文档库 最新最全的文档下载
当前位置:文档库 › (整理)分子生物学第四章习题.

(整理)分子生物学第四章习题.

(整理)分子生物学第四章习题.
(整理)分子生物学第四章习题.

第4章DNA复制

一、填空题

1.在DNA合成中负责复制和修复的酶是。

2.染色体中参与复制的活性区呈Y开结构,称为。

3.在DNA复制和修复过程中,修补DNA螺旋上缺口的酶称为

4.在DNA复制过程中,连续合成的子链称为,另一条非连续合成的子链称为。

5.如果DNA聚合酶把一个不正确的核苷酸加到3′端,一个含3′→5′活性的独立催化区会将这个错配碱基切去。这个催化区称为酶。

6.DNA后随链合成的起始要一段短的,它是由以核糖核苷酸为底物合成的。

7.复制叉上DNA双螺旋的解旋作用由催化的,它利用来源于ATP水解产生的能量沿DNA链单向移动。

8.帮助DNA解旋的与单链DNA结合,使碱基仍可参与模板反应。9.DNA引发酶分子与DNA解旋酶直接结合形成一个单位,它可在复制叉上沿后随链下移,随着后随链的延伸合成RNA引物。

10.如果DNA聚合酶出现错误,会产生一对错配碱基,这种错误可以被一个通过甲基化作用来区别新链和旧链的判别的系统进行校正。

11.对酵母、细菌以及几种生活在真核生物细胞中的病毒来说,都可以在DNA独特序列的处观察到复制泡的形成。

12.可被看成一种可形成暂时单链缺口(I型)或暂时双链缺口(II型)的可逆核酸酶。

13.拓扑异构酶通过在DNA上形成缺口超螺旋结构。

14.真核生物中有五种DNA聚合酶,它们是A. ;B. ;C. ;D. ;E. ;15有真核DNA聚合酶和显示3'→5'外切核酸酶活性。

二、选择题(单选或多选)

1.DNA的复制()。

A.包括一个双螺旋中两条子链的合成B.遵循新的子链与其亲本链相配对的原则

C.依赖于物种特异的遗传密码D.是碱基错配最主要的来源

E.是一个描述基因表达的过程

2.一个复制子是()。

A.细胞分裂期间复制产物被分离之后的DNA片段

B.复制的DNA片段和在此过程中所需的酶和蛋白质

C.任何自发复制的DNA序列(它与复制起点相连)

D.任何给定的复制机制的产物(如单环)

E.复制起点和复制叉之间的DNA片段

3.真核生物复制子有下列特征,它们()。

A.比原核生物复制子短得多,因为有末端序列的存在

B.比原核生物复制子长得多,因为有较大的基因组

C.通常是双向复制且能融合

D.全部立即启动,以确保染色体的S期完成复制

E.不是全部立即启动,在任何给定的时间只有大约15%具有活性

4.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是()。A.起始位点是包括多个短重复序列的独特DNA片段

B.起始位点是形成稳定二级结构的回文序列

C.多聚体DNA结合蛋白专一性识别这些短的重复序列

D.起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开

E.起始位点旁侧序是G-C丰富的,能稳定起始复合物

5.下列关于DNA复制的说法正确的有()。

A.按全保留机制进行

B.按3′→5′方向进行

C.需要4种dNMP的参与

D.需要DNA连接酶的作用

E.涉及RNA引物的形成F.需要DNA聚合酶I

6.标出下列所有正确的答案。()

A.转录是以半保留的方式获得两条相同的DNA链的过程

B.DNA依赖的DNA聚合酶是负责DNA复制的多亚基酶

C.细菌转录物(mRNA)是多基因的

D.σ因子指导真核生物的hnRNA到mRNA的转录后修饰

E.促旋酶(拓扑异构酶II)决定靠切开模板链而进行的复制的起始和终止7.在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸?()

A.DNA聚合酶III B.DNA聚合酶II C.DNA聚合酶I D.外切核酸酶MFI E.DNA 连接酶

8.使DNA超螺旋结构松驰的酶是()。A.引发酶B.解旋酶C.拓扑异构酶D.端粒酶E.连接酶

9.从一个复制起点可分出几个复制叉?()

A.1 B.2 C.3 D.4 E.4个以上

三、判断题

1.大肠杆菌中,复制叉以每秒500bp的速度向前移动,复制叉前的DNA以大约定3000r/min的速度旋转。( ) (如果复制叉以每秒500个核苷酸的速度向前移动,那么它前面的DNA 必须以500/10.5=48周/秒的速度旋转,即2880r/min)2.所谓半保留复制就是以DNA亲本链作为合成新子链DNA的模板,这样产生的新的双链DNA分子由一条旧链和一条新链组成。( )

3.“模板”或“反义” DNA链可定义为:模板链是被RNA聚合酶识别并合成一个互补的mRNA,这一mRNA是蛋白质合成的模板。( )

4.DNA复制中,假定都从5'→3'同样方向读序时,新合成DNA链中的核苷酸序列同模板链一样。( ) (尽管子链与亲本链因为碱基互补配对联系起来,但子链核苷酸序列与亲链又很大不同)

5.DNA的5′→3′合成意味着当在裸露3′→OH的基团中添加dNTP时,除去无机焦磷酸DNA链就会伸长。( )

6.在先导链上DNA沿5′→3′方向合成,在后随链上则沿3′→5′方向合成。( )

7.如果DNA沿3'→5'合成,那它则需以5'三磷酸或3'脱氧核苷三磷酸为末端的链作为前体。( )

8.大肠杆菌DNA聚合酶缺失3′→5′校正外切核酸酶活性时会降低DNA合成的速率但不影响它的可靠性。( )

9.DNA的复制需要DNA聚合酶和RNA聚合酶。( )

10.复制叉上的单链结合蛋白通过覆盖碱基使DNA的两条单链分开,这样就避免了碱基配对。( ) (单链结合蛋白与磷酸骨架结合,离开暴露碱基)

11.拓扑异构酶I和II可以使DNA产生正向超螺旋。()

12.拓扑异构酶I解旋需要ATP酶。()

13.RNA聚合酶I合成DNA复制的RNA引物。()

14.当DNA两条链的复制同时发生时,它是由一个酶复合物,即DNA聚合酶III负责的。真核生物的复制利用三个独立作用的DNA聚合酶,Polα的一个拷贝(为了起始)和Polδ的两个拷贝(DNA多聚体化,当MF1将RNA引发体移去之后填入)。( )

四、简答题

1.在DNA聚合酶III催化新链合成以前发生了什么反应?

2.DNA复制起始过程如何受DNA甲基化状态影响?

3.DNA连接酶对于DNA的复制是很重要的,但RNA的合成一般却不需要连接酶。解释这个现象的原因。

4.曾经认为DNA的复制是全保留复制,每个双螺旋分子都作为新的子代双螺旋分子的模板。如果真是这样,在Meselson和Stahl的实验中他们将得到什么结果?

5.描述Matthew和Franklin所做的证明DNA半保留复制的实验。

6.解释在DNA复制过程中,后随链是怎样合成的。

答案

一、填空

1. DNA聚合酶

2. DNA复制叉

3. DNA连接酶

4. 先导链后随链

5. 校

正核酸外切 6. RNA引物DNA引发酶7. DNA解旋酶8. 单链结合蛋白

(SSB)9. 引发体10. 错配校正(错配修复)11. 复制起点12. DNA拓扑酶13. 松弛14.αβγδε 15. δε

二、选择

1.BD

2.C

3.C

4.ACD

5.DEF

6. BC

7. C

8.C

9.B

三、判断

√√√X√X√X√X XXX√

四、简答

1.在DNA聚合酶III催化新链合成以前发生了什么反应?

答:DnaA(与每9个碱基重复结合,然后使13个碱基解链)、DnaB(解旋酶)

和DnaC(先于聚合酶III与原核复制起点相互作用。后随链复制需要引发体完成的多重复制起始,引发体由DnaG引发酶与多种蛋白质因子组成。

2.DNA复制起始过程如何受DNA甲基化状态影响?

答:亲本DNA通常发生种属特异的甲基化。在复制之后,两模板-复制体双链DNA是半甲基化的。半甲基化DNA对膜受体比对DnaA有更高的亲和力,半甲基化DNA不能复制,从而防止了成熟前复制。

3.DNA连接酶对于DNA的复制是很重要的,但RNA的合成一般却不需要连接酶。解释这个现象的原因。

答:DNA复制时,后随链的合成需要连接酶将一个冈崎片段的5'端与另一冈崎片段的3'端连接起来。而RNA合成时,是从转录起点开始原5'→3'一直合成的,因此不需DNA连接酶。

4.曾经认为DNA的复制是全保留复制,每个双螺旋分子都作为新的子代双螺旋分子的模板。如果真是这样,在Meselson和Stahl的实验中他们将得到什么结果?

答:复制一代后,一半为重链,一半为轻链;复制两代后,1/4为重链,3/4为轻链。

5.描述Matthew和Franklin所做的证明DNA半保留复制的实验。

答:(1)将大肠杆菌在15N培养基中培养多代,得到的DNA两条链都被标记,形成重链。

(2)细胞移到14N培养基中培养,提取DNA;

(3)将DNA进行氯化铯密度梯度离心,;

(4)经过一定时间后,DNA在离心管聚集成带,每个带的密度均与该点的氯化铯溶液的密度相同;

(5)照相决定每条带的位置和所含的DNA量。

1)经15N培养基,所有DNA都聚集在一条重密度带;

2)经14N培养基一代后,所有的DNA形成一条中间密度带;

3)经14N继续培养基一代,DNA一半是中间密度带,另一半是轻密度带;

4)最后,他们证明第一代的分子是双链,且为半保留复制。

6.解释在DNA复制过程中,后随链是怎样合成的。

答:DNA聚合酶只能朝5'→3'方向合成DNA,后随链不能像前导链一样一直进行合成。后随链是以大量独立片段(冈崎片段)合成的,每个片段都以5'→3'方向合成,这些片段最后由连接酶连接在一起。每个片段独立引发、聚合、连接。

(整理)分子生物学第四章习题

第4章DNA复制 一、填空题 1.在DNA合成中负责复制和修复的酶是。 2.染色体中参与复制的活性区呈Y开结构,称为。 3.在DNA复制和修复过程中,修补DNA螺旋上缺口的酶称为 4.在DNA复制过程中,连续合成的子链称为,另一条非连续合成的子链称为。 5.如果DNA聚合酶把一个不正确的核苷酸加到3′端,一个含3′→5′活性的独立催化区会将这个错配碱基切去。这个催化区称为酶。 6.DNA后随链合成的起始要一段短的,它是由以核糖核苷酸为底物合成的。 7.复制叉上DNA双螺旋的解旋作用由催化的,它利用来源于ATP水解产生的能量沿DNA链单向移动。 8.帮助DNA解旋的与单链DNA结合,使碱基仍可参与模板反应。9.DNA引发酶分子与DNA解旋酶直接结合形成一个单位,它可在复制叉上沿后随链下移,随着后随链的延伸合成RNA引物。 10.如果DNA聚合酶出现错误,会产生一对错配碱基,这种错误可以被一个通过甲基化作用来区别新链和旧链的判别的系统进行校正。 11.对酵母、细菌以及几种生活在真核生物细胞中的病毒来说,都可以在DNA独特序列的处观察到复制泡的形成。 12.可被看成一种可形成暂时单链缺口(I型)或暂时双链缺口(II型)的可逆核酸酶。 13.拓扑异构酶通过在DNA上形成缺口超螺旋结构。 14.真核生物中有五种DNA聚合酶,它们是A. ;B. ;C. ;D. ;E. ;15有真核DNA聚合酶和显示3'→5'外切核酸酶活性。 二、选择题(单选或多选) 1.DNA的复制()。

A.包括一个双螺旋中两条子链的合成B.遵循新的子链与其亲本链相配对的原则 C.依赖于物种特异的遗传密码D.是碱基错配最主要的来源 E.是一个描述基因表达的过程 2.一个复制子是()。 A.细胞分裂期间复制产物被分离之后的DNA片段 B.复制的DNA片段和在此过程中所需的酶和蛋白质 C.任何自发复制的DNA序列(它与复制起点相连) D.任何给定的复制机制的产物(如单环) E.复制起点和复制叉之间的DNA片段 3.真核生物复制子有下列特征,它们()。 A.比原核生物复制子短得多,因为有末端序列的存在 B.比原核生物复制子长得多,因为有较大的基因组 C.通常是双向复制且能融合 D.全部立即启动,以确保染色体的S期完成复制 E.不是全部立即启动,在任何给定的时间只有大约15%具有活性 4.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是()。A.起始位点是包括多个短重复序列的独特DNA片段 B.起始位点是形成稳定二级结构的回文序列 C.多聚体DNA结合蛋白专一性识别这些短的重复序列 D.起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开 E.起始位点旁侧序是G-C丰富的,能稳定起始复合物 5.下列关于DNA复制的说法正确的有()。 A.按全保留机制进行 B.按3′→5′方向进行 C.需要4种dNMP的参与 D.需要DNA连接酶的作用 E.涉及RNA引物的形成F.需要DNA聚合酶I 6.标出下列所有正确的答案。()

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学课后题

第一章 1、简述细胞的遗传物质,怎样证明DNA是遗传物质? 答:核酸是细胞内的遗传物质,包括脱氧核糖核酸(|DNA)和核糖核酸(RNA)两类,DNA是主要的遗传物质,具有储存遗传信息,将遗传信息传递给子代,物理化学性质稳定,有遗传变异能力适合作为遗传信息的特性,T2噬菌体侵染实验证明了DNA是遗传物质,将蛋白质被35S标记和DNA被32P 标记的T2噬菌体分别侵染E.coli后,发现进入宿主细胞的只有32P标记的DNA,而无35S标记物,所产生的子代噬菌体只含有32P标记的DNA,无S标记的蛋白质,因此证明DNA是遗传物质。 2、研究DNA的一级结构有什么重要的生物学意义? 答:DNA的一级结构是指DNA分子中的核苷酸排列顺序,它反映了生物界物种的多样性和复杂性,任何一段DNA序列都可以反映出它的高度的个体性和种族特异性,另外DNA一级结构决定其高级结构,研究DNA一级结构对阐明遗传物质结构、功能及表达调控都极其重要。 3、简述DNA双螺旋结构与现在分子生物学发展的关系。 答:DNA双螺旋结构具有碱基互补配对原则具有极其重要的生物学意义,它是DNA复制、转录、逆转录等基因复制与表达的分子基础。DNA为双链,维持了遗传物质的稳定性。 4、DNA双螺旋结构有哪些形式?说明其主要特点和区别。 答:主要有B-DNA,A-DNA,E-DNA形式 B-DNA:每一螺周含有10个碱基对,两个核苷酸之间夹角为36度 A-DNA:碱基对与中心倾角为19度,螺旋夹角为32.7度 E-DNA:左手螺旋,每圈螺旋含12对碱基,G=C碱基对非对称地位于螺旋轴附近。 第二章 1、简述DNA分子的高级结构。 答:1、单链核酸形成的二级结构(发夹结构)2、反向重复序列(十字架结构,每条链从5'--3'方向阅读)3、三股螺旋的DNA(一条链为全嘌呤核苷酸链,另一条链为全嘧啶核苷酸链)4、DNA的四链结构5、DNA结构的动态性与精细结构6、DNA的超螺旋结构与拓扑学性质。 2、什么是DNA的拓扑异构体,它们之间的相互转变依赖于什么? 答:DNA不同的空间分子构象又称拓扑异构体它们之间转换依赖于连环数L。连环数是指双螺旋DNA中两条链相互缠绕交叉的总次数。 3、简述真核生物染色体的组成,它们是如何组装的? 答:真核生物的染色体在间期表现为染色质,染色质是以双链DNA作为骨架与组蛋白和非组蛋白及少量各种RNA等共同组成的丝状结构的大分子物质、 组装的顺序:DNA—核小体链—纤丝—突环—玫瑰花结—螺旋圈—染色体 4、简述细胞内RNA的分布结构特点 答:成熟的RNA主要分布在细胞质中,无论是真核或原核细胞质中,成千上万种的RNA都分为三大类:1、转运RNA 2、信使RNA 3、核蛋白体RNA。细胞核内的RNA统称为nRNA. 5、简述细胞内RNA的结构特点以及与DNA的区别。 答:1、碱基组成不同,RNA分子主要是A G C U 而DNA以T代替U。 2、RNA分子中的核糖都是D-核糖,而DNA则是D-2-脱氧核糖。 3、RNA分子中有许多稀有,微量碱基,而DNA除个别外,不含有稀有碱基 4、RNA分子中嘌呤碱基与嘧啶碱基不一定相等。 5、RNA分子具有逆转录作用,RNA翻译成蛋白质是遗传物质,是遗传信息的传递结合表达者。 6、RNA分子具有催化功能。 6、引起DNA变性的主要因素有哪些?核酸变性后分子结构和性质发生了哪些变化? 答:①加热②极端PH值③有机溶剂,尿素和酰胺等 核酸变性后氢键被破坏而断裂,双链变为单链,而磷酸二酯键并未锻裂在A260nm 处呈现增色效应。DNA溶液的黏度大大下降、沉淀速度增加、浮力密度上升。紫外吸收光谱升高。酸碱滴定曲线改变,生物活性丧失等。 7、检测核酸变性的定性和定量方法是什么?具体参数如何? 答:在DNA变性过程中,紫外吸收光谱的变化时检测变性最简单的定性和定量方法。核酸在260nm 处具有特征的吸收峰,便是为A260nm。以50ug/ml DNA溶液在A260下测定,三者的A260数值为:

分子生物学题库

分子生物学备选考题 名词解释: 1.功能基因组学 2.分子生物学 3.epigenetics 4.C值矛盾 5.基因簇 6.间隔基因 7.基因芯片 8.基序(Motifs) 9.CpG岛 10.染色体重建 11.Telomerase 12.足迹分析实验 13.RNA editing 14.RNA干涉(RNA interference) 15.反义RNA 16.启动子(Promoter) 17.SD序列(SD sequence) 18.碳末端结构域(carboxyl terminal domain,CTD) 19.single nucleotide polymorphism,SNP 20.切口平移(Nick translation) 21.原位杂交 22.Expressing vector 23.Multiple cloning sites 24.同源重组 25.转座 26.密码的摆动性 27.热休克蛋白嵌套基因 28.基因家族增强子 29.终止子 30.前导肽RNAi 31.分子伴侣 32.魔斑核苷酸 33.同源域 34.引物酶 35.多顺反子mRNA 36.物理图谱、 37.载体(vector) 38.位点特异性重组 39.原癌基因(oncogene) 40.重叠基因、 41.母源影响基因、

42.抑癌基因(anti-oncogene)、 43.回文序列(palindrome sequence)、 44.熔解温度(melting temperature, Tm) 45.DNA的呼吸作用(DNA respiration) 46..增色效应(hyperchromicity)、 47.C0t曲线(C0t curve)、 48.DNA的C值(C value) 49.超螺旋(superhelix) 、 50.拓扑异构酶(topoisomerase)、 51.引发酶(primase) 、 52.引发体(primosome) 53.转录激活(transcriptional activation) 54.dna基因(dna gene)、 55.从头起始(de novo initiation) 、 56.端粒(telomere) 57.酵母人工染色体(yeast artificial chromosome, YAC)、 58.SSB蛋白(single strand binding protein)、 59.复制叉(replication fork)、 60.保留复制(semiconservative replication) 61.滚环式复制(rolling circle replication)、 62.复制原点(replication origin)、 63.切口(nick) 64.居民DNA (resident DNA) 65.有义链(sense strand) 66.反义链(antisense strand) 67.操纵子(operon) 、 68.操纵基因(operator) 69.内含子(内元intron) 70.外显子(外元exon) 、 71.突变子(muton) 、 72.密码子(codon)、、 73.同义密码(synonymous codons)、 74.GC盒(GC box) 75.增强子(enhancer) 76.沉默子(silencer) 77.终止子(terminator) 78.弱化子(衰减子)(attenuator) 79.同位酶(isoschizomers) 、 80.同尾酶(isocandamers) 81.阻抑蛋白(阻遏蛋白)(repressor) 82.诱导物(inducer)、 83.CTD尾(carboxyl-terminal domain ) 84.载体(vector)、 85.转化体(transformant)

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

分子生物学试题库

第2章染色体与DNA 名词解释 原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 复制:以亲代DNA或RNA为模板,根据碱基配对的原则,在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。 转座子 (transposon 或 transposable element):位于染色体DNA上可自主复制和位移的基本单位。包括插入序列和复合转座子。 半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA 中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制。 染色体:染色体是遗传信息的载体,由DNA、RNA和蛋白质构成,其形态和数目具有种系的特性。在细胞间期核中,以染色质形式存在。在细胞分裂时,染色质丝经过螺旋化、折叠、包装成为染色体,为显微镜下可见的具不同形状的小体。 核小体:是构成真核生物染色体的基本单位,是DNA和蛋白质构成的紧密结构形式,包括200bp左右的DNA和9个组蛋白分子构成的致密结构。 填空题 1.真核细胞核小体的组成是 DNA和蛋白 2.天然染色体末端不能与其他染色体断裂片段发生连接,这是因为天然染色体末端存在端粒结构。 3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子。 4.引起DNA损伤的因素有自发因素、物理因素、化学因素。 5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白。 6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶。 7.在真核生物中DNA复制的主要酶是DNA聚合酶δ。在原核生物中是DNA聚合酶Ⅲ。 8.端粒酶是端粒酶是含一段RNA的逆转录酶。 9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复。 选择题 1.真核生物复制起点的特征包括(B) A. 富含G-C区 B. 富含A-T区 C. Z-DNA D. 无明显特征 2.插入序列(IS)编码(A) A.转座酶 B.逆转录酶 C. DNA合成酶 D.核糖核酸酶 3.紫外线照射对DNA分子的损伤主要是(D) A.碱基替换 B.磷酸脂键断裂 C。碱基丢失 D.形成共价连接的嘧啶二聚体 4.自然界中以DNA为遗传物质的大多数生物DNA的复制方式(C) A.环式 B.D环式 C.半保留 D.全保留 5.原核生物基因组中没有(A) A.内含子 B.外显子 C.转录因子 D.插入序列 6.关于组蛋白下列说法正确的是(D)

分子生物学zuq题库

问答题: 1 衰老与基因的结构与功能的变化有关,涉及到:(1)生长停滞;(2)端粒缩短现象;(3)DNA损伤的累积与修复能力减退;(4)基因调控能力减退。 2 超螺旋的生物学意义:(1)超螺旋的DNA比松驰型DNA更紧密,使DNA分子体积变得更小,对其在细胞的包装过程更为有利;(2)超螺旋能影响双螺旋的解链程序,因而影响DNA分子与其它分子(如酶、蛋白质)之间的相互作用。 3 原核与真核生物学mRNA的区别: 原核:(1)往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息(来自几个结构基因)。(2)5端无帽子结构,3端一般无多聚A尾巴。(3)一般没有修饰碱基,即这类mRNA分子链完全不被修饰。 真核:(1)5端有帽子结构(2)3端绝大多数均带有多聚腺苷酸尾巴,其长度为20-200个腺苷酸。(3)分子中可能有修饰碱基,主要有甲基化,(4)分子中有编码区与非编码区。 4 tRNA的共同特征: (!)单链小分子,含73-93个核苷酸。(2)含有很多稀有碱基或修饰碱基。(3)5端总是磷酸化,5末端核苷酸往往是pG。(4)3端是CPCPAOH序列。(5)分子中约半数的碱基通过链内碱基配对互相结合,开成双螺旋,从而构成其二级结构,开头类似三叶草。(6)三级结构是倒L型。 5 核酶分类:(1)异体催化的剪切型,如RNaseP;(2)自体催化的剪切型,如植物类病毒等;(3)内含子的自我剪接型,如四膜虫大核26SrRNA前体。 6 hnRNA变成有活性的成熟的mRNA的加工过程: (1)5端加帽;(2)3端加尾(3)内含子的切除和外显子的拼接;(4)分子内部的甲基化修饰作用,(5)核苷酸序列的编辑作用。 7 反义RNA及其功能: 碱基序列正好与有意义mRNA互补的RNA称为反意义或反义RNA,又称调节RNA,这类RNA是单链RNA,可与mRNA配对结合形成双链,最终抑制mRNA作为模板进行翻译。这是其主要调控功能,还可作为DNA复制的抑制因子,与引物RNA互补结合抑制DNA的复制,以及在转录水平上与mRNA5末端互补,阻止RNA合成转录。 8 病毒基因组分型:(1)双链DNA(2)单链正股DNA(3)双链RNA(4)单链负股RNA(5)单链正股RNA 9 病毒基因组结构与功能的特点: (1)不同病毒基因组大小相差较大;(2)不同病毒的基因组可以是不同结构的核酸。(3)病毒基因组有连续的也有不连续的;(4)病毒基因组的编码序列大于90%;(5)单倍体基因组,(6)基因有连续的和间断的,(7)相关基因丛集;(8)基因重叠(9)病毒基因组含有不规则结构基因,主要类型有:a几个结构基因的编码区无间隔;bmRNA没有5端的帽结构;c结构基因本身没有翻译起始序列。 10 原核生物基因组的结构的功能特点: (1)基因组通常仅由一条环状双链DNA分子组成。 (2)基因组中只有1个复制起点。 (3)具有操纵子结构。(4)编码顺序一般不会重叠。(5)基因是连续的,无内含子,因此转录后不需要剪切。(6)编码区在基因组中所占的比例(约占50%)远远大于真核基因组,但又远远小于病毒基因组。(7)基因组中重复序列很少(8)具有编码同工酶的基因。(9)细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子。 (10)在DNA分子中具有多种功能的识别区域。 11??真核生物基因组结构与功能的特点:

分子生物学第四章练习题

假定你从一新发现的病毒中提取了核苷酸,请用最简单的方法确定:(1)它是DNA还是RNA?(2)它是单链还是双链?--类型:分析题 答:确定碱基比率。如果有胸腺嘧啶,为DNA,如果有尿嘧啶,则为RNA。如果为双链分子,那么A与T(或U)的量以及G与C的量应相等。 RNA 是由核糖核酸通过()键连接而成的一种()。几乎所有的RNA都是由()DNA()而来,因此,序列和其中一条链()。--类型:填空题 --答案:磷酸二酯;多聚体;模板;转录;互补 多数类型的RNA是由加工()产生的,真核生物前体tRNA的()包括()的切除和()的拼接。随着()和()端的序列切除,3’端加上了序列()。在四膜虫中,前体TRNA 的切除和()的拼接是通过()机制进行的。--类型:填空题 --答案:前体分子;加工;内含子;外显子;5’;3’;CCA;内含子;外显子;自动催化 Rnase P 是一种(),含有()作为它的活性部位,这种酶在()序列的()切割()。--类型:填空题 --答案:内切核酸酶;RNA;tRNA;5’端;前体RNA C0t1/2实验测定的是()。--类型:填空题 --答案:41 RNA的复性程度 假定摆动假说是正确的,那么最少需要()种TRNA来翻译61种氨基酸密码子。--类型:填空题 --答案:32 写出两种合成后不被切割或拼接的RNA:()和()。--类型:填空题 --答案:.真核生物中的5SrRNA;原核生物中的mRNA 原核细胞信使RNA含有几个其功能所必需的特征区段,它们是:( ) --类型:选择题--选择:(a)启动子,SD序列,起始密码子,终止密码子,茎环结构(b)启动子,转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和ORF 尾部序列,茎环结构(c)转录起始位点,尾部序列,由顺反子间区序列隔开的SD序列和0RF,茎环结构(d)转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和0RF,局部序列 --答案:d

最新现代分子生物学试题库

核酸结构与功能 一、填空题 1.病毒ΦX174及M13的遗传物质都是单链DNA 。 2.AIDS病毒的遗传物质是单链RNA。 3.X射线分析证明一个完整的DNA螺旋延伸长度为 3.4nm 。 4.氢键负责维持A-T间(或G-C间)的亲和力 5.天然存在的DNA分子形式为右手B型螺旋。 二、选择题(单选或多选) 1.证明DNA是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。 这两个实验中主要的论点证据是(C )。 A.从被感染的生物体内重新分离得到DNA作为疾病的致病剂 B.DNA突变导致毒性丧失 C.生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D.DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子 E.真核心生物、原核生物、病毒的DNA能相互混合并彼此替代 2.1953年Watson和Crick提出( A )。 A.多核苷酸DNA链通过氢键连接成一个双螺旋 B.DNA的复制是半保留的,常常形成亲本-子代双螺旋杂合链 C.三个连续的核苷酸代表一个遗传密码 D.遗传物质通常是DNA而非RNA E.分离到回复突变体证明这一突变并非是一个缺失突变 3.DNA双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA的解链温度的正确描述?( CD ) A.哺乳动物DNA约为45℃,因此发烧时体温高于42℃是十分危险的 B.依赖于A-T含量,因为A-T含量越高则双链分开所需要的能量越少 C.是双链DNA中两条单链分开过程中温度变化范围的中间值 D.可通过碱基在260nm的特征吸收峰的改变来确定 E.就是单链发生断裂(磷酸二酯键断裂)时的温度 4.DNA的变性(ACE )。A.包括双螺旋的解链 B.可以由低温产生C.是可逆的D.是磷酸二酯键的断裂E.包括氢键的断裂 5.在类似RNA这样的单链核酸所表现出的“二级结构”中,发夹结构的形成(AD )。 A.基于各个片段间的互补,形成反向平行双螺旋 B.依赖于A-U含量,因为形成的氢键越少则发生碱基配对所需的能量也越少 C.仅仅当两配对区段中所有的碱基均互补时才会发生 D.同样包括有像G-U这样的不规则碱基配对 E.允许存在几个只有提供过量的自由能才能形成碱基对的碱基 6.DNA分子中的超螺旋(ACE )。

2013-2014现代文理学院分子生物学章节练习题第4章练习题

第四章生物信息的传递下-从mRNA到蛋白质 练习题 一、选择题【单选题】 1.下列氨基酸活化的叙述哪项是错误的 A.活化的部位是氨基酸的α-羧基 B.活化的部位是氨基酸的α-氨基, C.活化后的形式是氨基酰-tRNA D.活化的酶是氨基酰-tRNA合成酶 E.氨基酰tRNA既是活化形式又是运输形式 2.氨基酰tRNA的3’末端腺苷酸与氨基酸相连的基团是 A.1’-OH B.2’-磷酸 C.2’-OH D. 3’-OH, E.3’-磷酸 5.代表氨基酸的密码子是 A.UGA B.UAG C.UAA D.UGG E.UGA和UAG 6.蛋白质生物合成中多肽链的氨基酸排列顺序取决于 A.相应tRNA专一性 B.相应氨基酰tRNA合成酶的专一性 C.相应mRNA中核苷酸排列顺序 D.相应tRNA上的反密码子 E.相应rRNA的专一性 9.能出现在蛋白质分子中的氨基酸哪一种没有遗传密码 A.色氨酸 B.甲硫氨酸 C.羟脯氨酸 D.谷氨酰胺 E.组氨酸 11.下述原核生物蛋白质翻译特点错误的是 A.翻译与转录偶联进行 B.各种RNA中mRNA半寿期最短 C.起始阶段需A TP D.有三种释放因子分别起作用 E.合成场所为70S核糖体 18.氨基酰-tRNA合成酶的特点是 A.存在于细胞核内 B.只对氨基酸的识别有专一性 C.只对tRNA的识别有专一性 D.催化反应需GTP E.对氨基酸、tRNA的识别都有专一性 23.蛋白质合成时肽链合成终止的原因是 A.已达到mRNA分子的尽头 B.特异的tRNA识别终止密码子 C.释放因子能识别终止密码子并进入A位 D.终止密码子本身具酯酶作用,可水解肽酰基与tRNA之间的酯键 E.终止密码子部位有较大阻力,核糖体无法沿mRNA移动24.下列关于翻译的描述错误的是 A.氨基酸必须活化成活性氨基酸 B.氨基酸的羧基端被活化 C.活化的氨基酸被搬运到核糖体上 D.体内所有的氨基酸都有相应的密码 E.tRNA的反密码子与mRNA上的密码子按碱基配对原则反向结合 1、单项选择题参考答案及解析: 1.B 2.D 3.C 信号肽是指用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端) 一般由15~30个氨基酸组成。包括三个区:一个带正电的N末端,称为碱性氨基末端:一个中间疏水序列.以中性氨基酸为主,能够形成一段d 螺旋结构,它是信号肽的主要功能区;一个较长的带负电荷的C末端,含小分子氨基酸,是信号序列切割位点.也称加工区。当信号肽序列合成后,被信号识别颗粒(SRP)所识别,蛋白质合成暂停或减缓,信号识别颗粒将核糖体携带至内质网上4.D 5.D 解析:mRNA分子中共有64个密码,其中61个代表20种氨基酸,有一个起始密码-AUG(在蛋白质生物合成的起始阶段,即代表蛋白质合成的起始,也是蛋氨酸的密码),3个终止密码-UAA、UAG及UGA,所以答案A、B、C、E均为终止密码,只有答案D是代表氨基酸(色氨酸)的密码。6.C 7.E 8.B 用排除法9.C 10.B 11.C 翻译起始阶段需要GTP供能,而活化阶段是ATP供能12.C解析:能引起合成中的肽链过早脱落终止其合成的是嘌呤霉素,其作用机理是:嘌呤霉素的结构与酪氨酰-tRNA(Tyr-tRNAtyr)相似,可取代一些氨基酰-tRNA进入核糖体A位。当延长中的肽链进行移位时,肽链移入A位非正常氨基上时,易脱落,使肽链合成提前终止。氯霉素是与大亚基结合,抑制原核生物肽链延长过程;四环素族抑制氨基酰-tRNA与原核生物核蛋白体结合,抑制其蛋白质生物合成;链霉素是与原核生物小亚基结合,引起读码错误,使毒素类的细菌蛋白异常而失活;放线菌酮仅抑制真核生物转肽酶活性,抑制蛋白质合成。13.C page141,因为A位是进位的,任何新掺入的氨基酸都要在A位上,随后新生的链转移到P位,因为这样上一个tRNA才能被释放,空载之后去携带下一个同类氨基酸14.A 15.C 16.D 17.C 18.E 19.D 20.E 见page136,释放因子有两类三种,其中第一类是识别终止密码子的,而第二类是刺激第一类释放的21.D 22.A 23.C 24.D稀有氨基酸(Rare amino acid)存在于蛋白质中的20种常见氨基酸以外的其它罕见氨基酸,它们没有对应的遗传密码,都是在肽链合成后由相应的常见的氨基酸经过化学修饰衍生而来的氨基酸。蛋白质的稀有氨基酸中,4-羟基脯氨酸和5-羟基赖氨酸是两个重要的氨基酸,它们是胶原蛋白的重要组成成分,而胶原蛋白是哺乳动物体内最丰富的蛋白质。此外,与核酸形成复合物的蛋白某些稀有氨基酸质中的往往含有被修饰的氨基酸。例如,染色体上的组蛋白(histone)中含有被甲基化、乙酰化或磷酸化的氨基酸。N-甲酰甲硫氨酸(N-formylmethionine)是所有原核生物的蛋白质合成时N端的起始氨基酸。25.E 26.A见page133图4-17 27.B解析:蛋白质合成过程中,当mRNA上出现终止密码(UAA、UAG、UGA)时蛋白质合成终止,mRNA第142号密码UGA为终止密码,所以多肽链含有141个氨基酸。28.D 解析:遗传密码具有通用性,所以蛋白质生物合成的起始密码都是AUG,同时也为Met编码。原核生物的起始密码只能辨认甲酰化的蛋氨酸(N-甲酰蛋氨酸)。所以大肠杆菌中初合成的各种多肽链N 端第一个氨基酸是N-甲酰蛋氨酸 29.C30.D 31.B 32.B33.D 注意方向5-3.34.D 35.C 36.B 37.A 38.B 二、不定项选择题【至少两个正确选项的选择题】4.肽链的一级结构修饰: A. N-端修饰 B.个别氨基酸共价修饰, C.肽链水解修饰 D.辅基连接 E.亚基聚合5.tRNA反密码中除有AUGC外,常含有I,它可与密码中哪些碱基配对 A.U B.C C.A D.G E.T 6.下述关于翻译过程正确的是 A.氨基酸随机地结合在tRNA上 B.多肽链的合成是从羧基端向氨基端延伸 C.mRNA沿着核糖体移动 D.生长中的多肽链最初是连结在tRNA上 E.内质网是蛋白质合成场所 10.遗传密码的简并性指的是 A.一些三联体密码子可缺少一个嘌呤碱或嘧啶碱 B.密码子中有许多稀有碱基 C.大多数氨基酸有一组以上的密码子 D.一些密码子适用于一种以上的氨基酸 E.不同种属的生物中都相同,在翻译中可表现为某些密码优先使用特性, 18.肽链合成后的加工包括 A.切除肽链起始端的(甲酰)蛋氨酸残基 B.切除部分肽段 C.二硫键的形成 D.某些氨基酸的羟化、磷酸化 E.连接糖链 19.氨基酰-tRNA合成酶的作用是 A.使氨基酸活化 B.对氨基酸的识别无专一性,对tRNA的识别有专一性 C.促使相应的tRNA与活化氨基酸连接 D.精氨酸可由6种tRNA携带,因此要求有6种氨基酰-tRNA 合成酶催化 E.氨基酰-tRNA合成酶有校正活性 二、【不定项选择题参考答案】 1.AC AC位于N端,疏水特征是为了与膜结合2.ABC 3.BD 4.ABC 5.ABC 见page114图4-4. 6.CD 解释:新加入的氨基酸7.ACDE解析:原核生物翻译与转录无核膜间隔,均在胞质,所以是边转录边翻译,

(完整版)分子生物学》试题及答案

《分子生物学》考试试题B 课程号:66000360 考试方式:闭卷 考试时间: 一、名词解释(共10题,每题2分,共20分) 1. SD 序列 2. 重叠基因 3.ρ因子 4.hnRNA 5. 冈崎片段、 6. 复制叉(replication fork) 7. 反密码子(anticodon): 8. 同功tRNA 9. 模板链(template strand) 10. 抑癌基因 二、填空题(共20空,每空1分,共20分) 1.原核基因启动子上游有三个短的保守序列,它们分别为____和__区. 2.复合转座子有三个主要的结构域分别为______、______、________。 3.原核生物的核糖体由_____小亚基和_____大亚基组成,真核生物核糖糖体由_____小亚基和_______大亚基组成。 4.生物界共有___个密码子,其中__ 个为氨基酸编码,起始密码子为__ _______;终止密码子为_______、__________、____________。 5. DNA生物合成的方向是_______,冈奇片段合成方向是_______。 6.在细菌细胞中,独立于染色体之外的遗传因子叫_______。它是一

种_______状双链DNA,在基因工程中,它做为_______。 三.判断题(共5题,每题2分,共10分) 1.原核生物DNA的合成是单点起始,真核生物为多点起始。( ) 2.在DNA生物合成中,半保留复制与半不连续复制指相同概念。( ) 3.大肠杆菌核糖体大亚基必须在小亚基存在时才能与mRNA结合。( ) 4.密码子在mRNA上的阅读方向为5’→ 3’。( ) 5.DNA复制时,前导链的合成方向为5’→ 3’,后随链的合成方向也是5’→ 3’。() 四、简答题(共6题,每题5分,共30分) 1.简述三种RNA在蛋白质生物合成中的作用。 2.蛋白质合成后的加工修饰有哪些内容? 3.简述人类基因组计划的主要任务。 4.简述现代分子生物学的四大研究热点。 5.何谓转座子?简述简单转座子发生转座作用的机理。 6.简述大肠杆菌乳糖操纵子与色氨酸操纵子在阻遏调控机制上有那些区别? 四、问答题(共2题,共20分) 1.叙述蛋白质生物合成的主要过程。(10分) 2.请叙述真核基因的表达调控主要发生在那些环节?分别是怎样进行 的?(10分)

分子生物学题(含答案)

1.哪些因素引起DNA的突变?简要叙述生物体存在的修复方式。 突变引起的物理因素:辐射、紫外线等,化学因素:聚乙二醇,致癌物质等,生物因素:仙台病毒等。 修复方式:错配修复恢复错配 切除修复(碱基、核苷酸)切除突变的碱基和核苷酸片段 重组修复复制后的修复,重新启动停滞的复制叉 DNA直接修复修复嘧啶二体或甲基化DNA SOS系统DNA的修复,导致变异 2.描述乳糖操纵子的调控机制。(看不懂题目,乱写的) 乳糖操纵子的调控属于可诱导调节。在以乳糖为碳源的培养基中,在单个透过酶分子的作用下,少量乳糖分子进入细胞,又在单个β-半乳糖苷酶分子作用下转变成异构乳糖。某个异构乳糖与结合在操纵区上的阻遏物结合后使后者失活离开操纵区,开始了lac mRNA的生物合成。Lac mRNA翻译后生成大量的透过酶和β-半乳糖苷酶,加速了乳糖分子的转变。当乳糖分子都被消耗完毕时,阻遏物仍在不断被合成,有活性的阻遏物浓度超过了异构乳糖浓度,使细胞重新建立起阻遏状态,导致lac mRNA合成被抑制。mRNA半衰期短,不到一个世代生长期,mRNA几乎从细胞消失,透过酶和β-半乳糖苷酶的合成也趋于停止。 3.简述DNA半保留复制的概念。 每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。 4.对生物体转录和复制的特征进行说明比较?(网上找的) DNA复制和RNA转录在原理上是基本一致的,体现在:①这两种合成的直接前体是核苷三磷酸,从它的一个焦磷酸键获得能量促使反应走向合成;②两种合成都需要RNA聚合酶和四种核苷酸;③两种合成都是以DNA为模板;④合成前都必须将双链DNA解旋成单链;⑤合成的方向都是5’→ 3’。 DNA复制和RNA转录的不同点体现在:①复制和转录所用的酶是不同的,复制用的是DNA聚合酶,而转录用的是RNA聚合酶;②所用前体核苷三磷酸种类不同,DNA复制用四种脱氧核糖核苷三磷酸,即dA TP、dGTP、dCTP、dTTP,而RNA转录用四种核糖核苷三磷酸,即A TP、GTP、CrP、UTP做前体底物;③在DNA复制时是A与T配对,而RNA转录是A与U配对;④DNA复制时两条链均做模板,而RNA转录时只以其中一条链为模板;⑤DNA复制是半不连续的,可产生冈崎片段,而RNA转录是连续的;⑥DNA复制时需RNA做引物,而RNA转录无需引物;⑦DNA复制时需连接酶的参与,而RNA 转录时不需要。 5.阐述蛋白质生物合成途径 氨基酸的活化→翻译的起始(核糖体结合mRNA且甲硫氨酰-tRNA*结合到核糖体)→肽链的延伸(后续AA-tRNA与核糖体的结合,肽键生成,移位)→肽链终止→蛋白质前体加工→蛋白质的折叠 6.简要叙述真核生物mRNA的转录后加工的方式,这些加工方式各有何意义 RNA的编辑:某些RNA,特别是mRNA前体的一种加工方式,如插入、删除或取代一些核苷酸残基,导致DNA所编码的遗传信息的改变。因为经过编辑的mRNA序列发生了不同于模板DNA的变化。 生物学意义:校正作用有些基因突变在突变过程中丢失的遗传信息可能通过RNA的编辑得以回复

相关文档
相关文档 最新文档