6. 若关于x 的不等式a x x ≥-++12的解集为R ,则实数a 的取值范围是_____________.

不等式与不等式组单元测试卷

不等式与不等式组综合检测题 一、选择题 1、下列各式中不是一元一次不等式组的是( ) A.1,35y y ?<-???>-? B.350,420x x ->??+? D.50,20,489x x x ->??+? 的解集是( ) A .3≤x B .31≤x 3、如图.不等式5234x x -≤-?? - 5、不等式12>-x 的解集是( ) A .13<>x x 或 B .33-<>x x 或 C .31<-m m 后,仍不低于原价.则m 的值应为( ) A.、111555≤a B .25-<<-a C .25-≤≤-a D .52-<->a a 或 8、如果不等式组8x x m ? 无解.那么m 的取值范围是( ) A 、8>m B 、8≥m C 、8

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

(完整版)基本不等式练习题(带答案)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .11 1x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

基本不等式练习题及答案.doc

双基自测 1 1.( 人教 A 版教材习题改编 ) 函数 y = x + x ( x >0) 的值域为 ( ) . A .( -∞,- 2] ∪[2 ,+∞ ) B .(0 ,+∞) C .[2 ,+∞ ) D .(2 ,+∞) 2 a ;② a +b 2 + 2 1 ≥ ,其中正确的个数是 .下列不等式:① a + > ≤2;③ x 2 1 2 x 1 ab +1 ( ) . A .0 B .1 C .2 D .3 .若 a > ,b > ,且 a + 2 b - = ,则 ab 的最大值为 ( ) . 3 0 0 2 0 B .1 C .2 D . 4 . ·重庆 若函数 f x = x + 1 x > 在 x = a 处取最小值,则 a = . 4 (2011 ) ( ) x -2 ( 2) ( ) A .1+ 2 B .1+3 C .3 D .4 .已知 t > ,则函数 y = t 2- t + 1 5 0 t 的最小值为 ________. 考向一 利用基本不等式求最值 1 1 【例 1】?(1) 已知 x > 0, y > 0,且 2x +y =1,则 x +y 的最小值为 ________; x 2 (2) 当 x >0 时,则 f ( x) =x 2+1的最大值为 ________. 1 【训练 1】 (1) 已知 x >1,则 f ( x) = x + x - 1的最小值为 ________. 已知 <x 2 x - x 2 的最大值为 (2) < ,则 y = ________. 0 5 2 5 (3) 若 x ,y ∈ (0 ,+∞ 且 2 x + y - xy = ,则 x + y 的最小值为 . ) 8 0 ________ 考向二 利用基本不等式证明不等式 bc ca ab 【例 2】?已知 a >0, b > 0, c > 0,求证: a + b + c ≥a +b +c. .

不等式章节测试卷

不等式测试题 班级 姓名 学号 一.选择题(每小题2分,共20分) 1.如果2<-a ,那么下列各式正确的是( ) A .2-a C .31<+-a D .11>--a 2.已知b a >,则下列各式正确的是( ) A .b a -> B .83-<-b a C .2 2 b a > D .b a 33-<- 3.若1-m B .01<-m C .01>+m D .22x C .1->x D .1-x B .4x D .4--a x 的解集如图所示,则a 的值为( ). A .0 B .1 C .-1 D .2 7.不等式3312-≥-x x 的正整数解的个数是( ) A .1个 B .2个 C .3个 D .4个 8.若不等式组?? ?<<-a x x 3 12的解集是2x D .3-x 二.填空题(每小题2分,共20分) 11.用适当的符号表示:m 的2倍与n 的差是非负数: ; 12.写出下列不等式组的解集: (1)52x x >-??>-?的解集是__________;(2)121 x x ? -x x 的最大整数解是: ; 15.已知方程121-=+x kx 的解是正数,则k 的取值范围是: ;

绝对值不等式讲义

解绝对值不等式 1、解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值 3、解不等式(1)|x-x 2-2|>x 2-3x-4;(2) 234 x x -≤1 变形二 含两个绝对值的不等式 4、解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|?f 2(x)〈g 2(x)两边平方去掉绝对值符号。(2)题可采用零点分段法去绝对值求解。 5、 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1) 6.不等式|x+3|-|2x-1|<2 x +1的解集为 。 7.求不等式13 31log log 13x x +≥-的解集.

变形三 解含参绝对值不等式 8、解关于x 的不等式 34422+>+-m m mx x [思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。若化简成3|2|+>-m m x ,则解题过程更简单。在解题过程中需根据绝对值定义对3m +的正负进行讨论。 2)形如|()f x |a (a R ∈)型不等式 此类不等式的简捷解法是等价命题法,即: ① 当a >0时,|()f x |a ?()f x >a 或()f x <-a ; ② 当a =0时,|()f x |a ?()f x ≠0 ③ 当a <0时,|()f x |a ?()f x 有意义。 9.解关于x 的不等式:()0922>≤-a a a x x 10.关于x 的不等式|kx -1|≤5的解集为{x |-3≤x ≤2},求k 的值。 变形4 含参绝对值不等式有解、解集为空与恒成立问题 11、若不等式|x -4|+|3-x |;()f x a <解集为空集()m i n a f x ?≤;这两者互补。()f x a <恒成立 ()m a x a f x ?>。 ()f x a ≥有解()m a x a f x ?≤;()f x a ≥解集为空集()max a f x ?>;这两者互补。()f x a ≥恒成立 ()min a f x ?≤。

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

《不等式》单元测试卷(原卷版)-)

《不等式》单元测试卷 一、选择题 1.若0a b <<,则下列不等式不可能成立的是 ( ) A . 11a b > B .22a b > C .0a b +< D .0ab < ; 2.不等式()()120x x -->的解集为( ) A .{} 12x x x 或 B .{}|12x x << C .{}21x x x --或 D .{}|21x x -<<- 3.不等式102x x +-≤的解集为( ) A .{}|12x x -≤≤ B .{}|12x x -≤≤ $ C .{}12x x x ≤-≥或 D .{}12x x x 或≤-> 4.已知集合2{|4}M x x =<,103x N x x ??+= C .{|12}x x -<< D .{|23}x x << 5.(上海市2019年1月春季高考)已知 ,则“”是“”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 6.“2a =”是“0x ?>,1x a x + ≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 — 7.下列命题中,正确的是( )

A .若ac bc >,则a b > B .若,a b c d >>,则a c b d ->- C .若,a b c d >>,则ac bd ≥ D .若a b <,则a b < 8.(2019年天津理)设x R ∈,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 【 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 9.若0,0a b >>,且1=+b a ,则b a 11+的最小值为( ) A .2 B .3 C .4 D .5 ` 10.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15] 11.(2019年浙江省)若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 》 C .充分必要条件 D .既不充分也不必要条件 12.已知1,0,2a b a b >>+=,则1112a b +-的最小值为( ) A .322+ B .3242+ C .322+ D .1223 + 二、填空题 13.(2017年上海卷)不等式 的解集为________ # 14.(2018年北京卷文)能说明“若a ﹥b ,则 ”为假命题的一组a ,b 的值依次为_________. 15.若0, 0,25a b a b >>+=,则ab 的最大值为________.

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

基本不等式几大题型(教师版)

题型1 基本不等式正用a +b ≥2ab 例1:(1)函数f (x )=x +1x (x >0)值域为________; 函数f (x )=x +1x (x ∈R )值域为________; (2)函数f (x )=x 2+1x 2+1 的值域为________. 解析:(1)∵x >0,x +1x ≥2x ·1 x =2, ∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2 +1x 2+1=(x 2+1)+1x 2+1-1 ≥2 x 2+1 ·1x 2+1 -1=1, 当且仅当 x =0 时等号成立. 答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞) 例2:(2013·镇江期中)若x >1,则x +4x -1 的最小值为________. 解析:x +4x -1=x -1+4x -1 +1≥4+1=5. 当且仅当x -1=4x -1 ,即x =3时等号成立. 答案:5 例3:(1)已知x <0,则f (x )=2+4x +x 的最大值为________. (1)∵x <0,∴-x >0,

∴f (x )=2+4x +x =2-???? ??4-x + -x . ∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立. ∴f (x )=2-???? ??4-x + -x ≤2-4=-2, ∴f (x )的最大值为-2. 例4:当x >0时,则f (x )=2x x 2 +1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1, 当且仅当x =1x ,即x =1时取等号. 例5:函数y =x 2+2x -1 (x >1)的最小值是________. 解析:∵x >1,∴x -1>0. ∴y =x 2+2x -1=x 2-2x +2x +2x -1 =x 2-2x +1+2 x -1 +3x -1 = x -1 2+2 x -1 +3x -1 =x -1+ 3x -1+2 ≥2 x -1 3x -1+2=23+2. 当且仅当x -1= 3x -1 ,即x =1+3时,取等号. 答案:23+2 例6:已知x >0,a 为大于2x 的常数,求y = 1a -2x -x 的最小值. 解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2 .

不等式单元测试题及答案

第三章 章末检测(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若a <0,-1ab >ab 2 B .ab 2 >ab >a C .ab >a >ab 2 D .ab >ab 2 >a 2.已知x >1,y >1,且14ln x ,1 4,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值e C .有最小值e D .有最小值e 3.设M =2a (a -2),N =(a +1)(a -3),则( ) A .M >N B .M ≥N C .M b ,则下列不等式中恒成立的是( ) A .a 2>b 2 B .(12)a <(12 )b C .lg(a -b )>0 >1 6.当x >1时,不等式x +1 x -1 ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 7.已知函数f (x )=??? ?? x +2, x ≤0 -x +2, x >0 ,则不等式f (x )≥x 2 的解集是( ) A .[-1,1] B .[-2,2] C .[-2,1] D .[-1,2] 8.若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( ) >12 +1b ≤1 ≥2 ≤1 8 9.设变量x ,y 满足约束条件???? ? x -y ≥0,2x +y ≤2, y +2≥0, 则目标函数z =|x +3y |的最大值为 ( ) A .4 B .6 C .8 D .10 10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( ) A .甲先到教室 B .乙先到教室

相关文档 最新文档